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We prove some new characterizations of strongly continuous lattices using two new intrinsic topologies and a class of convergences.
Lastly we show that the category of strongly continuous lattices and Scott continuous mappings is cartesian closed.

1. Introduction and Preliminaries

The theory of continuous lattices was first introduced by
Scott in 1972 (see [1]) and has been studied extensively
by many people from various different fields due to its
strong connections to computer science, general topology,
algebra, and logics (see [2]). Later the continuous lattices
were generalized to various other classes of ordered structures
for different motivations, for example, the 𝐿-domains [3],
generalized continuous lattices and hypercontinuous lattices
[4], and the most general, continuous dcpos. In [5], in order
to get more general results on the relationship between
prime and pseudo-prime elements in a complete lattice, two
new classes of lattices related to continuous lattices, namely,
the semicontinuous lattices and the strongly continuous
lattices, were introduced. The semicontinuous lattices were
later generalized to 𝑍-semicontinuous posets in [6]. Liu
and Xie introduced several categories of semicontinuous
lattice trying to construct a Cartesian closed category of
semicontinuous lattices (see [7, 8]). In [9, 10], the first two
authors studied other properties of semicontinuous lattices
and proved a characterization of semicontinuous lattices in
terms of the 𝑆-open subsets (to be defined later in this
paper). Strongly continuous lattices form a proper subclass of
continuous lattices. There is some fine connection between

strong continuity and distributivity: every distributive con-
tinuous lattice is strongly continuous; every Noetherian (in
particular, finite) strongly continuous lattice is distributive; a
strongly continuous lattice in which the way-below relation
is multiplicative is distributive. It has been know for a long
time that the category CONT of continuous lattices and
Scott continuous mappings is cartesian closed [2, Theorem
II-2.12]. It is thus natural to ask if the subcategory of strongly
continuous lattices and that of distributive continuous lattices
are cartesian closed as well. In this paper we will give a
positive answer to these questions. New characterizations of
strongly continuous lattices based on some new topologies
and convergence of nets are also obtained.

In Section 2, we introduce two new intrinsic topologies
on complete lattices, which are then used to formulating
a new characterization for strongly continuous lattices. In
Section 3, we introduce the lim-inf𝑆 convergence of nets and
show that a complete lattice is strongly continuous if and
only if the lim-inf𝑆 convergence on the lattice is topological.
In Section 4, we define several new types of mappings
between complete lattices and study the relationship among
𝑆-continuousmappings, Scott continuousmappings, strongly
continuous mappings, and semicontinuous mappings. In the
last section, we consider the category SCONT of strongly
continuous lattices and prove that SCONT is Cartesian
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closed. It is also pointed out that the subcategory DCONT of
distributive continuous lattices is cartesian closed. For most
of the basic definitions and results on continuous lattices we
refer to the book [2].

Let 𝑃 be a poset. For any 𝐴 ⊆ 𝑃, define ↑ 𝐴 = {𝑥 ∈ 𝑃 :
𝑥 ≥ 𝑦 for some 𝑦 ∈ 𝐴}. We also write ↑ {𝑥} as ↑ 𝑥. The sets
↓ 𝐴 and ↓ 𝑥 are defined dually.

A subset 𝐴 of 𝑃 is called an upper (lower) set if 𝐴 =↑
𝐴(𝐴 =↓ 𝐴). A subset 𝐷 of 𝑃 is directed provided it is
nonempty, and every finite subset of 𝐷 has an upper bound
in𝐷. An ideal of 𝑃 is a directed lower set.

Let 𝑥, 𝑦 ∈ 𝑃.We say that 𝑥 is way-below 𝑦, written 𝑥 ≪ 𝑦,
if for any directed subset 𝐷 with ⋁𝐷 exists and ⋁𝐷 ≥ 𝑦,
there is 𝑑 ∈ 𝐷 such that 𝑥 ≤ 𝑑. Let ↓≪𝑥 = {𝑎 ∈ 𝑃 : 𝑎 ≪ 𝑥}
and let ↑

≪
𝑥 = {𝑎 ∈ 𝑃 : 𝑥 ≪ 𝑎}. A complete lattice 𝑃 is called

a continuous lattice if for every element 𝑥 ∈ 𝑃, 𝑥 = ⋁↓
≪
𝑥. It

is well known that for any complete lattice 𝑃 and 𝑥 ∈ 𝑃, ↓
≪
𝑥

is an ideal.

Definition 1 (see [11]). An ideal 𝐼 of a lattice 𝑃 is called
semiprime if for all 𝑥, 𝑦, 𝑧 ∈ 𝑃, 𝑥 ∧ 𝑦 ∈ 𝐼 and 𝑥 ∧ 𝑧 ∈ 𝐼
imply 𝑥 ∧ (𝑦 ∨ 𝑧) ∈ 𝐼.

We use𝑅𝑑(𝑃) to denote the family of all semiprime ideals
of 𝑃.

Definition 2 (see [5]). Let 𝑃 be a complete lattice. Define the
relation⇐ on 𝑃 as follows: for any 𝑥, 𝑦 ∈ 𝑃, 𝑥 ⇐ 𝑦 if for any
semiprime ideal 𝐼 of 𝑃, 𝑦 ≤ ⋁𝐼 implies 𝑥 ∈ 𝐼. For each 𝑥 ∈ 𝑃,
we write

⇓ 𝑥 = {𝑦 ∈ 𝑃 : 𝑦 ⇐ 𝑥} , ⇑ 𝑥 = {𝑦 ∈ 𝑃 : 𝑥 ⇐ 𝑦} . (1)

For any𝐴 ⊆ 𝑃, let⇓ 𝐴 = ⋃
𝑥∈𝐴
⇓ 𝑥 and let⇑ 𝐴 = ⋃

𝑥∈𝐴
⇑

𝑥.

Definition 3 (see [5]). A complete lattice 𝑃 is called semicon-
tinuous, if for any 𝑥 ∈ 𝑃,

𝑥 ≤ ⋁ ⇓ 𝑥. (2)

𝑃 is called strongly continuous, if 𝑥 = ⋁ ⇓ 𝑥 for any 𝑥 ∈ 𝑃.

Theorem 4 (see [5]). If 𝑃 is a semicontinuous lattice, then
the relation⇐ has the interpolation property; that is, 𝑥 ⇐ 𝑦
implies the existence of 𝑧 ∈ 𝑃 such that 𝑥 ⇐ 𝑧 ⇐ 𝑦.

Lemma 5 (see [5]). Let 𝑃 be a complete lattice; then ⇓ 𝑥 is a
semiprime ideal for each 𝑥 ∈ 𝑃.

2. Strong Continuity via Topology

For any complete lattice 𝑃, 𝑈 ⊆ 𝑃 is called Scott open if
and only if 𝑈 =↑𝑈 and for any directed set 𝐷 ⊆ 𝑃, ⋁𝐷 ∈
𝑈 implies 𝑈 ∩ 𝐷 ̸= 0. All Scott open subsets of 𝑃 form a
topology, called the Scott topology, denoted by 𝜎(𝑃) [2]. One
of the classic characterizations of continuous lattices is that
a complete lattice 𝑃 is continuous if and only if (𝜎(𝑃), ⊆) is
completely distributive. This result was later generalized to
continuous posets [2]. In the current section we introduce

two new intrinsic topologies on complete lattices and use
them to establish some new characterizations for strongly
continuous lattices.

Definition 6. A subset 𝑈 of a complete lattice 𝑃 is called 𝑆-
open if and only if 𝑈 =↑ 𝑈 and for any semiprime ideal 𝐼 of
𝑃,⋁𝐼 ∈ 𝑈 implies 𝑈 ∩ 𝐼 ̸= 0.

We use 𝜅(𝑃) to denote the family of all 𝑆-open subsets of
𝑃; it is easy to verify that 𝜅(𝑃) forms a topology on 𝑃, called
the 𝑆-topology.

Definition 7. A subset𝑈 of a complete lattice is called 𝑇-open
if and only if 𝑈 =⇑ 𝑈.

We use 𝜏(𝑃) to denote the family of all 𝑇-open subsets of
the complete lattice 𝑃.

Remark 8. As 𝑥 ⇐ 𝑦 ≤ 𝑧 implies 𝑥 ⇐ 𝑧, it follows that every
𝑇-open set is an upper set. Furthermore, for any complete
lattice𝑃, 𝜏(𝑃) forms a topology on𝑃. Obviously 𝜏(𝑃) contains
the empty set and 𝑃 and is closed under arbitrary union. Let
𝑈,𝑉 ∈ 𝜏(𝑃). We show that 𝑈 ∩ 𝑉 ∈ 𝜏(𝑃). For any 𝑥 ∈ 𝑈 ∩ 𝑉,
𝑥 ∈ 𝑈, 𝑥 ∈ 𝑉, thus there exist𝑚 ∈ 𝑈, 𝑛 ∈ 𝑉 such that𝑚 ⇐ 𝑥
and 𝑛 ⇐ 𝑥. Therefore 𝑚 ∨ 𝑛 ⇐ 𝑥. Note that 𝑚 ∨ 𝑛 ∈ 𝑈 ∩ 𝑉,
thus 𝑥 ∈⇑ (𝑈 ∩ 𝑉). Conversely, if 𝑥 ∈⇑ (𝑈 ∩ 𝑉), then there
exists 𝑦 ∈ 𝑈∩𝑉 such that 𝑦 ⇐ 𝑥. Since𝑈 =⇑ 𝑈 and𝑉 =⇑ 𝑉,
so 𝑥 ∈ 𝑈 and 𝑥 ∩𝑉, thus 𝑥 ∈ 𝑈∩𝑉. Thus𝑈∩𝑉 =⇑ (𝑈 ∩𝑉),
which belongs to 𝜏(𝑃). Hence 𝜏(𝑃) forms a topology on 𝑃.

We call the topology 𝜏(𝑃) the 𝑇-topology. Obviously
every Scott open set is 𝑆-open. The reverse conclusion does
not need to be true. There is not any inclusion relation
between the 𝑇-topology and the Scott topology applying to
all complete lattices.

Example 9. (1) Let 𝑃 = [0, 1] ∪ {𝑎, 𝑏}, where [0, 1] is the unit
interval; 𝑎 and 𝑏 are two distinct elements not in [0, 1]. The
partial order ≤ on 𝑃 is defined by: 0 < 𝑎 < 1, 0 < 𝑏 < 1; for
𝑥, 𝑦 ∈ [0, 1], 𝑥 ≤ 𝑦 if 𝑥 is less than or equal to 𝑦 according to
the usual order on real numbers.

Obviously 𝑃 is the unique semiprime ideal of 𝑃, so ↑ 𝑎
(in fact, every upper set) is 𝑆-open. For each 𝑛 ∈ 𝑁, let 𝑐

𝑛
=

1 − (1/𝑛). Then𝐷 = {𝑐
𝑛
}
𝑛∈𝑁

is a directed set such that⋁𝐷 =
1 > 𝑎, but for each 𝑛, 𝑐𝑛 ∉↑ 𝑎.Thus ↑ 𝑎 is not Scott open. Also,
⇑ (↑ 𝑎) = 𝑃, ↑ 𝑎 is not 𝑇-open either.
(2) Let 𝑃 = {0, 𝑎, 𝑏, 𝑐, 1} be the five-element modular

lattice. Then clearly {𝑎, 1} is Scott open. Again, in this
example, 𝑃 is the only semiprime ideal, so ⇑ 𝐴 = 𝑃 for any
nonempty set 𝐴. Hence {𝑎, 1} is not 𝑇-open.

Lemma 10. (1) If 𝑃 is a semicontinuous lattice, then 𝜏(𝑃) ⊆
𝜎(𝑃) ⊆ 𝜅(𝑃).
(2) If 𝑃 is strongly continuous, then 𝜏(𝑃) = 𝜎(𝑃) = 𝜅(𝑃).

Proof. (1) It only needs to show that 𝜏(𝑃) ⊆ 𝜎(𝑃). Let 𝑈 ∈
𝜏(𝑃). For any directed subset 𝐷 ⊆ 𝑃 with ⋁𝐷 ∈ 𝑈, there
exists 𝑎 ∈ 𝑈 such that 𝑎 ⇐ ⋁𝐷. Since 𝑃 is semicontinuous,
𝑎 ⇐ ⋁𝐷 ≤ ⋁{⋁ ⇓ 𝑑 : 𝑑 ∈ 𝐷} = ⋁(⋃

𝑑∈𝐷
⇓ 𝑑). Note that the

union ⋃
𝑑∈𝐷
⇓ 𝑑 is still a semiprime ideal, so there is 𝑑 ∈ 𝐷
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such that 𝑎 ∈⇓ 𝑑. Thus 𝑑 ∈⇑ 𝑎 ⊆ 𝑈. Therefore 𝐷 ∩ 𝑈 ̸= 0,
hence 𝑈 ∈ 𝜎(𝑃). This proves 𝜏(𝑃) ⊆ 𝜎(𝑃).
(2) Now assume that 𝑃 is strongly continuous. Then 𝑃 is

continuous. In a strongly continuous lattice, the relation ≪
and ⇐ are the same by the Theorem 2.5 of [5]. Also by [2]
in a continuous lattice, every Scott open set 𝐴 satisfies the
condition 𝐴 = ↑≪𝐴, it follows that every Scott open set of
𝑃 is 𝑇-open. Now let 𝑈 be 𝑆-open. For any directed set 𝐷
with ⋁𝐷 ∈ 𝑈, let 𝐼 = ⋃

𝑑∈𝐷
⇓ 𝑑. Then 𝐼 is a semiprime

ideal such that ⋁𝐼 = ⋁𝐷. Thus, as 𝑈 is 𝑆-open, 𝐼 ∩ 𝑈 ̸= 0.
Hence 𝐷 ∩ 𝑈 ̸= 0. Therefore 𝑈 is Scott open. By (1) we have
𝜏(𝑃) = 𝜎(𝑃) = 𝜅(𝑃).

Lemma 11. For any complete lattice 𝑃, if 𝜏(𝑃) = 𝜅(𝑃) then 𝑃
is semicontinuous.

Proof. Suppose that 𝑃 is not semicontinuous. Then there
exists 𝑥 ∈ 𝑃 such that 𝑥 ≰ ⋁ ⇓ 𝑥. Then 𝑥 ∈ 𝑈 = 𝑃\ ↓ (⋁ ⇓
𝑥)which is obviously 𝑆-open. Since 𝜏(𝑃) = 𝜅(𝑃),𝑈 is𝑇-open.
Thus there exists 𝑢 ≰ ⋁ ⇓ 𝑥 such that 𝑢 ⇐ 𝑥 by Definition 7,
a contradiction. Thus 𝑃must be semicontinuous.

Let 𝑃 be a complete lattice.The long way-below relation ⊲
on 𝑃 is defined as follows: for any 𝑥, 𝑦 ∈ 𝑃, 𝑥⊲𝑦 if and only
if for any nonempty subset 𝐵 ⊆ 𝑃, 𝑦 ≤ ⋁𝐵 implies that 𝑥 ≤ 𝑧
for some 𝑧 ∈ 𝐵. For each 𝑥 ∈ 𝑃, we write

𝛽 (𝑥) = {𝑦 ∈ 𝑃 : 𝑦 ⊲ 𝑥} . (3)

Clearly 𝑥⊲𝑦 implies 𝑥 ≪ 𝑦. In [12], Raney proved that
a complete lattice 𝑃 is a completely distributive lattice if and
only if 𝑥 = ⋁𝛽(𝑥) for all 𝑥 ∈ 𝑃.

It is well known that a complete lattice 𝑃 is a continuous
if and only if the topology 𝜎(𝑃) is a completely distribu-
tive lattice [2]. If 𝑃 is semicontinuous, 𝜅(𝑃) is generally
not a completely distributive lattice. In Example 9(1), 𝑃 is
semicontinuous and 𝜅(𝑃) consists of all upper subsets of 𝑃.
Then (𝜅(𝑃), ⊇) is a complete lattice and the empty set is the
largest element of (𝜅(𝑃), ⊇), but 0 ̸=⋁𝛽(0). Thus 𝜅(𝑃) is not a
completely distributive lattice.

Proposition 12. Let (𝑃, ≤) be a complete lattice in which the
relation⇐ satisfies the interpolation property. Then 𝜏(𝑃) is a
completely distributive lattice.

Proof. By Raney’s characterization of completely distributive
lattices, we need to show that𝐸 ≤ ⋁𝛽(𝐸)hold for all𝐸 ∈ 𝜏(𝑃).

For any 𝑥 ∈ 𝐸 ∈ 𝜏(𝑃), by the definition of 𝜏(𝑃), there
exists 𝑦 ∈ 𝐸 such that 𝑥 ∈⇑ 𝑦 ⊆ 𝐸. Since the relation ⇐
satisfies the interpolation property,⇑ 𝑦 ∈ 𝜏(𝑃). Nowwe claim
that ⇑ 𝑦⊲𝐸. Let D ⊆ 𝜏(𝑃) such that 𝐸 ≤ ⋁D. Since 𝑦 ∈
𝐸 and ⋁D = ⋃D, there exists 𝑈

0
∈ D such that 𝑦 ∈ 𝑈

0
.

Therefore ⇑ 𝑦 ≤ 𝑈
0
. Hence ⇑ 𝑦⊲𝐸. It now follows that 𝐸 ≤

⋁{⇑ 𝑦 : 𝑦 ∈ 𝐸} ≤ ⋁𝛽(𝐸). This completes the proof.

Lemma 13. If 𝑃 is a complete lattice such that 𝜏(𝑃) = 𝜅(𝑃),
then 𝑃 is a continuous lattice.

Proof. If 𝜏(𝑃) = 𝜅(𝑃), then 𝑃 is semicontinuous and
𝜏(𝑃) is a completely distributive lattice by Lemma 11 and

Proposition 12. By Lemma 10, 𝜏(𝑃) = 𝜎(𝑃) = 𝜅(𝑃), thus
(𝜎(𝑃), ⊆) is a completely distributive lattice. It then follows
from Theorem II-1.13 of [2] that 𝑃 is continuous. This
completes the proof.

Lemma 14. Let 𝑃 be a complete lattice. If 𝜏(𝑃) = 𝜅(𝑃), then 𝑃
is strongly continuous.

Proof. By Lemma 11, 𝑃 is semicontinuous. Assume that 𝑃 is
not strongly continuous. Then there exists 𝑏 ∈ 𝑃 such that
𝑏 < ⋁ ⇓ 𝑏. Thus ⋁ ⇓ 𝑏 ∈ 𝑃\ ↓ 𝑏 which is obviously 𝑆-
open. By Lemma 5 and Definition 6, there exists 𝑎 ∈ 𝑃 such
that 𝑎 ⇐ 𝑏 and 𝑎 ∈ 𝑃\ ↓ 𝑏. By Lemma 13, 𝑎 = ⋁↓≪𝑎 ∈
𝑃\ ↓ 𝑏 ∈ 𝜎(𝑃). Thus there exists 𝑥 ≪ 𝑎 such that 𝑥 ≰ 𝑏. By
Lemma 10, 𝑃 is continuous and so ↑≪𝑥 ∈ 𝜎(𝑃) for all 𝑥 ∈ 𝑃.
Again by Lemma 10 and 𝜏(𝑃) = 𝜅(𝑃), 𝜏(𝑃) = 𝜎(𝑃) = 𝜅(𝑃),
so ⇑ (↑≪𝑥) = ↑≪𝑥. Thus 𝑏 ∈⇑ 𝑎 ⊆⇑ (↑

≪
𝑥) = ↑

≪
𝑥. And then

𝑥 ≪ 𝑏. So 𝑥 ≤ 𝑏, which contradicts the assumption on 𝑥.This
completes the proof.

From Lemmas 10 and 14, we obtain the following new
characterization of strongly continuous lattices.

Theorem 15. A complete lattice 𝑃 is strongly continuous if and
only if 𝜏(𝑃) = 𝜅(𝑃).

3. lim-inf
𝑆

Convergence and Strongly
Continuous Lattices

In [2], the lim-inf convergence is introduced, and it is proved
that a complete lattice is continuous if and only if the lim-inf
convergence on the lattice is topological. This result was later
generalized to continuous dcpos and continuous posets (see
[2, 13]). Now we introduce a similar convergence, lim-inf𝑆
convergence, and show that a complete lattice is strongly
continuous if and only if the lim-inf𝑆 convergence on the
lattice is topological.

Definition 16. A net (𝑥𝑗)𝑗∈𝐽 in a complete lattice 𝑃 is said
to lim-inf𝑆 converge to an element 𝑦 ∈ 𝑃 if there exists a
semiprime ideal 𝐼 of 𝑃 such that

(1) ⋁𝐼 ≥ 𝑦, and

(2) for any 𝑚 ∈ 𝐼, 𝑥
𝑗
≥ 𝑚 holds eventually (i.e., there

exists 𝑘 ∈ 𝐽 such that 𝑥
𝑗
≥ 𝑚 for all 𝑗 ≥ 𝑘).

In this case we write 𝑦 ≡ lim-inf
𝑆
𝑥
𝑗
.

For any complete lattice 𝑃, define

P = {((𝑥
𝑗
)
𝑗∈𝐽
, 𝑥) : (𝑥

𝑗
)
𝑗∈𝐽

is a net

with 𝑥 ≡ lim-inf
𝑆𝑥𝑗} .

(4)

The class P is called topological if there is a topology 𝑇 on
𝑃 such that ((𝑥

𝑗
)
𝑗∈𝐽
, 𝑥) ∈ P if and only if the net (𝑥

𝑗
)
𝑗∈𝐽

converges to 𝑥 with respect to the topology 𝑇.
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As in usual cases, associated withP is a family of sets, which
is a topology on 𝑃:

O (P) ={𝑈 ⊆ 𝑃 : 𝑈 =↑ 𝑈 and whenever ((𝑥
𝑗)
𝑗∈𝐽
, 𝑥) ∈ P

and 𝑥 ∈ 𝑈, so eventually 𝑥
𝑗
∈ 𝑈} .

(5)

Proposition 17. For any complete lattice 𝑃, O(P) = 𝜅(𝑃).

Proof. First, suppose𝑈 ∈ O(P). Let 𝐼 be a semiprime ideal in
𝑃with⋁𝐼 ∈ 𝑈. Consider the net (𝑥

𝑑
)
𝑑∈𝐼

with𝑥
𝑑
= 𝑑. Now for

any 𝑎 ∈ 𝐼, 𝑥𝑑 ≥ 𝑎 holds eventually. Thus ((𝑥𝑑)𝑑∈𝐼, ⋁𝐼) ∈ P.
From the definition ofO(P)we conclude that the net (𝑥𝑑)𝑑∈𝐼
must be eventually in𝑈, and then there exists 𝑑 ∈ 𝐼 such that
𝑥
𝑤
∈ 𝑈 for all 𝑤 ≥ 𝑑, whence𝐷 ∩ 𝑈 ̸= 0.
Conversely, suppose 𝑈 ∈ 𝜅(𝑃). For any ((𝑥

𝑗
)
𝑗∈𝐽
, 𝑥) ∈ P

such that 𝑥 ∈ 𝑈, by the definition of P, we have 𝑥 ≤ ⋁𝐼 for
some semiprime ideal 𝐼 and for each 𝑢 ∈ 𝐼, 𝑥

𝑗
≥ 𝑢 holds

eventually. Now ⋁𝐼 ∈ 𝑈, so by the definition of 𝜅(𝑃), there
exists 𝑑 ∈ 𝑈 such that 𝑑 ∈ 𝐼. Then there exists 𝑘 ∈ 𝐼 such that
𝑑 ≤ 𝑥

𝑗
for all 𝑗 ≥ 𝑘. Thus 𝑥

𝑗
∈ 𝑈 for all 𝑗 ≥ 𝑘. Hence 𝑥

𝑗
∈ 𝑈

holds eventually. Thus 𝑈 ∈ O(P).

Lemma 18. If 𝑃 is a complete lattice and 𝑦 ∈ int
𝜅
↑ 𝑥, then

𝑥 ⇐ 𝑦, where int
𝜅
↑ 𝑥 denotes the interior of ↑ 𝑥 with respect

to the 𝑆-topology.

Proof. Let 𝑃 be a complete lattice and 𝑦 ∈ int
𝜅
↑ 𝑥. For any

semiprime ideal 𝐼 with 𝑦 ≤ ⋁𝐼, we have⋁𝐼 ∈ int𝜅 ↑ 𝑥. Thus
there exists 𝑑 ∈ (int

𝜅
↑ 𝑥)∩𝐼.Therefore 𝑥 ≤ 𝑑 and then 𝑥 ∈ 𝐼.

Thus 𝑥 ⇐ 𝑦.

Proposition 19. Let 𝑃 be a strongly continuous lattice. Then
𝑥 ≡ lim-inf

𝑆
𝑥
𝑗
if and only if the net (𝑥

𝑗
)
𝑗∈𝐽

converges to
the element 𝑥 with respect to 𝜅(𝑃). In particular, the lim-inf

𝑆

convergence is topological.

Proof. By Proposition 17, O(P) = 𝜅(𝑃), so if 𝑥 ≡ lim-inf
𝑆
𝑥
𝑗

then (𝑥
𝑗
)
𝑗∈𝐽

converges to the element 𝑥 with respect to
𝜅(𝑃). Conversely, suppose that we have a net (𝑥

𝑗
)
𝑗∈𝐽

which
converges to the element 𝑥 with respect to 𝜅(𝑃). For each
𝑦 ∈⇓ 𝑥, we have 𝑥 ∈⇑ 𝑦 ∈ 𝜅(𝑃) from the definition of 𝜅(𝑃).
Thus there exists 𝑘 ∈ 𝐼 such that 𝑥𝑗 ∈⇑ 𝑦 for all 𝑗 ≥ 𝑘, and
then 𝑦 ≤ 𝑥𝑗 for all 𝑗 ≥ 𝑘. Since 𝑃 is strongly continuous,
𝑥 = ⋁ ⇓ 𝑥. By Lemma 5, ⇓ 𝑥 is a semiprime ideal. Therefore
we have ((𝑥𝑗)𝑗∈𝐽, 𝑥) ∈ P. That is, 𝑥 ≡ lim-inf

𝑆
𝑥
𝑗
.

Lemma 20. Let 𝑃 be a complete lattice. If the lim-inf
𝑆

convergence is topological, then 𝑃 is strongly continuous.

Proof. By Proposition 17, the topology arising from lim-inf
𝑆

convergence is the 𝑆-topology. Thus if the lim-inf𝑆 conver-
gence is topological, we must have that 𝑥 ≡ lim-inf𝑆𝑥𝑗 if and
only if the net (𝑥

𝑗
)
𝑗∈𝐽

converges to the element 𝑥with respect
to 𝜅(𝑃). For any 𝑥 ∈ 𝑃, let 𝐽 = {(𝑈, 𝑛, 𝑎)∈𝑁(𝑥) × N × 𝑃 : 𝑎 ∈
𝑈}, where 𝑁(𝑥) consists of all 𝑆-open sets containing 𝑥, and
define an order on 𝐽 to be the lexicographic order on the first
two coordinates. That is, (𝑈, 𝑚, 𝑎) ≤ (𝑉, 𝑛, 𝑏) if and only if

𝑉 is a proper subset of 𝑈 or 𝑈 = 𝑉 and 𝑚 ≤ 𝑛. Let 𝑥
𝑗
= 𝑎

for each 𝑗 = (𝑈, 𝑛, 𝑎)∈𝐽. Then it is easy to verify that the net
(𝑥
𝑗
)
𝑗∈𝐽

converges to the element 𝑥 with respect to 𝜅(𝑃). Thus
𝑥 ≡ lim-inf

𝑆
𝑥
𝑗
, andwe conclude that there exists a semiprime

ideal 𝐼 such that 𝑥 ≤ ⋁𝐼 and 𝑥
𝑗
≥ 𝑢 holds eventually for each

𝑢 ∈ 𝐼. Let 𝑑 ∈ 𝐼, then there exists 𝑘 = (𝑈, 𝑚, 𝑎) ∈ 𝐼 such
(𝑉, 𝑛, 𝑏) = 𝑗 ≥ 𝑘 implies 𝑑 ≤ 𝑥

𝑗
= 𝑏. In particular, we have

(𝑈, 𝑚+1, 𝑏) ≥ (𝑈, 𝑚, 𝑎) = 𝑘 for all 𝑏 ∈ 𝑈.Thus𝑥 ∈ 𝑈 ⊆↑𝑑. It
follows that 𝐼 ⊆↓ 𝑥. Furthermore, 𝑥 ∈ int𝜅 ↑ 𝑑. By Lemma 18,
𝑑 ⇐ 𝑥 and then 𝐼 ⊆⇓ 𝑥. Therefore 𝑥 = ⋁𝐼 ≤ ⋁ ⇓ 𝑥. Since 𝐼
is a semiprime ideal with a supremum greater than or equal
to 𝑥, it follows that ⇓ 𝑥 ⊆ 𝐼. Hence 𝐼 =⇓ 𝑥 and so 𝑥 = ⋁ ⇓ 𝑥.
All these show that 𝑃 is strongly continuous.

What we now have proved is the following characteriza-
tion of strongly continuous lattices.

Theorem 21. Let 𝑃 be a complete lattice, then the following
statements are equivalent.

(1) 𝑃 is strongly continuous.

(2) The lim-inf
𝑆
convergence is the convergence for the 𝑆-

topology; that is, for all 𝑥 ∈ 𝑃 and all nets (𝑥
𝑗
)
𝑗∈𝐽

in 𝑃
𝑥 ≡ lim-inf

𝑆
𝑥
𝑗
if and only if the net (𝑥

𝑗
)
𝑗∈𝐽

converges
to the element 𝑥 with respect to 𝜅(𝑃).

(3) The lim-inf𝑆 convergence is topological.

4. Continuous Mappings

In this section, we will investigate the relations among semi-
continuous mappings, strongly semicontinuous mappings,
Scott continuous mappings, and 𝑆-continuous mappings.
Firstly recall from [2] that amapping𝑓 : 𝐿 → 𝑀 is said to be
Scott continuous, if 𝑓 is continuous from topological spaces
(𝐿, 𝜎(𝐿)) to (𝑀, 𝜎(𝑀)). It is known that𝑓 is Scott continuous
if and only if 𝑓 preserves all directed suprema (see [2]). Now
we give some new basic definitions.

Definition 22. Let 𝐿,𝑀 be complete lattices. An order pre-
serving mapping 𝑓 : 𝐿 → 𝑀 is called a semicontinuous
mapping, if 𝑓 preserves suprema of semiprime ideals; 𝑓 is
called a strongly semicontinuous mapping, if 𝑓 is semicon-
tinuous and for any 𝐼 ∈ 𝑅𝑑(𝐿), ↓ 𝑓(𝐼) ∈ 𝑅𝑑(𝑀). A mapping
𝑓 : 𝐿 → 𝑀 is called 𝑆-continuous if it is continuous from
topological spaces (𝐿, 𝜅(𝐿)) to (𝑀, 𝜅(𝑀)).

Lemma 23. Let 𝐿,𝑀 be complete lattices. If 𝑓 : 𝐿 → 𝑀 is
𝑆-continuous, then 𝑓 is order-preserving.

Proof. Let 𝑥 ≤ 𝑦 in 𝐿. Suppose that 𝑓(𝑥) ≰ 𝑓(𝑦); then the 𝑆-
open set 𝑉 = 𝑀\ ↓ 𝑓(𝑦) contains 𝑓(𝑥). Thus 𝑈 = 𝑓−1(𝑉) is
a 𝑆-open neighborhood of 𝑥 not containing 𝑦. But then 𝑥 ≰
𝑦 as 𝑈 is an upper set, a contradiction. Thus 𝑥 ≤ 𝑦 implies
𝑓(𝑥) ≤ 𝑓(𝑦).

Lemma24. Let𝑃 be a complete lattice and𝐴 =↓ 𝐴 ⊆ 𝑃.Then
𝐴 is 𝑆-closed if and only if⋁𝐼 ∈ 𝐴 holds for any 𝐼 ∈ 𝑅𝑑(𝑃)with
𝐼 ⊆ 𝐴.
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Lemma 25. Let 𝐿,𝑀 be complete lattices. If 𝑓 : 𝐿 → 𝑀 is a
strongly semicontinuous mapping, then 𝑓 is 𝑆-continuous.

Proof. Let 𝐴 be an 𝑆-closed subset of 𝑀. First, 𝑓−1(𝐴) is a
lower set because 𝑓 is order preserving and 𝐴 is a lower set.
For arbitrary semiprime ideal 𝐼 ⊆ 𝑓−1(𝐴), we have ↓ 𝑓(𝐼) ⊆
𝐴. Since𝑓 is strongly semicontinuous,𝑓(⋁𝐼) = ⋁𝑓(𝐼) = ⋁ ↓
𝑓(𝐼) and ↓𝑓(𝐼) ∈ 𝑅𝑑(𝑀). By Lemma 24,⋁𝑓(𝐼) = ⋁ ↓𝑓(𝐼) ∈
𝐴. Therefore⋁𝐼 ∈ 𝑓−1(𝐴). Again by Lemma 24, 𝑓−1(𝐴) is 𝑆-
closed. Thus 𝑓 is 𝑆-continuous. This proves our result.

Proposition 26. Let 𝑓 : 𝐿 → 𝑀 be an order preserving
mapping from a strongly continuous lattice 𝐿 to a complete
lattice 𝑀. Then 𝑓 is Scott continuous if and only if 𝑓 is
semicontinuous.

Proof. Necessity. Obvious.
Sufficiency. Let 𝐷 be arbitrary directed subset of 𝐿. Since

𝑓 is order-preserving, ⋁𝑓(𝐷) ≤ 𝑓(⋁𝐷). Suppose that
𝑓(⋁𝐷) ≰ ⋁𝑓(𝐷). Then 𝑓(⋁𝐷) ∈ 𝑈 = 𝑀\ ↓ (⋁𝑓(𝐷)) ∈
𝜎(𝑀). Thus ⋁𝐷 = ⋁ ↓ 𝐷 ∈ 𝑓

−1
(𝑈). Since 𝐿 is a

strongly continuous lattice, byTheorem 2.5 in [5], there exists
a semiprime ideal 𝐼 ⊆↓ 𝐷 such that ⋁𝐼 = ⋁ ↓ 𝐷 ∈ 𝑓−1(𝑈).
Hence 𝑓(⋁𝐼) = ⋁𝑓(𝐼) ∈ 𝑈 ∈ 𝜎(𝑀). It then follows that
𝑓(𝐼) ∩ 𝑈 ̸= 0. Thus there exist 𝑡 ∈ 𝑈 and 𝑑 ∈ 𝐷 such that
𝑡 ≤ 𝑓(𝑑). Therefore 𝑓(𝑑) ∈ 𝑈. That is, 𝑓(𝑑) ≰ ⋁𝑓(𝐷), which
contradicts⋁𝑓(𝐷) ≤ 𝑓(⋁𝐷). Hence⋁𝑓(𝐷) = 𝑓(⋁𝐷) holds
for all directed set𝐷; thus 𝑓 is Scott continuous.

Proposition 27. Let 𝑓 : 𝐿 → 𝑀 be a map from a
strongly continuous lattice 𝐿 to a distributive lattice𝑀. Then
the following conditions are equivalent:

(1) 𝑓 is Scott continuous;

(2) 𝑓 is strongly semicontinuous;

(3) 𝑓 is 𝑆-continuous;

(4) 𝑓 is semicontinuous.

Proof. (1) ⇒ (2). Let 𝑓 be Scott continuous. Then 𝑓 is order
preserving and preserves the supremum of all semiprime
ideals. Let 𝐼 ∈ 𝑅𝑑(𝐿). Then ↓ 𝑓(𝐼) is an ideal of 𝑀. Since
𝑀 is distributive, ↓ 𝑓(𝐼) is the semiprime ideal of𝑀.
(2)⇒(3) follows from Lemma 25.
(3)⇒(4). Let𝑓 : 𝐿 → 𝑀 be 𝑆-continuous. By Lemma 23,

𝑓 is order-preserving. Let 𝐼 be any semiprime ideal of 𝐿.
Thus ⋁𝑓(𝐼) ≤ 𝑓(⋁𝐼). Assume that ⋁𝑓(𝐼) < 𝑓(⋁𝐼). Then
𝑓(⋁𝐼) ∈ 𝑈 = 𝑀\ ↓ (⋁𝑓(𝐼)) which is obviously 𝑆-open.
Hence⋁𝐼 ∈ 𝑓−1(𝑈) ∈ 𝜅(𝐿).Therefore 𝐼∩𝑓−1(𝑈) ̸= 0 and then
there exists 𝑑 ∈ 𝐼 such that 𝑓(𝑑) ∈ 𝑈. That is, 𝑓(𝑑) ≰ ⋁𝑓(𝐼)
a contradiction.
(1)⇔(4) follows from Proposition 26.

Corollary 28. Let 𝐿,𝑀 be strongly continuous lattice. Then 𝑓
is Scott continuous if and only if 𝑓 is semicontinuous.

The following proposition follows directly from
Lemma 23 andTheorem 1 of [7].

Proposition 29. Let 𝐿 be a semicontinuous lattice and let
𝑀 be a complete lattice. If there is a surjective 𝑆-continuous
mapping 𝑓 : 𝐿 → 𝑀 that preserves the relation⇐, then𝑀 is
semicontinuous.

5. The Cartesian Closedness of the Category of
Strongly Continuous Lattices

Let SCONT denote the category of all strongly continuous
lattices and semicontinuous mappings between them. By
Corollary 28, the morphisms of SCONT are the Scott con-
tinuous mappings. Thus SCONT is a full subcategory of the
category CONT of continuous lattices and Scott continuous
mappings. Given two complete lattices𝐷 and𝐸wewill use 0

𝐸

to denote the least element of 𝐸, [𝐷 → 𝐸] to denote the set
of all order-preserving maps from 𝐷 to 𝐸, [𝐷, 𝐸] to denote
the set of all Scott continuous mappings from 𝐷 to 𝐸, and
[𝐷 → 𝐸] to denote the set of all semicontinuous mappings
from 𝐷 to 𝐸. Obviously, [𝐷, 𝐸] ⊆ [𝐷 → 𝐸] ⊆ [𝐷 → 𝐸],
and they are all posets with respect to the pointwise order. In
particular, [𝐷, 𝐸] is a complete lattice. It is well known that
the category CONT is Cartesian closed [2, Theorem II-2.12].
Thus it is natural to ask whether SCONT is cartesian closed
as well. In this section we will give a positive answer to this
question.

Lemma 30. For any two complete lattices 𝐷 and 𝐸, the set
[𝐷 → 𝐸] is closed under taking supremum in [𝐷 → 𝐸]; thus
it is a complete lattice.

Proof. Let ⊥ (𝑥) = 0𝐸 for all 𝑥 ∈ 𝐷. It is easy to show that ⊥
is the bottom element of [𝐷 → 𝐸].

LetF ⊆ [𝐷 → 𝐸] and ℎ(𝑥) = ⋁
𝑓∈F𝑓(𝑥) for any 𝑥 ∈ 𝐷.

Then ℎ : 𝐷 → 𝐸 is the supremum of F in [𝐷, 𝐸]. Now for
semiprime ideal 𝐼 in𝐷, we have

⋁ℎ(𝐼) = ⋁

𝑥∈𝐼

ℎ (𝑥) = ⋁

𝑥∈𝐼

⋁

𝑓∈F

𝑓 (𝑥) = ⋁

𝑓∈F

⋁𝑓(𝐼)

= ⋁

𝑓∈F

𝑓(⋁𝐼) = ℎ(⋁𝐼) .

(6)

Thus⋁F = ℎ ∈ [𝐷 → 𝐸].

Let 𝐷 and 𝐸 be two complete lattices. For every 𝑥 ∈ 𝐷
and 𝑦 ∈ 𝐸, define the interpolating step function [𝑥 → 𝑦] :
𝐷 → 𝐸 by

[𝑥 → 𝑦] (𝑎) = {
𝑦, 𝑥 ≪ 𝑎,

0
𝐸
, otherwise.

(7)

Lemma 31. Let 𝐷 be a complete lattice for which the way-
below relation ≪ satisfies the interpolation property. Then for
all 𝑥 ∈ 𝐷 and 𝑦 ∈ 𝐸, [𝑥 → 𝑦] is Scott continuous.

Proof. Clearly [𝑥 → 𝑦] is order preserving. Let 𝐼 be any
ideal of 𝐷. If 𝑥 ≪ ⋁𝐼, then [𝑥 →](⋁𝐼) = 𝑦. Since the
way below relation ≪ satisfies the interpolation property,
there exists 𝑐 ∈ 𝐷 such that 𝑥 ≪ 𝑐 ≪ ⋁𝐼. Thus 𝑐 ∈ 𝐼.
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Therefore⋁[𝑥 → 𝑦](𝐼) = 𝑦 = [𝑥 → 𝑦](⋁𝐼). If 𝑥��≪⋁𝐼, then
𝑥��≪𝑧 for all 𝑧 ∈ 𝐼. Hence⋁[𝑥 → 𝑦](𝐼) = [𝑥 → 𝑦](⋁𝐼) = 0𝐸.
Therefore [𝑥 → 𝑦] preserves supremumof arbitrary ideal. So
it is Scott continuous.

The following example illustrates that the assumption that
the way below relation satisfies the interpolation property in
Lemma 31 is necessary.

Example 32. Let 𝐷 = {0, 1} ∪ {𝑥𝑖 : 𝑖 = 1, . . . , 𝑛, . . .} ∪ {𝑥𝑖𝑗 :
𝑖, 𝑗 = 1, . . . , 𝑛, . . .} and 𝐸 = {0

𝐸
, 1
𝐸
} with 0

𝐸
< 1
𝐸
. The order ≤

on𝐷 is given by (see also Figure 1)

(i) 0 ≤ 𝑥 ≤ 1 for all 𝑥 ∈ 𝐷;
(ii) for each 𝑛, 𝑥𝑛 ≤ 𝑥𝑛+1;
(iii) for each 𝑥

𝑖
and each 𝑛, 𝑥

𝑖,𝑛
≤ 𝑥
𝑖,𝑛+1
≤ 𝑥
𝑖
.

Then 𝑥
1
≪ 1 in 𝐷, but 𝑥

1��≪𝑥𝑖 for 𝑖 = 2, . . . , 𝑛, . . ..
Thus the way-below relation ≪ on 𝐷 does not satisfy the
interpolation property. Consider the mapping [𝑥

1
→ 1
𝐸
].

Let 𝐼 = 𝐷 \ {1}. Then ⋁𝐼 = 1. [𝑥1 → 1𝐸](⋁ 𝐼) = 1𝐸, but
⋁[𝑥1 → 1𝐸](𝐼) = 0𝐸 ̸= [𝑥1 → 1𝐸](⋁ 𝐼). Thus [𝑥

1
→ 1
𝐸
] is

not Scott continuous.

Lemma 33. Let 𝐷 be a complete lattice for which the way-
below relation ≪ satisfies the interpolation property and 𝑓 ∈
[𝐷, 𝐸]. Then for all 𝑥 ∈ 𝐷 and 𝑦 ∈ 𝐸, 𝑦 ≪ 𝑓(𝑥) implies
[𝑥 → 𝑦] ≪ 𝑓.

Proof. Let I be any ideal of [𝐷, 𝐸] with 𝑓 ≤ ⋁I. Then
𝑓(𝑧) ≤ ⋁

𝑔∈I𝑔(𝑧) for all 𝑧 ∈ 𝐷. Then 𝑦 ≪ 𝑓(𝑥) ≤ ⋁
𝑔∈I𝑔(𝑥).

Since {𝑔(𝑥) : 𝑔 ∈ I} is directed, there exists 𝑔
∗
∈ I such

that 𝑦 ≤ 𝑔
∗
(𝑥). Now we claim that [𝑥 → 𝑦] ≤ 𝑔

∗
.

For arbitrary 𝑎 ∈ 𝐷, 𝑥 ≪ 𝑎 implies 𝑥 ≤ 𝑎 and [𝑥 →
𝑦](𝑎) = 𝑦 ≤ 𝑔

∗
(𝑥) ≤ 𝑔

∗
(𝑎). If𝑥��≪𝑎, then [𝑥 → 𝑦](𝑎) = 0𝐸 ≤

𝑔
∗
(𝑎). Therefore [𝑥 → 𝑦](𝑎) ≤ 𝑔

∗
(𝑎) for all 𝑎 ∈ 𝐷. That is,

[𝑥 → 𝑦] ≤ 𝑔
∗
. This proves our claim. Hence [𝑥 → 𝑦] ∈ I.

Therefore [𝑥 → 𝑦] ≪ 𝑓.

The following proposition can be found in [2].

Proposition 34 (see [2]). Let 𝐷 and 𝐸 be continuous lattices.
Then for each 𝑓 ∈ [𝐷, 𝐸], 𝑓 = ⋁{[𝑥 → 𝑦] : 𝑦 ≪ 𝑓(𝑥)}; hence
[𝐷, 𝐸] is a continuous lattice.

Thepreceding proposition yields a characterization of the
way-below relation on function spaces via interpolating step
functions.

Corollary 35. Let 𝐷 and 𝐸 be continuous lattices and 𝑓, 𝑔 ∈
[𝐷, 𝐸]. Then 𝑔 ≪ 𝑓 holds in [𝐷, 𝐸] if and only if there exist
𝑥
𝑖
∈ 𝐷, 𝑦

𝑖
∈ 𝐸, for 𝑖 = 1, 2, . . . , 𝑛, such that

𝑦
𝑖 ≪ 𝑓(𝑥𝑖) , 𝑔 ≤

𝑛

⋁

𝑖=1

[𝑥𝑖 → 𝑦𝑖] . (8)

Corollary 36. If 𝐷 and 𝐸 are continuous lattices and 𝑔 ≪ 𝑓
holds in [𝐷, 𝐸], then 𝑔(𝑎) ≪ 𝑓(𝑎) holds for all 𝑎 ∈ 𝐷.

Proof. With the notation of the previous corollary, we have
that

𝑔 ≤

𝑛

⋁

𝑖=1

{[𝑥
𝑖
→ 𝑦
𝑖
] : 𝑦
𝑖
≪ 𝑓(𝑥

𝑖
)} . (9)

Let 𝑎 ∈ 𝐷. For any 𝑖, if 𝑥
𝑖
≪ 𝑎, then [𝑥

𝑖
→ 𝑦
𝑖
](𝑎) = 𝑦

𝑖
≪

𝑓(𝑥
𝑖
) ≤ 𝑓(𝑎). Hence [𝑥

𝑖
→ 𝑦
𝑖
](𝑎) ≪ 𝑓(𝑎). If 𝑥

𝑖��≪𝑎, then
[𝑥
𝑖
→ 𝑦
𝑖
](𝑎) = 0

𝐸
≪ 𝑓(𝑎). Thus 𝑔(𝑎) ≤ ⋁𝑛

𝑖=1
{[𝑥
𝑖
→ 𝑦
𝑖
](𝑎) :

𝑦
𝑖
≪ 𝑓(𝑥

𝑖
)} ≪ 𝑓(𝑎). Therefore 𝑔(𝑎) ≪ 𝑓(𝑎). This completes

our proof.

Lemma 37. Let 𝐷 be continuous and let 𝐸 be strongly
continuous. Then for any 𝑓 ∈ [𝐷, 𝐸], ↓

≪
𝑓 = {𝑔 ∈ [𝐷, 𝐸] :

𝑔 ≪ 𝑓} is a semiprime ideal of [𝐷, 𝐸].

Proof. Obvious ↓
≪
𝑓 is an ideal because [𝐷, 𝐸] is a complete

lattice. Let ℎ ∧ 𝑔
1
, ℎ ∧ 𝑔

2
∈ ↓
≪
𝑓. By Proposition 34, [𝐷, 𝐸]

is continuous, so the relation ≪ satisfies the interpolation
property. Thus there exists 𝑓∗ ∈ ↓

≪
𝑓 such that ℎ ∧ 𝑔

1
≪

𝑓
∗
≪ 𝑓 and ℎ ∧ 𝑔2 ≪ 𝑓

∗
≪ 𝑓. For arbitrary 𝑎 ∈ 𝐷,

by Corollary 36, (ℎ ∧ 𝑔1)(𝑎) = ℎ(𝑎) ∧ 𝑔1(𝑎) ≪ 𝑓
∗
(𝑎),

(ℎ ∧ 𝑔2)(𝑎) = ℎ(𝑎) ∧ 𝑔2(𝑎) ≪ 𝑓
∗
(𝑎). Since 𝐸 is strongly

continuous, ℎ(𝑎)∧𝑔1(𝑎) ⇐ 𝑓
∗
(𝑎) and ℎ(𝑎)∧𝑔2(𝑎) ⇐ 𝑓

∗
(𝑎).

Thus ℎ(𝑎) ∧ (𝑔1(𝑎) ∨ 𝑔2(𝑎)) ⇐ 𝑓
∗
(𝑎). And then (ℎ ∧ (𝑔

1
∨

𝑔2))(𝑎) = ℎ(𝑎)∧ (𝑔1(𝑎)∨𝑔2(𝑎)) ≪ 𝑓
∗
(𝑎). Since 𝑎 is arbitrary,

ℎ ∧ (𝑔1 ∨ 𝑔2) ≤ 𝑓
∗
≪ 𝑓. And follows ℎ ∧ (𝑔1 ∨ 𝑔2) ≪ 𝑓.

Thus ↓≪𝑓 is a semiprime ideal of [𝐷, 𝐸]. This completes our
proof.

Theorem 38. If 𝐷 is a continuous lattice and 𝐸 is a strongly
continuous lattice, then [𝐷, 𝐸] is strongly continuous.

Proof. By Proposition 34, [𝐷, 𝐸] is a continuous lattice and
𝑓 = ⋁↓

≪
𝑓 for all 𝑓 ∈ [𝐷, 𝐸], so [𝐷, 𝐸] is a semicontinuous

lattice. Let 𝑓, 𝑔 ∈ [𝐷, 𝐸]with 𝑔 ⇐ 𝑓 = ⋁↓≪𝑓. By Lemma 37,
↓
≪
𝑓 is an semiprime ideal, so 𝑔 ∈ ↓

≪
𝑓, that is, 𝑔 ≪ 𝑓. By
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Theorem2.5 of [5], [𝐷, 𝐸] is a strongly continuous lattice.This
completes our proof.

For cartesian closedness we adopt the elementary defini-
tion in [14].

Definition 39 (see [14]). A category K is called a cartesian
category if it satisfies the following conditions.

(i) There is a terminal object.
(ii) Each pair of objects𝐷 and𝐸 of K has a product𝐷 × 𝐸

with projections 𝑝1 : 𝐷 × 𝐸 → 𝐷 and 𝑝
2
: 𝐷 × 𝐸 →

𝐸.
(iii) Each pair of objects 𝐷 and 𝐸 of K has an exponen-

tiation 𝐸𝐷, that is, an object 𝐸𝐷 and an arrow eval:
𝐸
𝐷
× 𝐷 → 𝐸 with the property that for any 𝑓 :

𝑋 × 𝐷 → 𝐸, there is a unique arrow 𝜆𝑓 : 𝑋 → 𝐸
𝐷

such that the composite

𝑋 × 𝐷

𝜆𝑓 ×𝐷

→ 𝐸
𝐷
× 𝐷

eval
→ 𝐸 (10)

is 𝑓.

Lemma 40. The cartesian product of two strongly continuous
lattices is strongly continuous.

Proof. Let𝐷,𝐸 be strongly continuous lattices.Then𝐷,𝐸 are
continuous lattices. By Proposition I-2.1 of [2], the product
𝐷 × 𝐸 of 𝐷 and 𝐸 is continuous. It is easy to verify that the
projections 𝑝1 : 𝐷 × 𝐸 → 𝐷, 𝑝2 : 𝐷 × 𝐸 → 𝐸 are
Scott continuous. Let (𝑎, 𝑏) ⇐ (𝑐, 𝑑) in 𝐷 × 𝐸. Since 𝐷,𝐸
are strongly continuous lattices, ↓

≪
𝑐 ∈ 𝑅𝑑(𝐷), ↓

≪
𝑑 ∈ 𝑅𝑑(𝐸)

and (𝑐, 𝑑) = ⋁↓
≪
(𝑐, 𝑑) = ⋁(↓

≪
𝑐 × ↓
≪
𝑑). Since both ↓

≪
𝑐

and ↓
≪
𝑑 are semiprime ideals, it follows that ↓

≪
𝑐 × ↓
≪
𝑑 is

the semiprime ideal of 𝐷 × 𝐸. Hence (𝑎, 𝑏) ≪ (𝑐, 𝑑). Thus
𝐷 × 𝐸 is strongly continuous by the Theorem 2.5 of [5]. By
Corollary 28, 𝑝

1
, 𝑝
2
are semicontinuous. This completes our

proof.

Theorem41. The category SCONT is cartesian closed in which
the exponential 𝐸𝐷 is [𝐷, 𝐸].

Proof. Note that the morphisms in SCONT are the Scott
continuous mappings. Clearly the singleton set is a strongly
continuous lattice and serves as a terminal object in SCONT.
By Lemma 40, the cartesian product of two strongly contin-
uous lattices is again a strongly continuous lattice.

By Theorem 38, [𝐷, 𝐸] is a strongly continuous lattice.
Define eval: 𝐸𝐷 × 𝐷 → 𝐸 by

eval (ℎ, 𝑎) = ℎ (𝑎) . (11)

Then eval is a Scott continuous mapping. Let𝑋 be a strongly
continuous lattice, let 𝑓 : 𝑋 × 𝐷 → 𝐸 be a semicontinuous
(or Scott continuous) mapping, and define 𝜆

𝑓
: 𝑋 → 𝐸

𝐷 by
𝜆
𝑓
(𝑥)(𝑎) = 𝑓(𝑥, 𝑎). For any directed set 𝐼 ⊆ 𝑋 and 𝑎 ∈ 𝐷,

𝜆
𝑓
(⋁𝐼)(𝑎) = 𝑓(⋁𝐼, 𝑎) = 𝑓(⋁𝐼 × {𝑎}) = ⋁{𝑓(𝑥, 𝑎) : 𝑥 ∈ 𝐼}

because 𝐼 × {𝑎} is directed. Thus 𝜆
𝑓
(⋁𝐼)(𝑎) = ⋁{𝜆𝑓(𝑥, 𝑎) :

𝑥 ∈ 𝐼} = ⋁
𝑥∈𝐼
𝜆
𝑓
(𝑥)(𝑎). So 𝜆

𝑓
(⋁𝐼) = ⋁𝜆

𝑓
(𝐼). Thus

𝜆
𝑓
is Scott continuous. And eval ∘(𝜆

𝑓
× 𝑖𝑑
𝐷
)(𝑥, 𝑎) = eval

(𝑓(𝑥), 𝑎) = 𝑓(𝑥)(𝑎) = 𝑓(𝑥, 𝑎). So eval ∘(𝜆
𝑓
× 𝑖𝑑
𝐷
) = 𝑓.

Clearly 𝜆
𝑓
is the unique morphism satisfying the condition.

ByDefinition 39, the category SCONT is cartesian closed.The
proof is completed.

Remark 42. By [5], every distributive continuous lattice is
strongly continuous.One can verify straightforwardly that for
any two distributive continuous lattices 𝑆 and 𝑇, the lattice
[𝑆, 𝑇] of Scott continuousmappings from 𝑆 to𝑇 is distributive
and thus is a distributive continuous lattice. Hence one can
prove, by a similar argument as for SCONT, that the fully
subcategory DCONT of SCONT consisting of all distributive
continuous lattices is cartesian closed.
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