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The positive definite solutions for the system of nonlinear matrix equations 𝑋 + 𝐴
∗

𝑌
−𝑛

𝐴 = 𝐼, 𝑌 + 𝐵
∗

𝑋
−𝑚

𝐵 = 𝐼 are considered,
where n, m are two positive integers and A, B are nonsingular complex matrices. Some sufficient conditions for the existence of
positive definite solutions for the system are derived. Under some conditions, an iterative algorithm for computing the positive
definite solutions for the system is proposed. Also, the estimation of the error is obtained. Finally, some numerical examples are
given to show the efficiency of the proposed iterative algorithm.

1. Introduction

Linear and nonlinear matrix equations have been widely
used for solving many problems in several areas such as
control theory, optimal control, optimization control, stabil-
ity theory, communication system, dynamic programming,
signal processing, and stochastic filtering and statistics, [1–
3].Many authors studied the existence of solutions for several
classes of thematrix equations (see, e.g., [4–14]), in particular,
Lyapunov matrix equation [15], Sylvester matrix equations
[11, 14], algebraic Riccati equations [3], some special case of
linear and nonlinear matrix equations [16–21], and coupled
matrix equations [22–24].

In recent years, many types of algebraic Riccati equations
have been the subject of great activity, the aim being to
achieve a fast and reliable algorithm that generates numerical
positive definite solutions.

In this paper, we will consider the system (Sys.) of
nonlinearmatrix equations that can be expressed in the form:

𝑋 + 𝐴
∗

𝑌
−𝑛

𝐴 = 𝐼,

𝑌 + 𝐵
∗

𝑋
−𝑚

𝐵 = 𝐼,

(1)

where 𝑛, 𝑚 are two positive integers, 𝑋, 𝑌 are 𝑟×𝑟 unknown
matrices, 𝐼 is the 𝑟×𝑟 identitymatrix, and 𝐴, 𝐵 are nonsingu-
lar matrices. All matrices are defined over the complex field.

The system of nonlinearmatrix equations with the form of (1)
is a special case of the systemof algebraic discrete-typeRiccati
equations of the form:

𝑋
𝑖
= 𝑉
∗

𝑖
𝑋
𝑖
𝑉
𝑖
+ 𝑄
𝑖

− (𝑉
∗

𝑖
𝑋
𝑖
𝐵
𝑖
+ 𝐴
𝑖
) (𝑅
𝑖
+ 𝐵
∗

𝑖
𝑋
𝑖
𝐵
𝑖
)
−1

(𝐵
∗

𝑖
𝑋
𝑖
𝑉
𝑖
+ 𝐴
∗

𝑖
) ,

(2)

where 𝑖 = 1, 2, . . . , 𝑘, [2, 3].The efficient numerical solutions
for some special case of the system (2) have been exten-
sively studied by several authors [4–10, 22–26]. For example,
Mukaidani [22] proposed a new algorithm for solving cross-
coupled sign-indefinite algebraic Riccati equations for weakly
coupled large-scale systems, while in [4, 5] Al-Dubiban
has studied special cases of Sys. (2) by obtained sufficient
conditions for the existence of positive definite solutions for
the systems and proposed iterative algorithms to calculate the
solutions. In [10], Davies proposed upper bounds for the sum
of the maximal eigenvalues of the solutions of the continuous
and discrete coupled algebraic Riccati equations. In [25],
Ivanov has studied a set of discrete-time coupled algebraic
Riccati equations which arise in quadratic optimal control
and proposed two iterations for computing a symmetric
solution of this system.

In this paper, we derive the sufficient conditions of the
existence of solutions for the Sys. (1). We introduce an
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iterative algorithm to obtain the positive definite solutions
of Sys. (1). We discuss the convergence of this iterative
algorithm. Finally, some numerical examples are given to
illustrate the efficiency for suggested algorithm.

The following notations are used throughout the rest of
the paper. The notation 𝐴 ≥ 0 (𝐴 > 0) means that 𝐴
is positive semidefinite (positive definite), 𝐴⋆ denotes the
complex conjugate transpose of 𝐴, and 𝐼 is the identity
matrix. Moreover, 𝐴 ≥ 𝐵 (𝐴 > 𝐵) is used as a different
notation for 𝐴 − 𝐵 ≥ 0 (𝐴 − 𝐵 > 0). We denote by 𝜌(𝐴) the
spectral radius of 𝐴; 𝜆

𝑟
(𝑋), 𝜇

𝑟
(𝑌) represent the eigenvalues

of 𝑋 and 𝑌, respectively. The norm used in this paper is the
spectral normof thematrix𝐴; that is, ‖𝐴‖ = √𝜌(𝐴𝐴⋆)unless
otherwise noted.

2. Main Theorems

In this section, we will introduce an iterative algorithmwhich
is applicable for computing the positive definite solutions of
the Sys. (1). We start with some results which will be used
throughout this paper.

Lemma 1 (see [27, 28]). If 𝑃 > 𝑄 > 0 (or 𝑃 ≥ 𝑄 > 0), then
𝑃
𝛼

> 𝑄
𝛼 (or 𝑃𝛼 ≥ 𝑄

𝛼

> 0) for all 𝛼 ∈ (0, 1], and 𝑃𝛼 < 𝑄
𝛼 (or

0 < 𝑃
𝛼

≤ 𝑄
𝛼) for all 𝛼 ∈ [−1, 0).

Theorem 2 (see [29]). Let the matrices 𝑃, 𝑄, and 𝑅 be positive
definite 𝑟 × 𝑟matrices, such that the integral

∫

∞

0

𝑒
𝑃𝑡

𝑅𝑒
𝑄𝑡

𝑑𝑡 (3)

exists and

lim
𝑡→∞

𝑒
𝑃𝑡

𝑅𝑒
𝑄𝑡

= 0; (4)

then the matrix

𝑍 = −∫

∞

0

𝑒
𝑃𝑡

𝑅𝑒
𝑄𝑡

𝑑𝑡 (5)

is the solution of the matrix equation:

𝑃𝑍 + 𝑍𝑄 = 𝑅. (6)

The solution of Sys. (1) can be found by the following
iterative algorithm.

Algorithm 3.

𝑋
0
= 𝑌
0
= 𝛽𝐼, 𝑋

𝑠+1
= [𝐵(𝐼 − 𝑌

𝑠
)
−1

𝐵
∗

]
1/𝑚

,

𝑌
𝑠+1

= [𝐴(𝐼 − 𝑋
𝑠
)
−1

𝐴
∗

]
1/𝑛

, 𝑠 = 0, 1, 2, . . . .

(7)

Theorem4. If there exist numbers 𝛼, 𝛽 satisfying 0 < 𝛼 < 𝛽 ≤
min{𝑛/(𝑛 + 1), 𝑚/(𝑚 + 1)}, and the following conditions hold:

(i) 𝛼𝑛(1 − 𝛼)𝐼 < 𝐴𝐴∗ < 𝛽𝑛(1 − 𝛽)𝐼,
(ii) 𝛼𝑚(1 − 𝛼)𝐼 < 𝐵𝐵∗ < 𝛽𝑚(1 − 𝛽)𝐼,

then the sequences {𝑋
𝑠
}, {𝑌
𝑠
} defined by Algorithm 3 converge

to a positive definite solution (𝑋, 𝑌) of Sys. (1).

Proof. From Algorithm 3, we get

𝑋
1
= [𝐵(𝐼 − 𝛽𝐼)

−1

𝐵
∗

]
1/𝑚

= [
1

(1 − 𝛽)
𝐵𝐵
∗

]

1/𝑚

< [
𝛽
𝑚

(1 − 𝛽)

(1 − 𝛽)
𝐼]

1/𝑚

= 𝛽𝐼 = 𝑋
0
.

(8)

Also, we have

𝑋
1
= [𝐵(𝐼 − 𝛽𝐼)

−1

𝐵
∗

]
1/𝑚

= [
1

(1 − 𝛽)
𝐵𝐵
∗

]

1/𝑚

> [
1

(1 − 𝛼)
𝐵𝐵
∗

]

1/𝑚

> [
𝛼
𝑚

(1 − 𝛼)

(1 − 𝛼)
𝐼]

1/𝑚

= 𝛼𝐼.

(9)

That is, 𝑋
0
> 𝑋
1
> 𝛼𝐼, similarly we get

𝑌
1
= [𝐴(𝐼 − 𝛽𝐼)

−1

𝐴
∗

]
1/𝑛

= [
1

(1 − 𝛽)
𝐴𝐴
∗

]

1/𝑛

< [
𝛽
𝑛

(1 − 𝛽)

(1 − 𝛽)
𝐼]

1/𝑛

= 𝛽𝐼 = 𝑌
0
.

(10)

Also, we have

𝑌
1
= [𝐴(𝐼 − 𝛽𝐼)

−1

𝐴
∗

]
1/𝑛

= [
1

(1 − 𝛽)
𝐴𝐴
∗

]

1/𝑛

> [
1

(1 − 𝛼)
𝐴𝐴
∗

]

1/𝑛

> [
𝛼
𝑛

(1 − 𝛼)

(1 − 𝛼)
𝐼]

1/𝑛

= 𝛼𝐼.

(11)

That is, 𝑌
0
> 𝑌
1
> 𝛼𝐼.

Suppose that

𝑋
𝑠−1

> 𝑋
𝑠
> 𝛼𝐼, 𝑌

𝑠−1
> 𝑌
𝑠
> 𝛼𝐼. (12)

Now, we will prove that𝑋
𝑠
> 𝑋
𝑠+1

> 𝛼𝐼 and 𝑌
𝑠
> 𝑌
𝑠+1

> 𝛼𝐼.
By using the inequalities (12), we have

𝑋
𝑠+1

= [𝐵(𝐼 − 𝑌
𝑠
)
−1

𝐵
∗

]
1/𝑚

< [𝐵(𝐼 − 𝑌
𝑠−1
)
−1

𝐵
∗

]
1/𝑚

= 𝑋
𝑠
.

(13)

Also, we have

𝑋
𝑠+1

= [𝐵(𝐼 − 𝑌
𝑠
)
−1

𝐵
∗

]
1/𝑚

> [𝐵(𝐼 − 𝛼𝐼)
−1

𝐵
∗

]
1/𝑚

= [
1

(1 − 𝛼)
𝐵𝐵
∗

]

1/𝑚

> [
𝛼
𝑚

(1 − 𝛼)

(1 − 𝛼)
𝐼]

1/𝑚

= 𝛼𝐼.

(14)

Similarly, we get

𝑌
𝑠+1

= [𝐴(𝐼 − 𝑋
𝑠
)
−1

𝐴
∗

]
1/𝑛

< [𝐴(𝐼 − 𝑋
𝑠−1
)
−1

𝐴
∗

]
1/𝑛

= 𝑌
𝑠
.

(15)
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Also, we have

𝑌
𝑠+1

= [𝐴(𝐼 − 𝑋
𝑠
)
−1

𝐴
∗

]
1/𝑛

> [𝐴(𝐼 − 𝛼𝐼)
−1

𝐴
∗

]
1/𝑛

= [
1

(1 − 𝛼)
𝐴𝐴
∗

]

1/𝑛

> [
𝛼
𝑛

(1 − 𝛼)

(1 − 𝛼)
𝐼]

1/𝑛

= 𝛼𝐼.

(16)

Therefore, the inequalities (12) are true for all 𝑠 = 1, 2, 3, . . ..
Hence, the sequences {𝑋

𝑠
}, {𝑌
𝑠
} are monotonically

decreasing and bounded from below by the matrix 𝛼𝐼.
Consequently, the sequences converge to a positive definite
limit (𝑋, 𝑌) which is a solution of Sys. (1).

Theorem 5. If there exist numbers 𝛼, 𝛽 satisfying 0 < 𝛼 < 𝛽 ≤
min{𝑛/(𝑛+ 1), 𝑚/(𝑚+1)}, and the following conditions hold:

(i) 𝛼𝑛(1 − 𝛼)𝐼 < 𝐴𝐴∗ < 𝛽𝑛(1 − 𝛽)𝐼,
(ii) 𝛼𝑚(1 − 𝛼)𝐼 < 𝐵𝐵∗ < 𝛽𝑚(1 − 𝛽)𝐼,

(iii) 𝑞 = 𝛽(2
𝑘
+2
𝑡
)

/(2𝛼)
(𝑘+𝑡)

(1 − 𝛽)
2

< 1,

where 𝑚 = 2
𝑘

, 𝑛 = 2
𝑡, then Sys. (1) has a positive definite

solution (𝑋, 𝑌) which satisfies

𝑋𝑠 − 𝑋
 ≤ 𝑞

𝑋𝑠−2 − 𝑋
 ≤ ⋅ ⋅ ⋅ ≤ (𝑞)

𝑠/2

(𝛽 − 𝛼) ,

𝑌𝑠 − 𝑌
 ≤ 𝑞

𝑌𝑠−2 − 𝑌
 ≤ ⋅ ⋅ ⋅ ≤ (𝑞)

s/2
(𝛽 − 𝛼) .

(17)

Proof. FromTheorem4, the two sequences {𝑋
𝑠
}, {𝑌
𝑠
} defined

by Algorithm 3 are convergent to a positive definite solution
(𝑋, 𝑌) of Sys. (1). We compute the spectral norm of the
matrices𝑋

𝑠
− 𝑋, 𝑌

𝑠
− 𝑌. For that, we have

𝑋𝑠 − 𝑋
 =



𝑚
√𝐵(𝐼 − 𝑌

𝑠−1
)
−1

𝐵∗ −
𝑚
√𝐵(𝐼 − 𝑌)

−1

𝐵∗


. (18)

We denote

𝑃
1
= 𝐵(𝐼 − 𝑌

𝑠−1
)
−1

𝐵
∗

, 𝑄
1
= 𝐵(𝐼 − 𝑌)

−1

𝐵
∗

. (19)

We use the following equality:

𝑚
√𝑃
1
(
𝑚
√𝑃
1
−
𝑚
√𝑄
1
) + (

𝑚
√𝑃
1
−
𝑚
√𝑄
1
)
𝑚
√𝑄
1

=
𝑚/2
√𝑃
1
−
𝑚/2
√𝑄
1
.

(20)

Since 𝑌
𝑠
> 𝑌 > 0 for each 𝑠 = 0, 1, 2, . . ., then by using

Lemma 1wehave thematrix𝐷
1
=
𝑚
√𝑃
1
−
𝑚
√𝑄
1
being a positive

definite solution of the matrix equation:

𝑚
√𝑃
1
𝐷
1
+ 𝐷
1

𝑚
√𝑄
1
=
𝑚/2
√𝑃
1
−
𝑚/2
√𝑄
1
. (21)

According toTheorem 2, we have

𝐷
1
= ∫

∞

0

𝑒
−
𝑚
√𝑃1𝑡 (

𝑚/2
√𝑃
1
−
𝑚/2
√𝑄
1
) 𝑒
−
𝑚
√𝑄1𝑡𝑑𝑡. (22)

Since 𝑚
√𝑃
1
,
𝑚
√𝑄
1
are positive definite matrices, then the

integral (22) exists, and

𝑒
−
𝑚
√𝑃1𝑡 (

𝑚/2
√𝑃
1
−
𝑚/2
√𝑄
1
) 𝑒
−
𝑚
√𝑄1𝑡 → 0, as 𝑡 → ∞. (23)

By using (18) and (22), we have

𝑋𝑠 − 𝑋
 ≤ ∫

∞

0


(
𝑚/2
√𝑃
1
−
𝑚/2
√𝑄
1
)




𝑒
−
𝑚
√𝑃1𝑡




e−
𝑚
√𝑄1𝑡


𝑑𝑡.

(24)

However, 𝑌
𝑠
> 𝑌 ≥ 𝛼𝐼; hence,

𝑚
√𝑃
1
> 𝛼𝐼,

𝑚
√𝑄
1
≥ 𝛼𝐼. (25)

Then, we have

𝑋𝑠 − 𝑋
 ≤



𝑚/2
√𝑃
1
−
𝑚/2
√𝑄
1


∫

∞

0


𝑒
−
𝑚
√𝑃1𝑡




𝑒
−
𝑚
√𝑄1𝑡


𝑑𝑡

≤



𝑚/2
√𝑃
1
−
𝑚/2
√𝑄
1


∫

∞

0


𝑒
−𝛼𝐼𝑡



2

𝑑𝑡

=



𝑚/2
√𝑃
1
−
𝑚/2
√𝑄
1


∫

∞

0

𝑒
−2𝛼𝑡

𝑑𝑡

=
1

2𝛼



𝑚/2
√𝑃
1
−
𝑚/2
√𝑄
1



≤ (
1

2𝛼
)

2 

𝑚/2
2

√𝑃
1
−
𝑚/2
2

√𝑄
1


.

(26)

After 𝑘 times as above, we get

𝑋𝑠 − 𝑋
 ≤ (

1

2𝛼
)

𝑘 

𝑚/2
𝑘

√𝑃
1
−
𝑚/2
𝑘

√𝑄
1


. (27)

Let𝑚 = 2
𝑘 be special case, then we have

𝑋𝑠 − 𝑋
 ≤ (

1

2𝛼
)

𝑘

𝑃1 − 𝑄1


= (
1

2𝛼
)

𝑘


𝐵(𝐼 − 𝑌

𝑠−1
)
−1

𝐵
∗

− 𝐵(𝐼 − 𝑌)
−1

𝐵
∗


= (
1

2𝛼
)

𝑘


𝐵(𝐼 − 𝑌

𝑠−1
)
−1

(𝑌
𝑠−1

− 𝑌) (𝐼 − 𝑌)
−1

𝐵
∗


≤ (
1

2𝛼
)

𝑘

‖𝐵‖
2

(𝐼− 𝑌
𝑠−1
)
−1


(I− 𝑌)−1

𝑌𝑠−1− 𝑌
 .

(28)

Since 𝑌 < 𝑌
𝑠−1

≤ 𝛽𝐼, then (𝐼 − 𝑌)−1 < (𝐼 − 𝑌
𝑠−1
)
−1

≤ (1/(1 −

𝛽))𝐼; that is,


(𝐼 − 𝑌)

−1

<

(𝐼 − 𝑌

𝑠−1
)
−1

≤
1

(1 − 𝛽)
. (29)

Therefore, we get

𝑋𝑠 − 𝑋
 ≤ (

1

2𝛼
)

𝑘
𝛽
2
𝑘

(1 − 𝛽)

𝑌𝑠−1 − 𝑌
 .

(30)

Also, we have

𝑌𝑠 − 𝑌
 =



𝑛
√𝐴(𝐼 − 𝑋

𝑠−1
)
−1

𝐴∗ −
𝑛
√𝐴(I − 𝑋)−1𝐴∗



. (31)
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We denote

𝑃
2
= 𝐴(𝐼 − 𝑋

𝑠−1
)
−1

𝐴
∗

, 𝑄
2
= 𝐴(𝐼 − 𝑋)

−1

𝐴
∗

. (32)

We use the following equality:

𝑛
√𝑃
2
(
𝑛
√𝑃
2
−
𝑛
√𝑄
2
) + (

𝑛
√𝑃
2
−
𝑛
√𝑄
2
)
𝑛
√𝑄
2

=
𝑛/2
√P
2
−
𝑛/2
√Q
2
.

(33)

Since 𝑋
𝑠
> 𝑋 > 0 for each 𝑠 = 0, 1, 2, . . . , then by using

Lemma 1 we have thematrix𝐷
2
=
𝑛
√𝑃
2
−
𝑛
√𝑄
2
being a positive

definite solution of the matrix equation:

𝑛
√𝑃
2
𝐷
2
+ 𝐷
2

𝑛
√𝑄
2
=
𝑛/2
√𝑃
2
−
𝑛/2
√𝑄
2
. (34)

According toTheorem 2, we have

𝐷
2
= ∫

∞

0

𝑒
−
𝑛
√𝑃2𝑡 (

𝑛/2
√𝑃
2
−
𝑛/2
√𝑄
2
) 𝑒
−
𝑛
√𝑄2𝑡𝑑𝑡. (35)

Since 𝑛
√𝑃
2
,
𝑛
√𝑄
2
are positive definite matrices, then the

integral (35) exists, and

𝑒
−
𝑛
√𝑃2𝑡 (

𝑛/2
√𝑃
2
−
𝑛/2
√𝑄
2
) 𝑒
−
𝑛
√𝑄2𝑡 → 0, as 𝑡 → ∞. (36)

By using (31) and (35), we have

𝑌𝑠 − 𝑌
 ≤ ∫

∞

0


(
𝑛/2
√𝑃
2
−
𝑛/2
√𝑄
2
)




𝑒
−
𝑛
√𝑃2𝑡




𝑒
−
𝑛
√𝑄2𝑡


𝑑𝑡.

(37)

However,𝑋
𝑠
> 𝑋 ≥ 𝛼𝐼; hence,

𝑛
√𝑃
2
> 𝛼𝐼,

𝑛
√𝑄
2
≥ 𝛼𝐼. (38)

Then, we have

𝑌𝑠 − 𝑌
 ≤



𝑛/2
√𝑃
2
−
𝑛/2
√𝑄
2


∫

∞

0


𝑒
−
𝑛
√𝑃2𝑡




𝑒
−
𝑛
√𝑄2𝑡


𝑑𝑡

≤



𝑛/2
√𝑃
2
−
𝑛/2
√𝑄
2


∫

∞

0


𝑒
−𝛼𝐼𝑡



2

𝑑𝑡

=



𝑛/2
√𝑃
2
−
𝑛/2
√𝑄
2


∫

∞

0

𝑒
−2𝛼𝑡

𝑑𝑡

=
1

2𝛼



𝑛/2
√𝑃
2
−
𝑛/2
√𝑄
2



≤ (
1

2𝛼
)

2 

𝑛/2
2

√𝑃
2
−
𝑛/2
2

√𝑄
2


.

(39)

After 𝑡 times as above, we get

𝑌𝑠 − 𝑌
 ≤ (

1

2𝛼
)

𝑡 

𝑛/2
𝑡

√𝑃
2
−
𝑛/2
𝑡

√𝑄
2


. (40)

Let 𝑛 = 2𝑡 be special case, then we have

𝑌𝑠 − 𝑌
 ≤ (

1

2𝛼
)

𝑡

𝑃2 − 𝑄2


= (
1

2𝛼
)

𝑡


𝐴(𝐼 − 𝑋

𝑠−1
)
−1

𝐴
∗

− 𝐴(𝐼 − 𝑋)
−1

𝐴
∗


= (
1

2𝛼
)

𝑡


𝐴(𝐼 − 𝑋

𝑠−1
)
−1

(𝑋
𝑠−1

− 𝑋) (𝐼 − 𝑋)
−1

𝐴
∗


≤ (
1

2𝛼
)

𝑡

‖𝐴‖
2

(𝐼−𝑋

𝑠−1
)
−1


(𝐼−𝑋)

−1


𝑋𝑠−1− 𝑋
 .

(41)

Since 𝑋 < 𝑋
𝑠−1

≤ 𝛽𝐼, then (𝐼 − 𝑋)−1 < (𝐼 − 𝑋
𝑠−1
)
−1

≤

(1/(1 − 𝛽))𝐼; that is,


(𝐼 − 𝑋)

−1

<

(𝐼 − 𝑋

𝑠−1
)
−1

≤
1

(1 − 𝛽)
. (42)

Therefore, we get

𝑌𝑠 − 𝑌
 ≤ (

1

2𝛼
)

𝑡
𝛽
2
𝑡

(1 − 𝛽)

𝑋𝑠−1 − 𝑋
 .

(43)

By using (43) in (30) and (30) in (43), we have

𝑋𝑠 − 𝑋
 ≤ 𝑞

𝑋𝑠−2 − 𝑋
 ≤ ⋅ ⋅ ⋅ ≤ (𝑞)

𝑠/2

(𝛽 − 𝛼) ,

𝑌𝑠 − 𝑌
 ≤ 𝑞

𝑌𝑠−2 − 𝑌
 ≤ ⋅ ⋅ ⋅ ≤ (𝑞)

𝑠/2

(𝛽 − 𝛼) ,

(44)

which completes the proof.

3. Numerical Examples

We will give some numerical examples for computing the
positive definite solution of the Sys. (1). The solution is
computed for some different matrices 𝐴, 𝐵 with different
orders. Denote by 𝑋, 𝑌 the solutions which are obtained by
Algorithm 3 and 𝜖

1
(𝑋) = ‖𝑋 − 𝑋

𝑠
‖, 𝜖
1
(𝑌) = ‖𝑌 − 𝑌

𝑠
‖.

For computing 𝑍
1/𝑛 for all 1/𝑛 ∈ (0, 1], we use the

iterative algorithm.

Algorithm 6.

𝑊
0
𝑍 = 𝑍𝑊

0
, 𝑊

𝑠+1
=
1

𝑛
[(𝑛 − 1)𝑊

𝑠
+𝑊
1−𝑛

s 𝑍] ,

𝑠 = 0, 1, 2, . . . .

(45)

See [30].

Example 7. Consider Sys. (1) with 𝑛 = 3, 𝑚 = 2, 𝛽 = 0.5, and
normal matrices

𝐴 = diag [0.2, 0.2, 0.5] ,

𝐵 = diag [0.4, 0.3, 0.1] .
(46)
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Table 1: Error analysis for Example 7.

𝑠 𝜖
1
(𝑋) 𝜖

1
(𝑌)

0 3.25515𝐸 − 01 1.71540𝐸 − 01

2 1.90010𝐸 − 01 1.28914𝐸 − 01

4 4.65789𝐸 − 02 3.11069𝐸 − 02

6 8.05431𝐸 − 03 5.57630𝐸 − 03

8 1.25249𝐸 − 03 8.71099𝐸 − 04

10 1.90796𝐸 − 04 1.32785𝐸 − 04

12 2.89695𝐸 − 05 2.01634𝐸 − 05

14 4.39639𝐸 − 06 3.06002𝐸 − 06

16 6.67142𝐸 − 07 4.64353𝐸 − 07

18 1.01236𝐸 − 07 7.04637𝐸 − 08

20 1.53621𝐸 − 08 1.06926𝐸 − 08

By using Algorithms 3 and 6, we have

𝑋 = diag [0.535247, 0.388225, 0.174485] ,

𝑌 = diag [0.441516, 0.402862, 0.67154] .
(47)

The results are given in Table 1.

Example 8. Consider Sys. (1) with 𝑛 = 5, 𝑚 = 4, 𝛽 = 0.4 and
normal matrices

𝐴 = diag [ −7
2𝑟2

,
−6

2𝑟2
, . . . ,

𝑟 − 8

2𝑟2
] ,

𝐵 = diag [ 1

8 + 𝑟
,

2

8 + 𝑟
, . . . ,

𝑟

8 + 𝑟
] .

(48)

By using Algorithms 3 and 6, we have;
When 𝑟 = 4,

𝑋 = diag [0.362018, 0.510342, 0.620206, 0.707524] ,

𝑌 = diag [0.595686, 0.590503, 0.577588, 0.556604] .
(49)

When 𝑟 = 7,

𝑋 = diag[0.290121, 0.408797, 0.497892,

0.570656, 0.631828, 0.68313, 0.723835]

(50)

𝑌 = diag[0.372659, 0.363432, 0.349091,

0.329437, 0.302795, 0.265305, 0.206669] .

(51)

The results are given in Table 2.

Example 9. Consider Sys. (1) with 𝑛 = 2, 𝑚 = 2, 𝛽 = 0.4, and
matrices

𝐴 = (
0.2 −0.1

0.1 0.2
) , 𝐵 = (

−0.4 0.1

0.2 0.3
) . (52)

Table 2: Error analysis for Example 8.

𝑟 𝑠 𝜖
1
(𝑋) 𝜖

1
(𝑌)

4

0 3.07524𝐸 − 01 1.95686𝐸 − 01

2 2.24755𝐸 − 01 1.44449𝐸 − 01

4 5.31418𝐸 − 02 5.07784𝐸 − 02

6 1.08011𝐸 − 02 1.03261𝐸 − 02

8 1.75364𝐸 − 03 1.66592𝐸 − 03

10 2.69238𝐸 − 04 2.55471𝐸 − 04

12 4.09499𝐸 − 05 3.88490𝐸 − 05

14 6.21930𝐸 − 06 5.90006𝐸 − 06

16 9.44353𝐸 − 07 8.95875𝐸 − 07

18 1.43388𝐸 − 07 1.36027𝐸 − 07

20 2.17715𝐸 − 08 2.06538𝐸 − 08

7

0 3.23835𝐸 − 01 1.93331𝐸 − 01

2 3.64875𝐸 − 01 4.33678𝐸 − 01

4 1.13231𝐸 − 01 2.06657𝐸 − 01

6 3.42800𝐸 − 02 6.90864𝐸 − 02

8 6.95159𝐸 − 03 7.88070𝐸 − 03

10 3.42099𝐸 − 04 2.93641𝐸 − 04

12 1.18241𝐸 − 05 1.00690𝐸 − 05

14 4.03846𝐸 − 07 3.43808𝐸 − 07

16 1.37875𝐸 − 08 1.17377𝐸 − 08

Table 3: Error analysis for Example 9.

𝑠 𝜖
1
(𝑋) 𝜖

1
(𝑌)

0 9.78137𝐸 − 02 1.18408𝐸 − 01

2 1.11953𝐸 − 01 9.96781𝐸 − 02

4 2.16876𝐸 − 02 1.76104𝐸 − 02

6 3.22178𝐸 − 03 2.84069𝐸 − 03

8 4.83451𝐸 − 04 4.38916𝐸 − 04

10 7.50050𝐸 − 05 6.69635𝐸 − 05

12 1.08812𝐸 − 05 1.00510𝐸 − 05

14 1.70240𝐸 − 06 1.53219𝐸 − 06

16 2.59464𝐸 − 07 2.32406𝐸 − 07

18 3.81681𝐸 − 08 3.49836𝐸 − 08

By using Algorithms 3 and 6, we have

𝑋 = (
0.497814 −0.0839355

−0.0839355 0.420533
) ,

𝑌 = (
0.333326 −0.00556924

−0.00556924 0.281592
) ,

𝜆
𝑟
(𝑋) = {0.551576, 0.36677} ,

𝜇
𝑟
(𝑌) = {0.333919, 0.280999} .

(53)

The results are given in Table 3.
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Table 4: Error analysis for Example 10.

𝑠 𝜖
1
(𝑋) 𝜖

1
(𝑌)

0 6.49247𝐸 − 01 2.37069𝐸 − 01

2 8.46092𝐸 − 02 1.48180𝐸 − 01

4 3.51586𝐸 − 03 5.04374𝐸 − 02

6 8.98887𝐸 − 04 1.30368𝐸 − 02

8 3.32057𝐸 − 04 4.71441𝐸 − 03

10 1.12763𝐸 − 04 1.57391𝐸 − 03

12 3.78219𝐸 − 05 5.11273𝐸 − 04

14 1.24881𝐸 − 05 1.64362𝐸 − 04

16 4.06906𝐸 − 06 5.26213𝐸 − 05

18 1.31421𝐸 − 06 1.68193𝐸 − 05

20 4.22232𝐸 − 07 5.37246𝐸 − 06

22 1.35257𝐸 − 07 1.71563𝐸 − 06

24 4.32590𝐸 − 08 5.47811𝐸 − 07

26 1.38239𝐸 − 08 1.74912𝐸 − 07

28 4.41568𝐸 − 09 5.58474𝐸 − 08

Example 10. Consider Sys. (1) with 𝑛 = 2, 𝑚 = 1, 𝛽 = 0.65,
and matrices

𝐴 = (

−0.2 −0.4 −0.4

−0.6 −0.2 0.6

0.2 −0.4 0.1

) , 𝐵 = (

−0.03 −0.08 0

0 0 0.02

0 0.1 0

) .

(54)

By using Algorithms 3 and 6, we have

𝑋 = (

0.0573078 −0.000371142 −0.00702446

−0.000371142 0.00075295 0.0000206791

−0.00702446 0.0000206791 0.000896794

) ,

𝑌 = (

0.596078 −0.0233679 0.0748523

−0.0233679 0.887069 0.0104592

0.0748523 0.0104592 0.454549

) ,

𝜆
𝑟
(𝑋) = {0.0581718, 0.000751403, 0.0000343988} ,

𝜇
𝑟
(𝑌) = {0.888982, 0.627173, 0.42154} .

(55)

The results are given in Table 4.

4. Conclusion

In this paper, the positive definite solutions for Sys. (1)
have been tackled. We presented sufficient conditions for the
existence of positive definite solutions for Sys. (1). Moreover,
we discussed an iterative algorithm from which solutions
can always be calculated numerically whenever the system is
solvable. Finally, we gave numerical examples that illustrated
the behavior of the proposed algorithm.
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