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Recently, the concept of𝑁𝜃-ward continuity was introduced and studied. In this paper, we prove that the uniform limit of𝑁𝜃-ward
continuous functions is 𝑁𝜃-ward continuous, and the set of all 𝑁𝜃-ward continuous functions is a closed subset of the set of all
continuous functions. We also obtain that a real function f defined on an interval E is uniformly continuous if and only if (f (𝛼𝑘))
is𝑁
𝜃
-quasi-Cauchy whenever (𝛼

𝑘
) is a quasi-Cauchy sequence of points in E.

1. Introduction

Theconcept of continuity and any concept involving continu-
ity play a very important role not only in pure mathematics
but also in other branches of sciences involving mathematics
especially in computer science, information theory, and
biological science.

A real function 𝑓 is continuous if and only if it preserves
convergent sequences. A subset 𝐸 of R, the set of real
numbers, is compact if any sequence of points in 𝐸 has
a convergent subsequence whose limit is in 𝐸. Using the
idea of continuity of a real function and the idea of com-
pactness in terms of sequences, many kinds of continuities
and compactness were introduced and investigated, not all
but some of them we recall in the following: slowly oscil-
lating continuity, slowly oscillating compactness [1], quasi-
slowly oscillating continuity, quasi-slowly oscillating com-
pactness [2], Δ-quasi-slowly oscillating continuity, Δ-quasi-
slowly oscillating compactness [3–5], ward continuity, ward
compactness [6, 7], 𝛿-ward continuity, 𝛿-ward compactness
[8], statistical ward continuity, and lacunary statistical ward
continuity [9, 10].

In [11], the notion of 𝑁𝜃 convergence was introduced,
and studied by Freedman et al. Using the main idea for

continuity and compactness given above the concepts of𝑁𝜃-
ward compactness of a subset 𝐸 of R and𝑁𝜃-ward continuity
of a real function are introduced and investigated recently in
[12].

The purpose of this paper is to continue the investigation
given in [12] and obtain further interesting results on 𝑁𝜃-
ward continuity.

2. Preliminaries

Boldface letters 𝛼, x, y, z, . . . will be used for sequences 𝛼 =
(𝛼𝑘), 𝛼 = (𝑥𝑛), y = (𝑦𝑛), z = (𝑧𝑛), . . . of points in the set
of real numbers R for the sake of abbreviation. Sums of the
form ∑

𝑘
𝑟

𝑘
𝑟−1
+1
|𝛼𝑘| frequently occur and will often be written

for convenience as ∑
𝑘∈𝐼
𝑟

|𝛼𝑘|.
The concept of a Cauchy sequence involves far more than

that the distance between successive terms is tending to zero.
Nevertheless, sequences which satisfy this weaker property
are interesting in their own right. A sequence (𝛼𝑛) of points
in R is quasi-Cauchy if (Δ𝛼𝑛) is a null sequence where Δ𝛼𝑛 =
𝛼𝑛+1 − 𝛼𝑛. These sequences were named as quasi-Cauchy
by Burton and Coleman [13, page 328], while they were
called as forward convergent to 0 sequences in [7, page 226].
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A sequence (𝛼𝑘) of points in R is called𝑁𝜃-convergent to an
element 𝐿 of R if

lim
𝑟→∞

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟

𝛼𝑘 − 𝐿
 = 0, (1)

where 𝐼𝑟 = (𝑘𝑟−1, 𝑘𝑟] and 𝜃 = (𝑘𝑟) is a lacunary sequence,
that is, an increasing sequence of positive integers such that
𝑘0 = 0 and ℎ𝑟 : 𝑘𝑟 − 𝑘𝑟−1 → ∞. The intervals determined
by 𝜃 are denoted by 𝐼𝑟 = (𝑘𝑟−1, 𝑘𝑟], and the ratio 𝑘𝑟/𝑘𝑟−1 is
abbreviated by 𝑞𝑟. A sequence (𝛼𝑛) of points in R is called
𝑁𝜃-quasi-Cauchy if (Δ𝛼𝑛) is 𝑁𝜃-convergent to 0. A function
defined on a subset 𝐴 of R is called 𝑁𝜃-ward continuous if
it preserves 𝑁𝜃-quasi-Cauchy sequences, that is, (𝑓(𝛼𝑘)) is
an 𝑁𝜃-quasi-Cauchy sequence whenever (𝛼𝑘) is. |Δ𝑁

0

𝜃
| will

denote the set of 𝑁𝜃-quasi-Cauchy sequences of points in
R. Any subsequence of a Cauchy sequence is Cauchy. The
analogous property fails for 𝑁𝜃-quasi-Cauchy sequences. A
counterexample for the case is the sequence (𝑎𝑛) = (√𝑛)with
the subsequence (𝑎𝑛2) = (𝑛).

A sequence (𝛼𝑛) of points in R is slowly oscillating [14,
Definition 2, page 947] if

lim
𝜆→1+

lim
𝑛

max
𝑛+1≤𝑘≤[𝜆𝑛]

𝛼𝑘 − 𝛼𝑛
 = 0, (2)

where [𝜆𝑛] denotes the integer part of 𝜆𝑛 (see also [14]).
An ideal 𝐼 is a family of subsets of positive integers N

which is closed under taking finite unions and subsets of its
elements. A sequence (𝛼𝑛) of real numbers is said to be ideal
convergent to a real number 𝐿, if for each 𝜀 > 0 the set
{𝑛 : |𝛼𝑛 − 𝐿| ≥ 𝜀} belongs to 𝐼. Ideal ward compactness of a
subset of R and ideal ward continuity of a real function were
recently introduced by Çakalli and Hazarika in [15].

3. Results

Any quasi-Cauchy sequence is 𝑁𝜃-quasi-Cauchy, so any
slowly oscillating sequence is 𝑁𝜃-quasi-Cauchy, and so any
Cauchy sequence is. A sequence 𝛼 = (𝛼𝑘) is called Cesaro
summable to a real number 𝐿 if lim𝑛→∞(1/𝑛)∑

𝑛

𝑖=1
𝛼𝑖 = 𝐿.

This is denoted by 𝐶1 − lim𝛼𝑘 = 𝐿, and the set of all Cesaro
sequences is denoted by 𝜎1. We call a sequence 𝛼 = (𝛼𝑘)

Cesaro quasi-Cauchy if𝐶1− limΔ𝛼𝑘 = 0.The set of all Cesaro
quasi-Cauchy sequences is denoted by Δ𝜎0

1
. A sequence 𝛼 =

(𝛼𝑘) is called strongly Cesaro summable to a real number
𝐿 if lim𝑛→∞(1/𝑛)∑

𝑛

𝑖=1
|𝛼𝑖 − 𝐿| = 0. This is denoted by

|𝐶1| − lim𝛼𝑘 = 𝐿. The set of all strongly Cesaro summable
sequences is denoted by |𝜎1|. We call a sequence 𝛼 = (𝛼𝑘)

strongly Cesaro quasi-Cauchy if |𝐶1| − limΔ𝛼𝑘 = 0. The set
of all strongly Cesaro quasi-Cauchy sequences is denoted by
|Δ𝜎
0

1
|. The following inclusions are satisfied: |𝜎1| ⊂ 𝜎1 and

|Δ𝜎
0

1
| ⊂ Δ𝜎

0

1
.

Using a similar idea to that of [11], one can easily find
out the following inclusion properties between the set of
strongly Cesaro quasi-Cauchy sequences and the set of 𝑁𝜃-
quasi-Cauchy sequences (see also [16]).

(i) |Δ𝑁0
𝜃
| ⊂ |Δ𝜎

0

1
| if and only if lim sup 𝑞𝑟 < ∞ for any

lacunary sequence 𝜃.

(ii) |Δ𝜎0
1
| ⊂ |Δ𝑁

0

𝜃
| if and only if lim inf 𝑞𝑟 > 1 for any

lacunary sequence 𝜃.

Combining these facts, for any lacunary sequence 𝜃, we
have the following:

(iii) |Δ𝑁0
𝜃
| = |Δ𝜎

0

1
| if and only if 1 < lim inf 𝑞𝑟 ≤

lim sup 𝑞𝑟 < ∞;

(iv) |Δ𝑁0
𝜃
| = |Δ𝜎

0

1
| if and only if |𝜎1| = 𝑁

0

𝜃
.

In the sequel, we will always assume that lim inf𝑟 𝑞𝑟 > 1.
We observe that 𝑁𝜃-summability is a kind of strong 𝐴-

summability where𝐴 = (𝑎𝑟𝑘) is a regular matrix generated by
the lacunary sequence 𝜃 = (𝑘𝑟) as follows:

𝑎𝑟𝑘 =
1

ℎ𝑟

if 𝑘 ∈ 𝐼𝑟, 𝑎𝑟𝑘 = 0 otherwise. (3)

On the other hand, we see that 𝑁𝜃-ward continuity cannot
be given as a strong 𝐴-continuity by any kind of regular
summability matrix (related to continuity for strong matrix
methods see [17]).

As far as ideal continuity is considered, we note that any
𝑁𝜃-ward continuous function is ideal continuous; further-
more any 𝑁𝜃 continuous function is ideal continuous for an
admissible ideal.

Theorem 1. If a function𝑓 is uniformly continuous on a subset
𝐸 of R, then, (𝑓(𝛼𝑘)) is 𝑁𝜃-quasi-Cauchy whenever (𝛼𝑘) is a
quasi-Cauchy sequence of points in 𝐸.

Proof. Let 𝐸 be a subset of R, and let 𝑓 be a uniformly
continuous function on 𝐸. Take any quasi-Cauchy sequence
(𝛼𝑘) of points in 𝐸, and let 𝜀 be any positive real number.
By uniform continuity of 𝑓, there exists a 𝛿 > 0 such that
|𝑓(𝛼) − 𝑓(𝛽)| < 𝜀 whenever |𝛼 − 𝛽| < 𝛿 and 𝛼, 𝛽 ∈ 𝐸. Since
(𝛼𝑘) is a quasi-Cauchy sequence, there exists a positive integer
𝑘0 such that |𝛼𝑘+1 − 𝛼𝑘| < 𝛿 for 𝑘 ≥ 𝑘0. Hence,

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟

𝑓 (𝛼𝑘+1) − 𝑓 (𝛼𝑘)
 <

1

ℎ𝑟

(𝑘𝑟 − 𝑘𝑟−1) 𝜀 = 𝜀, (4)

for 𝑟 ≥ 𝑘0. Thus, (𝑓(𝛼𝑘)) is an 𝑁𝜃-quasi-Cauchy sequence.
This completes the proof of the theorem.

We have much more below for a real function 𝑓 defined
on an interval that 𝑓 is uniformly continuous if and only if
(𝑓(𝛼𝑘)) is𝑁𝜃-quasi-Cauchy whenever (𝛼𝑘) is a quasi-Cauchy
sequence of points in 𝐸. First, we give the following lemma.

Lemma 2. If (𝜉𝑛, 𝜂𝑛) is a sequence of ordered pairs of points in
an interval such that lim𝑛→∞|𝜉𝑛 − 𝜂𝑛| = 0, then, there exists
an 𝑁𝜃-quasi-Cauchy sequence (𝛼𝑛) with the property that for
any positive integer 𝑖 there exists a positive integer 𝑗 such that
(𝜉𝑖, 𝜂𝑖) = (𝛼𝑗−1, 𝛼𝑗).

Proof. Although the following proof is similar to that of [13],
we give it for completeness. For each positive integer 𝑘, we can
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fix 𝑧𝑘
0
, 𝑧
𝑘

1
, . . . , 𝑧

𝑘

𝑛
𝑘

in𝐸with 𝑧𝑘
0
= 𝜂𝑘, 𝑧

𝑘

𝑛
𝑘

= 𝜉𝑘+1, and |𝑧
𝑘

𝑖
−𝑧
𝑘

𝑖−1
| <

1/𝑘 for 1 ≤ 𝑖 ≤ 𝑛𝑘. Now write

(𝜉1, 𝜂1, 𝑧
1

1
, . . . , 𝑧

1

𝑛
1
−1
, 𝜉2, 𝜂2, 𝑧

2

1
, . . . , 𝑧

2

𝑛
2
−1
, 𝜉3, 𝜂3, . . . ,

𝜉𝑘, 𝜂𝑘, 𝑧
𝑘

1
, . . . , 𝑧

𝑘

𝑛
𝑘−1

, 𝜉𝑘+1, 𝜂𝑘+1, . . .) .

(5)

Then denoting this sequence by (𝛼𝑛), we obtain that for any
positive integer 𝑖 there exists a positive integer 𝑗 such that
(𝜉𝑖, 𝜂𝑖) = (𝛼𝑗−1, 𝛼𝑗). The sequence constructed is a quasi-
Cauchy sequence, and it is an 𝑁𝜃-quasi-Cauchy sequence,
since any quasi-Cauchy sequence is an 𝑁𝜃-quasi-Cauchy
sequence. This completes the proof of the lemma.

Theorem 3. If a function 𝑓 defined on an interval 𝐸 is 𝑁𝜃-
ward continuous, then, it is uniformly continuous.

Proof. Suppose that 𝑓 is not uniformly continuous on 𝐸.
Then, there is an 𝜀0 > 0 such that for any 𝛿 > 0 there exist
𝑥, 𝑦 ∈ 𝐸 with |𝑥 − 𝑦| < 𝛿 but |𝑓(𝑥) − 𝑓(𝑦)| ≥ 𝜀0. For
every integer 𝑛 ≥ 1 fix 𝜉𝑛, 𝜂𝑛 ∈ 𝐸 with |𝜉𝑛 − 𝜂𝑛| < 1/𝑛

and |𝑓(𝜉𝑛) − 𝑓(𝜂𝑛)| ≥ 𝜀0. By the lemma, there exists an 𝑁𝜃-
quasi-Cauchy sequence (𝛼𝑖) such that for any integer 𝑖 ≥ 1

there exists a 𝑗 with 𝜉𝑖 = 𝛼𝑗 and 𝜂𝑖 = 𝛼𝑗+1. This implies that
|𝑓(𝛼𝑗+1)−𝑓(𝛼𝑗)| ≥ 𝜀0; hence, (𝑓(𝛼𝑖)) is not𝑁𝜃-quasi-Cauchy.
Thus, 𝑓 does not preserve𝑁𝜃-quasi-Cauchy sequences. This
completes the proof of the theorem.

Observing that the sequence, constructed in the proof
of the preceding theorem, is also a quasi-Cauchy sequence,
we obtain that a real function 𝑓 defined on an interval
𝐸 is uniformly continuous if (𝑓(𝛼𝑘)) is 𝑁𝜃-quasi-Cauchy
whenever (𝛼𝑘) is a quasi-Cauchy sequence of points in 𝐸.
Combining this withTheorem 1, we have that a real function
𝑓 defined on an interval 𝐸 is uniformly continuous if and
only if (𝑓(𝛼𝑘)) is𝑁𝜃-quasi-Cauchy whenever (𝛼𝑘) is a quasi-
Cauchy sequence of points in 𝐸.

Corollary 4. If a function defined on an interval is 𝑁𝜃-ward
continuous, then, it is ward continuous.

Proof. The proof follows fromTheorem 3 and [7,Theorem 6]
so it is omitted.

Corollary 5. If a function defined on an interval is 𝑁𝜃-ward
continuous, then, it is slowly oscillating continuous.

Proof. The proof follows fromTheorem 3 and [7,Theorem 5]
so it is omitted.

It is a well-known result that uniform limit of a sequence
of continuous functions is continuous.This is also true in case
of𝑁𝜃-ward continuity; that is, uniform limit of a sequence of
𝑁𝜃-ward continuous functions is𝑁𝜃-ward continuous.

Theorem 6. If (𝑓𝑛) is a sequence of 𝑁𝜃-ward continuous
functions on a subset 𝐸 of R and (𝑓𝑛) is uniformly convergent
to a function 𝑓, then, 𝑓 is𝑁𝜃-ward continuous on 𝐸.

Proof. Let (𝛼𝑘) be any 𝑁𝜃-quasi-Cauchy sequence of points
in 𝐸, and let 𝜀 be any positive real number. By uniform

convergence of (𝑓𝑛), there exists an 𝑛1 ∈ N such that |𝑓(𝛼) −
𝑓𝑘(𝛼)| < 𝜀/3 for 𝑛 ≥ 𝑛1 and every 𝛼 ∈ 𝐸. Hence,

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟

𝑓 (𝛼) − 𝑓𝑘 (𝛼)
 <

1

ℎ𝑟

(𝑘𝑟 − 𝑘𝑟−1)
𝜀

3
=
𝜀

3
, (6)

for 𝑟 ≥ 𝑛1 and every 𝛼 ∈ 𝐸. As 𝑓𝑛
1

is𝑁𝜃-ward continuous on
𝐸, there exists an 𝑛2 ∈ N such that for 𝑟 ≥ 𝑛2

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟


𝑓𝑛
1

(𝛼𝑘+1) − 𝑓𝑛
1

(𝛼𝑘)

<
𝜀

3
. (7)

Now write 𝑛0 = max{𝑛1, 𝑛2}. Thus for 𝑟 ≥ 𝑛0, we have

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟

𝑓 (𝛼𝑘+1) − 𝑓 (𝛼𝑘)


≤
1

ℎ𝑟

∑

𝑘∈𝐼
𝑟


𝑓 (𝛼𝑘+1) − 𝑓𝑛

1

(𝛼𝑘+1)


+
1

ℎ𝑟

∑

𝑘∈𝐼
𝑟


𝑓𝑛
1

(𝛼𝑘+1) − 𝑓𝑛
1

(𝛼𝑘)


+
1

ℎ𝑟

∑

𝑘∈𝐼
𝑟


𝑓𝑛
1

(𝛼𝑘) − 𝑓 (𝛼𝑘)


<
𝜀

3
+
𝜀

3
+
𝜀

3
= 𝜀.

(8)

Hence,

lim
𝑟→∞

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟

𝑓 (𝛼𝑘+1) − 𝑓 (𝛼𝑘)
 = 0. (9)

Thus, 𝑓 preserves 𝑁𝜃-quasi-Cauchy sequences. This com-
pletes the proof of the theorem.

Theorem 7. The set of all 𝑁𝜃-ward continuous functions on
a subset 𝐸 of R is a closed subset of the set of all continuous
functions on 𝐸, that is, Δ𝑁𝜃𝑊𝐶(𝐸) = Δ𝑁𝜃𝑊𝐶(𝐸), where
Δ𝑁𝜃𝑊𝐶(𝐸) is the set of all 𝑁𝜃-ward continuous functions
on 𝐸 and Δ𝑁𝜃𝑊𝐶(𝐸) denotes the set of all cluster points of
Δ𝑁𝜃𝑊𝐶(𝐸).

Proof. Let 𝑓 be any element in the closure of Δ𝑁𝜃𝑊𝐶(𝐸).
Then, there exists a sequence (𝑓𝑛) of points in Δ𝑁𝜃𝑊𝐶(𝐸)

such that lim𝑘→∞𝑓𝑘 = 𝑓. To show that 𝑓 is 𝑁𝜃-ward
continuous, take any 𝑁𝜃-quasi-Cauchy sequence (𝛼𝑘) of
points in 𝐸. Let 𝜀 > 0. Since (𝑓𝑛) converges to 𝑓, there exists
an 𝑛1 ∈ N such that |𝑓(𝛼𝑘) − 𝑓𝑛

1

(𝛼𝑘)| < 𝜀/3 for all 𝑘 ∈ N.
Hence,

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟


𝑓 (𝛼𝑘) − 𝑓𝑛

1

(𝛼𝑘)

<

1

ℎ𝑟

(𝑘𝑟 − 𝑘𝑟−1)
𝜀

3
=
𝜀

3
, (10)

for 𝑟 ≥ 𝑛1. As 𝑓𝑛
1

is𝑁𝜃-ward continuous on 𝐸, there exists a
positive integer 𝑛2 ∈ N such that 𝑟 ≥ 𝑛2 implies that

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟


𝑓𝑛
1

(𝛼𝑘+1) − 𝑓𝑛
1

(𝛼𝑘)

<
𝜀

3
. (11)
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Now write 𝑛0 = max{𝑛1, 𝑛2}. Thus for 𝑟 ≥ 𝑛0, we have

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟

𝑓 (𝛼𝑘+1) − 𝑓 (𝛼𝑘)


≤
1

ℎ𝑟

∑

𝑘∈𝐼
𝑟


𝑓 (𝛼𝑘+1) − 𝑓𝑛

1

(𝛼𝑘+1)


+
1

ℎ𝑟

∑

𝑘∈𝐼
𝑟


𝑓𝑛
1

(𝛼𝑘+1) − 𝑓𝑛
1

(𝛼𝑘)


+
1

ℎ𝑟

∑

𝑘∈𝐼
𝑟


𝑓𝑛
1

(𝛼𝑘) − 𝑓 (𝛼𝑘)


<
𝜀

3
+
𝜀

3
+
𝜀

3
= 𝜀;

(12)

Hence,

lim
𝑟→∞

1

ℎ𝑟

∑

𝑘∈𝐼
𝑟

𝑓 (𝛼𝑘+1) − 𝑓 (𝛼𝑘)
 = 0. (13)

Thus,𝑓 preserves𝑁𝜃-quasi-Cauchy sequences.This com-
pletes the proof of the theorem.

Corollary 8. The set of all 𝑁𝜃-ward continuous functions on
a subset 𝐸 of R is a complete subspace of the space of all
continuous functions on 𝐸.

Proof. The proof follows from the preceding theorem.

4. Conclusion

In this paper, new results concerning𝑁𝜃-ward continuity are
obtained namely; a real function 𝑓 defined on an interval 𝐸
is uniformly continuous if and only if (𝑓(𝛼𝑘)) is 𝑁𝜃-quasi-
Cauchy whenever (𝛼𝑘) is a quasi-Cauchy sequence of points
in 𝐸, the uniform limit of 𝑁𝜃-ward continuous functions is
𝑁𝜃-ward continuous, and the set of all 𝑁𝜃-ward continuous
functions is a closed subset of the set of all continuous
functions. We also prove that if a function 𝑓 is uniformly
continuous on a subset 𝐸 of R, then, (𝑓(𝛼𝑘)) is 𝑁𝜃-quasi-
Cauchy whenever (𝛼𝑘) is a quasi-Cauchy sequence of points
in 𝐸.

As a further study one can find out if Theorem 3 is valid
when the set 𝐸 is replaced by a 𝐺-sequentially connected
subset of R for a regular sequential method 𝐺 [18]. For
another further study, we suggest to investigate the present
work for the fuzzy case. However, due to the change in
settings, the definitions andmethods of proofs will not always
be analogous to those of the present work (see [19] for the
definitions in the fuzzy setting). One can introduce and
give an investigation of 𝑁𝜃-quasi-Cauchy sequences in cone
normed spaces (see [20] for basic concepts in cone normed
spaces).
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[1] H. Çakalli, “Slowly oscillating continuity,” Abstract and Applied
Analysis, vol. 2008, Article ID 485706, 5 pages, 2008.
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