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We study a stochastic logisticmodel with diffusion between two patches in this paper. Using the definition of stationary distribution,
we discuss the effect of dispersal in detail. If the species are able to have nontrivial stationary distributions when the patches are
isolated, then they continue to do so for small diffusion rates. In addition, we use some examples and numerical experiments to
reflect that diffusions are capable of both stabilizing and destabilizing a given ecosystem.

1. Introduction

Dispersal is a ubiquitous phenomenon in the natural world.
This phenomenon plays a very important role in understand-
ing the ecological and evolutionary dynamics of populations.
The theoretical studies of spatial distributions can be traced
back as far as Skellam [1]. Then many scholars have focused
on the effects of spatial factors which play a crucial role in
the study of stability. Some mathematical models dealt with
a single population dispersing among patches (see [2–9] and
references cited therein). The others dealt with competition
or predator-prey interactions in patchy environments (see
[10–16] and references cited therein). These models centered
round local and global stability of equilibrium points, persis-
tence, and extinction of populations.

Through the studies for the diffusion systems and the
corresponding ones without diffusion, many authors have
discussed the relationship between the existence of the
equilibriums and their stability. Levin [10] showed that two
unstable competitive patches can be stabilized by diffusion;
Levin [11] also showed that diffusion can destabilize a stable
system by using a prey-predator model; Allen [4] proved
that a single species diffusion system remains weakly per-
sistent if the strength of diffusion is small enough; Beretta
and Takeuchi [5, 6] showed that small diffusion cannot
change the global stability of themodel. Takeuchi also proved

that diffusion among patches will not destabilize single-
population dynamics [9].

However, the most natural phenomena do not follow
strictly deterministic laws, but rather oscillate randomly
about some averages. That is to say populations in the real
word are inevitably affected by various environmental noises
which is an important phenomenon in ecosystems [17–19].
So we will consider a stochastic diffusion system which is
composed of two patches and connected by diffusion. Then
we want to know “how are the effects of dispersal under
random environments?” According to the author’s best
knowledge, there are few results dealing with this problem,
and stabilizing and/or destabilizing effects of dispersal remain
largely unknown due to difficulties involved by random
disturbances. Generally speaking, there does not have time
independent equilibriumpoint for a stochastic system.Hence
we will investigate the effects of dispersal by the concept of
stationary distribution (some analoguewhich plays the role of
the deterministic equilibrium point and reflects the stability
to some extent). In this paper, we will show that diffusion
cannot change the existence of stable stationary distribution
for the stochastic model if the strength of diffusion is small
enough.Moreover, small diffusion rates have some stabilizing
effects, and large diffusion rates have some destabilizing
effects on the stochastic model.That is, diffusions are capable
of both stabilizing and destabilizing a given ecosystem.
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2. Formulation of the Mathematical Model

The classical mathematical model describing the dynamics
of a single species is the logistic model, governed by the
following differential equation:

d𝑥 (𝑡) = 𝑥 (𝑡) (𝑟 − 𝑘𝑥 (𝑡)) d𝑡. (1)

This is a very popular model, and many scholars have
considered various ecosystems based on this equation. If we
take the dispersal phenomenon into consideration, a single
population dispersing in two patches becomes

d𝑥
1
= [𝑥
1
(𝑟
1
− 𝑘
1
𝑥
1
) + 𝜀
12
(𝑥
2
− 𝑥
1
)] d𝑡,

d𝑥
2
= [𝑥
2
(𝑟
2
− 𝑘
2
𝑥
2
) + 𝜀
21
(𝑥
1
− 𝑥
2
)] d𝑡,

(2)

where 𝑥
𝑖
represents the population density of the species in

𝑖th patch. 𝑟
𝑖
and 𝑘

𝑖
are the growth rate and self-competition

coefficient of the population in the 𝑖th patch. 𝜀
𝑖𝑗
is a non-

negative diffusion coefficient for the species from 𝑗th patch
to 𝑖th patch (𝑖 ̸= 𝑗). It is supposed that the net exchange
from 𝑖th patch to 𝑗th patch is proportional to the difference
of population densities 𝑥

𝑖
− 𝑥
𝑗
in each patch as the usual

assumption (see [2, 4–6, 20, 21]).
Taking the effect of randomly fluctuating environment

into consideration, we incorporate white noises in determin-
isticmodels.We assume that fluctuations in the environments
will manifest themselves mainly as fluctuations in the growth
rates of the populations.We usually estimate them by average
values plus error terms which follow normal distributions in
practice. Let

𝑟
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+ 𝜎
1
�̇�
1
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𝑟
2
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(3)

where 𝐵
1
(𝑡), 𝐵

2
(𝑡) are mutually independent Brownian

motions and 𝜎
1
and 𝜎

2
reflect the intensities of the white

noises. Then, the corresponding Itô-type stochastic system
which takes the dispersal phenomenon into consideration
becomes

d𝑥
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12
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2
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2
𝑥
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(𝑡) .

(4)

Throughout this paper, unless otherwise specified, we let
(Ω, 𝐹, {F}

𝑡≥0
, 𝑃) be a complete probability space. {F}

𝑡≥0
is a

filtration defined on this space satisfying the usual conditions
(It is right continuous, andF

0
contains all 𝑃-null sets.).

3. Existence and Uniqueness of the Positive
Solution for System (4)

Population densities 𝑥
1
(𝑡) and 𝑥

2
(𝑡) should be nonnegative

by their biological significance. For this reason, we want to
study system (4) in the region

𝑅
2

+
= {(𝑥

1
, 𝑥
2
) ∈ 𝑅
2
| 𝑥
1
> 0, 𝑥

2
> 0} . (5)

Now, we will show that 𝑅2
+
is a positive invariant set.

Theorem 1. For any initial value (𝑥
1
(0), 𝑥
2
(0)) ∈ 𝑅

2

+
, there is

a unique solution (𝑥
1
(𝑡), 𝑥
2
(𝑡)) to system (4) on 𝑡 ≥ 0, and the

solution will remain in 𝑅2
+
with probability 1.

Proof. Our proof is motivated by the works of Mao et al.
[22]. All the coefficients in system (4) are locally Lipschitz
continuous; then for any given initial value (𝑥

1
(0), 𝑥
2
(0)) ∈

𝑅
2

+
, there is a unique maximal local solution (𝑥

1
(𝑡), 𝑥
2
(𝑡)) on

𝑡 ∈ [0, 𝜏
𝑒
], where 𝜏

𝑒
is an explosion time (see e.g. [23, 24]). In

order to show this solution is global, we only need to prove
𝜏
𝑒
= ∞. Let 𝑘

0
> 0 be so large that 𝑥

𝑖
(0), 𝑖 = 1, 2 lying

within the interval [1/𝑘
0
, 𝑘
0
]. For each integer 𝑘 > 𝑘

0
, define

stopping times as follows:

𝜏
𝑘
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𝑒
] : 𝑥
𝑖
(𝑡) ∉ (

1

𝑘

, 𝑘) for some 𝑖 = 1, 2} .

(6)

It is easy to see 𝜏
𝑘
is increasing as 𝑘 → ∞. Set 𝜏

∞
=

lim
𝑘→∞

𝜏
𝑘
; hence 𝜏

∞
≤ 𝜏
𝑒
a.s. If we can prove 𝜏

∞
= ∞ a.s.,

then 𝜏
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2

+
a.s. for all 𝑡 ≥ 0.

In other words, we only need to prove 𝜏
∞

= ∞ a.s.. For if
this statement is false, then there are two constants 𝑇 > 0 and
𝜀 ∈ (0, 1) such that

𝑃 {𝜏
∞
≤ 𝑇} > 𝜀. (7)

Consequently, there is an integer 𝑘
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(9)

The nonnegativity of this function can be seen from

√𝑦 − 1 − 0.5 ln𝑦 ≥ 0, on 𝑦 > 0. (10)
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There exists a constant 𝑁 such that 𝑓(𝑥) = 𝑥
−0.5
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as long as (𝑥
1
, 𝑥
2
) ∈ 𝑅
2

+
. Integrating both sides from 0 to 𝜏

𝑘
∧

𝑇 and then taking expectations yield

𝐸𝑉 (𝑥
1
(𝜏
𝑘
∧ 𝑇) , 𝑥

2
(𝜏
𝑘
∧ 𝑇))

≤ 𝑉 (𝑥
1
(0) , 𝑥

2
(0)) + 𝑀𝐸 (𝜏

𝑘
∧ 𝑇)

≤ 𝑉 (𝑥
1
(0) , 𝑥

2
(0)) + 𝑀𝑇.

(13)

Denote Ω
𝑘
= {𝜏
𝑘
≤ 𝑇} for 𝑘 ≥ 𝑘

1
, by (8), 𝑃(Ω

𝑘
) ≥ 𝜀. Note

that, for every 𝜔 ∈ Ω
𝑘
, there is some 𝑖 such that 𝑥

𝑖
(𝜏
𝑘
, 𝜔)

equals either 𝑘 or 1/𝑘, and 𝑉(𝑥
1
(𝜏
𝑘
, 𝜔), 𝑥

2
(𝜏
𝑘
, 𝜔)) is no less

than either√𝑘 − 1 − 0.5 ln(𝑘) or 1/√𝑘 − 1 − 0.5 ln(1/𝑘).
Consequently,

𝑉 (𝑥
1
(𝜏
𝑘
, 𝜔) , 𝑥

2
(𝜏
𝑘
, 𝜔))

≥ [√𝑘 − 1 − 0.5 ln (𝑘)] ∧ [ 1

√𝑘

− 1 − 0.5 ln(1
𝑘

)] .

(14)

It is follows from (13) that

𝑉 (𝑥
1
(0) , 𝑥

2
(0)) + 𝑀𝑇

≥ 𝐸 [𝐼
Ω𝑘
𝑉 (𝑥
1
(𝜏
𝑘
, 𝜔) , 𝑥

2
(𝜏
𝑘
, 𝜔))]

≥ 𝜀 ([√𝑘 − 1 − 0.5 ln (𝑘)] ∧ [ 1

√𝑘

− 1 − 0.5 ln(1
𝑘

)]) .

(15)

Letting 𝑘 → ∞ leads to the contradiction

∞ > 𝑉(𝑥
1
(0) , 𝑥

2
(0)) + 𝑀𝑇 = ∞. (16)

So we must have 𝜏
∞
= ∞ a.s.

Theorem 1 shows that the solution of system (4) will
remain in the positive cone 𝑅2

+
. This nice positive invariant

property provides us with a great opportunity to construct
different types of the Lyapunov functions to discuss the
stationary distribution for system (4) in 𝑅2

+
in more detail.

4. Stationary Distribution for System (4)
In order to prove our main results, we require some results in
[25], and the technique we used here is motivated by [26–28].
System (4) can be rewritten as

d(𝑥1 (𝑡)
𝑥
2
(𝑡)
) = (

𝑥
1
(𝑟
1
− 𝑘
1
𝑥
1
) + 𝜀
12
(𝑥
2
− 𝑥
1
)

𝑥
2
(𝑟
2
− 𝑘
2
𝑥
2
) + 𝜀
21
(𝑥
1
− 𝑥
2
)

) d𝑡

+ (

𝜎
1
𝑥
1

0
) d𝐵
1
(𝑡) + (

0

𝜎
2
𝑥
2

) d𝐵
2
(𝑡) .

(17)

Its diffusion matrix can be presented as

𝐴 (𝑥
1
, 𝑥
2
) = (

𝜎
2

1
𝑥
2

1
0

0 𝜎
2

2
𝑥
2

2

) . (18)

Assumption B. There exists a bounded domain 𝑅
2

+
with

regular boundary, having the following properties.

(B1) In the domain 𝑈 and some neighborhood thereof,
the smallest eigenvalue of the diffusion matrix 𝐴(𝑥)
is bounded away from zero.

(B2) sup
𝐾𝑛
𝐸
𝑥
𝜏 < ∞ for all 𝑛, where 𝐾

𝑛
is a family of

countable compact subsets such that 𝑅2
+
= ⋃
∞

𝑛=1
𝐾
𝑛
;

𝐸
𝑥
𝜏 is the mean time 𝜏 at which a path issuing from 𝑥

reaches the set 𝐾
𝑛
.

Lemma 2 (see [25]). If (B) holds, then the Markov process
𝑋(𝑡) = (𝑥

1
, 𝑥
2
) has a stable stationary distribution 𝜇(⋅)

confined on 𝑅2
+
.

To validate (B1), it suffices to prove 𝐹 is uniformly ellipti-
cal in𝑈, where 𝐹𝑢 = 𝑏(𝑥) ⋅𝑢

𝑥
+ [tr(𝐴(𝑥)𝑢

𝑥𝑥
)]/2; that is, there

is a positive number𝑀 such that
𝑘

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥) 𝜉
𝑖
𝜉
𝑗
≥ 𝑀





𝜉





2

, 𝑥 ∈ 𝑈, 𝜉 ∈ 𝑅
𝑘 (19)
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(see Chapter 3 of [29] and Rayleigh’s principle in [30]).
To verify (B2), it suffices to show that there exists some
neighborhood 𝑈 and a nonnegative 𝐶2-function such that,
for any 𝑥 ∈ 𝐸

𝑙
\𝑈, 𝐿𝑉 is negative (see[31]).

The deterministic system (2) has two equilibrium points,
namely, 𝐸

0
(0, 0) and 𝐸∗(𝑥∗

1
, 𝑥
∗

2
). Takeuchi [9] has proved that

this single species diffusion model has a positive and globally
stable equilibrium point 𝐸∗(𝑥∗

1
, 𝑥
∗

2
) for any diffusion rate; the

results obtained in his paper show that no diffusion rate; can
change the global stability of the deterministic model.

Suppose 𝐸∗(𝑥∗
1
, 𝑥
∗

2
) is the equilibrium points of system

(2). Then, they meet the following equations:

𝑟
1
= 𝑘
1
𝑥
∗

1
− 𝜀
12

𝑥
∗

2

𝑥
∗

1

+ 𝜀
12
,

𝑟
2
= 𝑘
2
𝑥
∗

2
− 𝜀
21

𝑥
∗

1

𝑥
∗

2

+ 𝜀
21
.

(20)

These relations will be useful in the proof of the next theorem.
Next, we will show the conditions under which system (4)
exists on a stable stationary distribution and discuss the effect
of diffusion on the stochastic system.

Theorem 3. Let 𝜎
1
> 0, 𝜎

2
> 0 such that

4𝑘
1
𝑘
2
> 𝜀
12
𝜀
21
𝛽
2
, (21)

𝑟
1
𝜀
21
𝑥
∗

1
+ 𝑟
2
𝜀
12
𝑥
∗

2
>

𝜎
2

1

2

𝜀
21
𝑥
∗

1
+

𝜎
2

2

2

𝜀
12
𝑥
∗

2
. (22)

Then there is a stationary distribution 𝜇(⋅) with respect to 𝑅2
+

for system (4)with any initial value (𝑥
1
(0), 𝑥
2
(0)) ∈ 𝑅

2

+
, where

𝛽 = (

1

√𝑥
∗

1

−

1

√𝑥
∗

2

)

2

. (23)

In addition, condition (22) can be satisfied when

𝑟
1
>

𝜎
2

1

2

, 𝑟
2
>

𝜎
2

2

2

. (24)

Proof. Define 𝑉 : 𝑅
2

+
→ 𝑅
+
,

𝑉 (𝑥
1
, 𝑥
2
) = (𝑥

1
− 𝑥
∗

1
− 𝑥
∗

1
ln 𝑥
1

𝑥
∗

1

)
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2
− 𝑥
∗

2
− 𝑥
∗

2
ln 𝑥
2

𝑥
∗

2

) = 𝑉
1
+ 𝑘𝑉
2
,

(25)

where 𝑘 is a positive constant to be determined later.𝑉(𝑥
1
, 𝑥
2
)

is a positive definite function for all (𝑥
1
, 𝑥
2
) ̸= (𝑥
∗

1
, 𝑥
∗

2
). By Itô’s

formula, we can calculate

d𝑉
1
(𝑥
1
, 𝑥
2
)

= (1 −

𝑥
∗

1

𝑥
1

) d𝑥
1
+

1

2

𝑥
∗

1

𝑥
2

1

𝜎
2

1
𝑥
2

1
d𝑡

= (𝑥
1
− 𝑥
∗

1
) [(𝑟
1
− 𝑘
1
𝑥
1
+ 𝜀
12

𝑥
2

𝑥
1

− 𝜀
12
) d𝑡

+ 𝜎
1
d𝐵
1
(𝑡)] +

1

2

𝑥
∗

1
𝜎
2

1
d𝑡

= (𝑥
1
− 𝑥
∗

1
) [𝑘
1
𝑥
∗

1
− 𝜀
12

𝑥
∗

2

𝑥
∗

1

+ 𝜀
12

− 𝑘
1
𝑥
1
+ 𝜀
12

𝑥
2

𝑥
1

− 𝜀
12
] d𝑡

+

1

2

𝑥
∗

1
𝜎
2

1
d𝑡 + 𝜎

1
(𝑥
1
− 𝑥
∗

1
) d𝐵
1
(𝑡)

= (𝑥
1
− 𝑥
∗

1
) [𝑘
1
(𝑥
∗

1
− 𝑥
1
) + 𝜀
12
(

𝑥
2

𝑥
1

−

𝑥
∗

2

𝑥
∗

1

)] d𝑡

+

1

2

𝑥
∗

1
𝜎
2

1
d𝑡 + 𝜎

1
(𝑥
1
− 𝑥
∗

1
) d𝐵
1
(𝑡)

= [ − 𝑘
1
(𝑥
1
− 𝑥
∗

1
)
2

+ 𝜀
12
(𝑥
1
− 𝑥
∗

1
) (

𝑥
2

𝑥
1

−

𝑥
∗

2

𝑥
∗

1

)

+

1

2

𝑥
∗

1
𝜎
2

1
] d𝑡 + 𝜎

1
(𝑥
1
− 𝑥
∗

1
) d𝐵
1
(𝑡)

= 𝐿𝑉
1
(𝑥
1
, 𝑥
2
) d𝑡 + 𝜎

1
(𝑥
1
− 𝑥
∗

1
) d𝐵
1
(𝑡) ,

(26)

d𝑉
2
(𝑥
1
, 𝑥
2
)

= (1 −

𝑥
∗

2

𝑥
2

) d𝑥
2
+

1

2

𝑥
∗

2

𝑥
2

2

𝜎
2

2
𝑥
2

2
d𝑡

= (𝑥
2
− 𝑥
∗

2
) [(𝑟
2
− 𝑘
2
𝑥
2
+ 𝜀
21

𝑥
1

𝑥
2

− 𝜀
21
) d𝑡

+ 𝜎
2
d𝐵
2
(𝑡) ] +

1

2

𝜎
2

2
𝑥
∗

2
d𝑡

= (𝑥
2
− 𝑥
∗

2
) [𝑘
2
𝑥
∗

2
− 𝜀
21

𝑥
∗

1

𝑥
∗

2

+ 𝜀
21
− 𝑘
2
𝑥
2

+ 𝜀
21

𝑥
1

𝑥
2

− 𝜀
21
] d𝑡

+

1

2

𝜎
2

2
𝑥
∗

2
d𝑡 + 𝜎

2
(𝑥
2
− 𝑥
∗

2
) d𝐵
2
(𝑡)

= (𝑥
2
− 𝑥
∗

2
) [𝑘
2
(𝑥
∗

2
− 𝑥
2
) + 𝜀
21
(

𝑥
1

𝑥
2

−

𝑥
∗

1

𝑥
∗

2

)] d𝑡

+

1

2

𝜎
2

2
𝑥
∗

2
d𝑡 + 𝜎

2
(𝑥
2
− 𝑥
∗

2
) d𝐵
2
(𝑡)

= [ − 𝑘
2
(𝑥
2
− 𝑥
∗

2
)
2

+ 𝜀
21
(𝑥
2
− 𝑥
∗

2
) (

𝑥
1

𝑥
2

−

𝑥
∗

1

𝑥
∗

2

)

+

1

2

𝜎
2

2
𝑥
∗

2
] d𝑡 + 𝜎

2
(𝑥
2
− 𝑥
∗

2
) d𝐵
2
(𝑡)

= 𝐿𝑉
2
(𝑥
1
, 𝑥
2
) d𝑡 + 𝜎

2
(𝑥
2
− 𝑥
∗

2
) d𝐵
2
(𝑡) .

(27)

Then we have
d𝑉 (𝑥

1
, 𝑥
2
) = d𝑉

1
(𝑥
1
, 𝑥
2
) + 𝑘d𝑉

2
(𝑥
1
, 𝑥
2
)

= 𝐿𝑉 (𝑥
1
, 𝑥
2
) d𝑡 + 𝜎

1
(𝑥
1
− 𝑥
∗

1
) d𝐵
1
(𝑡)

+ 𝜎
2
(𝑥
2
− 𝑥
∗

2
) d𝐵
2
(𝑡) .

(28)
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Choosing 𝑘 = 𝜀
12
/𝜀
21
, we can obtain

𝐿𝑉 (𝑥
1
, 𝑥
2
)

= − 𝑘
1
(𝑥
1
− 𝑥
∗

1
)
2

− 𝑘
2

𝜀
12

𝜀
21

(𝑥
2
− 𝑥
∗

2
)
2

+

1

2

𝑥
∗

1
𝜎
2

1
+

1

2

𝜀
12

𝜀
21

𝜎
2

2
𝑥
∗

2
+ 𝜀
12

× [(𝑥
1
− 𝑥
∗

1
) (

𝑥
2

𝑥
1

−

𝑥
∗

2

𝑥
∗

1

) + (𝑥
2
− 𝑥
∗

2
) (

𝑥
1

𝑥
2

−

𝑥
∗

1

𝑥
∗

2

)]

− 𝑘
1
(𝑥
1
− 𝑥
∗

1
)
2

− 𝑘
2

𝜀
12

𝜀
21

(𝑥
2
− 𝑥
∗

2
)
2

+ 𝜎 − 𝜀
12
Γ (𝑥
1
, 𝑥
2
) ,

(29)

where

𝜎 =

1

2

𝑥
∗

1
𝜎
2

1
+

1

2

𝜀
12

𝜀
21

𝜎
2

2
𝑥
∗

2
,

Γ (𝑥
1
, 𝑥
2
)

= − [(𝑥
1
− 𝑥
∗

1
) (

𝑥
2

𝑥
1

−

𝑥
∗

2

𝑥
∗

1

) + (𝑥
2
− 𝑥
∗

2
) (

𝑥
1

𝑥
2

−

𝑥
∗

1

𝑥
∗

2

)]

= −

(𝑥
1
− 𝑥
∗

1
) (𝑥
∗

1
𝑥
2
− 𝑥
1
𝑥
∗

2
)

𝑥
1
𝑥
∗

1

−

(𝑥
2
− 𝑥
∗

2
) (𝑥
1
𝑥
∗

2
− 𝑥
2
𝑥
∗

1
)

𝑥
2
𝑥
∗

2

= −

(𝑥
1
− 𝑥
∗

1
) (𝑥
2
(𝑥
∗

1
− 𝑥
1
) + 𝑥
1
(𝑥
2
− 𝑥
∗

2
))

𝑥
1
𝑥
∗

1

−

(𝑥
2
− 𝑥
∗

2
) (𝑥
1
(𝑥
∗

2
− 𝑥
2
) + 𝑥
2
(𝑥
1
− 𝑥
∗

1
))

𝑥
2
𝑥
∗

2

=

𝑥
2
(𝑥
1
− 𝑥
∗

1
)
2

𝑥
1
𝑥
∗

1

+

𝑥
1
(𝑥
2
− 𝑥
∗

2
)
2

𝑥
2
𝑥
∗

2

− (

1

𝑥
∗

1

+

1

𝑥
∗

2

) (𝑥
1
− 𝑥
∗

1
) (𝑥
2
− 𝑥
∗

2
)

≥ (2√

1

𝑥
∗

1
𝑥
∗

2

−

1

𝑥
∗

1

−

1

𝑥
∗

2

)(𝑥
1
− 𝑥
∗

1
) (𝑥
2
− 𝑥
∗

2
)

= −(

1

√𝑥
∗

1

−

1

√𝑥
∗

2

)

2

(𝑥
1
− 𝑥
∗

1
) (𝑥
2
− 𝑥
∗

2
) .

(30)

Then we have

𝐿𝑉 ≤ − 𝑘
1
(𝑥
1
− 𝑥
∗

1
)
2

− 𝑘
2

𝜀
12

𝜀
21

(𝑥
2
− 𝑥
∗

2
)
2

+ 𝜎 + 𝜀
12
(

1

√𝑥
∗

1

−

1

√𝑥
∗

2

)

2

(𝑥
1
− 𝑥
∗

1
)

× (𝑥
2
− 𝑥
∗

2
) ≜ 𝑅 (𝑥

1
, 𝑥
2
) .

(31)

If we denote 𝑥
1
= 𝑥
1
− 𝑥
∗

1
, 𝑥
2
= 𝑥
2
− 𝑥
∗

2
, then

𝐿𝑉 ≤ − 𝑘
1
𝑥
2

1
− 𝑘
2

𝜀
12

𝜀
21

𝑥
2

2
+ 𝜎

+ 𝜀
12
(

1

√𝑥
∗

1

−

1

√𝑥
∗

2

)

2

𝑥
1
𝑥
2
≜ 𝐺 (𝑥

1
, 𝑥
2
) .

(32)

It is well known that 𝐺(𝑥
1
, 𝑥
2
) = 0 is an elliptic-curve when

𝐼
2
=



















𝑘
1

−𝜀
12
𝛽

2

−𝜀
12
𝛽

2

𝑘
2

𝜀
12

𝜀
21



















> 0, (33)

that is,

4𝑘
1
𝑘
2
> 𝜀
12
𝜀
21
𝛽
2
. (34)

Now we take 𝑈 to be the intersection of (𝐺(𝑥
1
, 𝑥
2
) ≥ 0) and

𝑅
2

+
with 𝑈 ⊆ 𝑅

2

+
. So, for (𝑥

1
, 𝑥
2
) ∈ 𝑅

2

+
/𝑈, 𝐿𝑉 is negative,

which implies condition (B2) is satisfied. Besides, If 𝑈 is
bounded away from (0, 0), that is,

lim
𝑥1 ,𝑥2→0

𝐿𝑉 (𝑥
1
, 𝑥
2
) = −𝑘

1
(𝑥
∗

1
)
2

− 𝑘
2

𝜀
12

𝜀
21

(𝑥
∗

2
)
2

+ 𝜎 < 0,

(35)

which can be satisfied when

𝑘
1
𝜀
21
(𝑥
∗

1
)
2

+ 𝑘
2
𝜀
12
(𝑥
∗

2
)
2

= 𝑟
1
𝜀
21
𝑥
∗

1
+ 𝑟
2
𝜀
12
𝑥
∗

2
>

𝜎
2

1

2

𝜀
21
𝑥
∗

1
+

𝜎
2

2

2

𝜀
12
𝑥
∗

2
,

(36)

then there is a constant𝑀 > 0 such that
2

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥
1
, 𝑥
2
) 𝜉
𝑖
𝜉
𝑗

= 𝜎
2

1
𝑥
2

1
𝜉
2

1
+ 𝜎
2

2
𝑥
2

2
𝜉
2

2
≥ 𝑀





𝜉





2

∀ (𝑥
1
, 𝑥
2
) ∈ 𝑈, 𝜉 ∈ 𝑅

2
,

(37)

which implies condition (B1) is also satisfied. Therefore,
system (4) has a stable stationary distribution 𝜇(⋅) confined
on 𝑅2
+
. These together with the positive invariant property of

𝑅
2

+
complete our proof.

Lemma 4 (see [32, Corollary 1]). Equation d𝑥(𝑡) = 𝑥(𝑡)(𝑟 −

𝑘𝑥(𝑡))d𝑡 + 𝛼𝑥(𝑡)d𝐵(𝑡) has a nontrivial stationary distribution
if and only if 𝛼2 < 2𝑟.

Remark 5. Suppose there is no diffusion; that is, 𝜀
12

=

𝜀
21

= 0. Then condition (21) is always satisfied, and the
corresponding equations,

d𝑥
1
= 𝑥
1
(𝑟
1
− 𝑘
1
𝑥
1
) d𝑡 + 𝜎

1
𝑥
1
d𝐵
1
(𝑡) ,

d𝑥
2
= 𝑥
2
(𝑟
2
− 𝑘
2
𝑥
2
) d𝑡 + 𝜎

2
𝑥
2
d𝐵
2
(𝑡) ,

(38)

have stationary distributions when 𝑟
1
> 𝜎
2

1
/2, 𝑟
2
> 𝜎
2

2
/2.

This is in agreement with the results in the literature [32] (see
Lemma 4).
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Remark 6. Suppose condition (24) is satisfied. Then the
species has a nontrivial stationary distribution in all patches
if the patches are isolated; that is, the diffusion among
patches is neglected, and the species is confined to each
patch. Condition (21) can be satisfied when we choose 𝜀

12
, 𝜀
21

sufficiently small. Then we have a conclusion that diffusion
cannot change the existence of stable stationary distribution
for stochastic system if the strength of diffusion rate is small
enough.

Remark 7. An immediate consequence of condition (22) is
that environmental noises are against the stationary distri-
bution for stochastic system. If 𝑟

1
< 𝜎
2

1
/2, 𝑟
2
> 𝜎
2

2
/2; that

is, only species in the 2nd patch have a nontrivial stationary
distribution when there is no diffusion. But we can choose
𝜀
21

sufficiently small such that conditions in Theorem 3
are satisfied, and there exists a stationary distribution for
(𝑥
1
(𝑡), 𝑥
2
(𝑡)). This implies small diffusion rate has some

stabilizing effects on stochastic system.However, if we choose
𝜀
21

sufficiently large, then the conditions of Theorem 3 are
destroyed which implies large diffusion rate also has some
destabilizing effects on stochastic models.

5. Examples and Numerical Simulation

Now we will give three examples to explain both the stabi-
lizing and destabilizing effects of diffusion on the population
dynamics. The data we used here are only some hypothetical
data which are used to explain the effect of diffusion. We
use the Milsteins Higher Order Method mentioned in [33]
to numerically simulate (4):

𝑥
𝑘+1

1
= 𝑥
𝑘

1
+ [𝑥
𝑘

1
(𝑟
1
− 𝑘
1
𝑥
𝑘

1
) + 𝜀
12
(𝑥
𝑘

2
− 𝑥
𝑘

1
)] Δ𝑡

+ 𝜎
1
𝑥
𝑘

1
√Δ𝑡𝜉
𝑘
+

𝜎
2

1

2

𝑥
𝑘

1
(Δ𝑡𝜉
2

𝑘
− Δ𝑡) ,

𝑥
𝑘+1

2
= 𝑥
𝑘

2
+ [𝑥
𝑘

2
(𝑟
2
− 𝑘
2
𝑥
𝑘

2
) + 𝜀
21
(𝑥
𝑘

1
− 𝑥
𝑘

2
)] Δ𝑡

+ 𝜎
2
𝑥
𝑘

2
√Δ𝑡𝜂
𝑘
+

𝜎
2

2

2

𝑥
𝑘

2
(Δ𝑡𝜂
2

𝑘
− Δ𝑡) ,

(39)

where 𝜉
𝑘
and 𝜂
𝑘
are the Gaussian random variables𝑁(0, 1).

It is very difficult to choose parameters in the system
from realistic estimation. The estimation of the parameters
can be derived by some statistical methods and filtering
theory which are linked to statistical problems and filtering
problems. Therefore, we will only use some hypothetical
parameters to verify the theoretical effects in this section.

Example 8. For system (38), we let 𝑟
1
= 0.9, 𝑘

1
= 1.2, 𝜎

1
=

√2, 𝑟
2
= 1.1, 𝑘

2
= 0.2, and 𝜎

2
= 0.8. Note that 𝑟

1
< 𝜎
2

1
/2

and 𝑟
2
> 𝜎
2

2
/2; so for system (38), species in the 1st patch

has a Dirac delta distribution with mass concentrated in 0,
and species in the 2nd patch has a nontrivial distribution. (see
literature [32].) Numerical simulations of (38) are showed in
Figures 1(a) and 1(b).

Example 9. For system (4), we let 𝑟
1
= 0.9, 𝑘

1
= 1.2, 𝜀

12
=

0.1, 𝜎
1
= √2, 𝑟

2
= 1.1, 𝑘

2
= 0.2, 𝜀

21
= 0.4, and 𝜎

2
=

10

9

8

7

6

5

4

3

2

1

0

D
en

sit
y

Time (𝑡)
0 100 200 300 400 500

𝑥1

𝑥2

(a)

𝑥1

𝑥2

𝑂(0, 0)

(b)

Figure 1: Numerical simulations of Example 8 (there is no diffu-
sion). Species in the 1st patch has a Dirac delta distribution with
mass concentrated in 0, and species in the 2nd patch has a stationary
distribution.

0.8. Its corresponding deterministic system (2) has a globally
asymptotically stable equilibrium point 𝐸∗(𝑥∗, 𝑦∗) = (1, 4).
We also have

𝜎
1
= √2 > 0, 𝜎

2
= 0.8 > 0,

𝛽 = (

1

√𝑥
∗

1

−

1

√𝑥
∗

2

)

2

=

1

4

,

4𝑘
1
𝑘
2
= 0.96 > 0.0025 = 𝜀

12
𝜀
21
𝛽
2
,

𝑟
1
𝜀
21
𝑥
∗

1
+ 𝑟
2
𝜀
12
𝑥
∗

2
= 0.8 > 0.528 =

𝜎
2

1

2

𝜀
21
𝑥
∗

1
+

𝜎
2

2

2

𝜀
12
𝑥
∗

2
.

(40)
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Figure 2:Numerical simulations of Example 9. In this example, we choose 𝜀
21
sufficiently small such that conditions inTheorem 3 are satisfied,

and there is a stationary distribution for (𝑥
1
(𝑡), 𝑥
2
(𝑡)); (c) and (d) are distributions of 𝑥

1
and 𝑥

2
, respectively.

So, from Theorem 3, we obtain that there is a stationary
distribution 𝜇(⋅) with respect to 𝑅2

+
for system (4) with initial

value (𝑥
1
(0), 𝑥
2
(0)) ∈ 𝑅

2

+
(see Figures 2(a), 2(b), 2(c), and

2(d)).The stabilizing effect of small diffusion rate can be seen
clearly from this example.

Example 10. For system (4), we let 𝑟
1
= 0.9, 𝑘

1
= 1.2, 𝜀

12
=

0.1, 𝜎
1
= √2, 𝑟

2
= 1.1, 𝑘

2
= 0.2, 𝜀

21
= 5, and 𝜎

2
= 0.8.

It is clear that conditions of Theorem 3 are destroyed and
numerical simulations of this example showed in Figures 3(a)
and 3(b).The destabilizing effect of large diffusion rate can be
seen clearly from this example.

6. Concluding Remarks

The main objective of this paper is to study the effects of
dispersal on stationary distribution for a stochastic logistic
diffusion system. We show that the dispersal stabilizes the
system when the dispersal rate is small, and destabilizes the
system, when the dispersal rate is large. Our results show
that small dispersal rate cannot change the existence of
stationary distribution for the stochastic model such as it
cannot change the global stability of the deterministic model.
Though diffusions have stabilizing effects, our examples
show that dispersal may also have the side effects which
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Figure 3: Numerical simulations of Example 10. In this example, we
choose 𝜀

21
sufficiently large such that conditions in Theorem 3 are

destroyed which show the destabilizing effect of large diffusion rate.

result in destabilization. This suggests that dispersal among
patches should be regulated.Their ecological implications are
that neither no diffusion nor unlimited diffusion may serve
the interest of stabilizing the given ecosystem in random
environments! This observation may be useful in planning
and controlling of ecosystems.
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