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The necessary of classification research on common formula of 𝐷
𝑛
group (dihedral group) cycle decomposition expression

is illustrated. It includes the reflection and rotation conversion, which derived six common formulae on cycle decomposition
expressions of𝐷

𝑛
group; it designed the generation algorithm on the cycle decomposition expressions of𝐷

𝑛
group, which is based

on the method of replacement conversion and the classification formula; algorithm analysis and the results of the process show
that the generation algorithm which is based on the classification formula is outperformed by the general algorithm which is based
on replacement conversion; it has great significance to solve the enumeration of the necklace combinational scheme, especially the
structural problems of combinational scheme, by using group theory and computer.

1. Introduction

𝐷
𝑛
group (Dihedral group) is a kind of important group

which plays an important role in the research of the prop-
erties of group [1, 2]. It can be used to solve a variety of
factual problems, such as the classical necklace problem, the
enumeration problem of molecule structure [3], modelling
of communication networks [4], construction of visual cryp-
tography scheme [5], and analysis of satellite status in the
orbit of LEO/MEO satellite network, which all adopt the 𝐷

𝑛

group [6–8] and use Burnside lemma and Pólya theorem
to compute the number of combination necklace schemes,
which all depend on the cycle decomposition expressions
of 𝐷
𝑛
group. There are lots of research on the enumeration

problem of necklace problem based on 𝐷
𝑛
group [9–11],

but very few concentrates on the structural problems of
combinational scheme. In the study of researching satellite
status in the orbit of LEO/MEO satellite network and network
route simulation, we should get each satellite status and
take these as input, that is to say, the structural problems
of combinational scheme, which is closely related to the
𝐷
𝑛
group cycle decomposition expression [12]. For the 𝐷

𝑛

group of low order, we can compute cycle decomposition
expression of every group elementmanually, but for𝐷

𝑛
group

of high order, it is not only time consuming but also error
by hand, so it is essential to adapt computer and the fast
generation algorithm is the key to fulfill this problem. Fu
and Wang [13] presented the common formula of 𝐷

𝑛
group

permutation expression and then convert the permutation
expression into cycle decomposition expressions of𝐷

𝑛
group;

however, it is inefficient. If we can get the cycle decomposition
expressions of 𝐷

𝑛
group, it is much easier to solve the

problem. There are two types of 𝐷
𝑛
group’s elements: one

is derived from reflection conversion, and the other from
rotation conversion; the cycle decomposition expressions of
these two kinds of elements adhere to different rules, so we
can research cycle decomposition expressions of 𝐷

𝑛
group

respectively, and then can get each common formula to
fulfill fast generation algorithm on the cycle decomposition
expressions of 𝐷

𝑛
group.

2. Necklace Problem and Permutation
Expression of 𝐷

𝑛
Group

2.1. Necklace Problem and Permutation Expression of 𝐷
𝑛

Group. The necklace problem is defined as follows. Let us
suppose that a necklace can be made from beads of𝑚 colors;
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then how many different necklaces with 𝑛 beads can be
made?

When 𝑛 and 𝑚 are both small, we can work out all the
different necklaces using exhaustive algorithm. But with the
increasing size of 𝑛 and 𝑚, it gets more and more difficult by
exhaustive algorithm, so the groupmethodmust be used, and
simpler and more efficient method has not been found up to
the present [3].
PólyaTheorem. Let𝐺 be a group of permutations of the set of
𝑛 objects; then the number 𝑃(𝐺;𝑚,𝑚, . . . , 𝑚) of nonequiva-
lent colorings is given by

𝑃 (𝐺;𝑚,𝑚, . . . , 𝑚)=
1

|𝐺|
(∑𝑚

𝜆
1
(𝑔)

+ 𝑚
𝜆
2
(𝑔)

+ ⋅ ⋅ ⋅ + 𝑚
𝜆
𝑛
(𝑔)

) ,

(1)

where 𝜆
𝑘
(𝑔) is the number of 𝑘-cycle in the permutation 𝑔

[11].
When we analyze the satellite status in the orbit by Pólya

theorem, 𝑛 satellites in the orbit are the coloring objects and
𝑚 status is the 𝑚 colors. The key for the problem is to solve
the group of permutations of the set of 𝑛 objects, that is, the
𝐷
𝑛
group.

2.2. The Permutation Expressions of 𝐷
𝑛
Group. Suppose that

𝑋 = {0, 1, 2, . . . , 𝑛 − 1} (without loss of generality, we adapt
0 ∼ 𝑛 − 1 as sequence number) is the vertex set of the regular
𝑛 (𝑛 ≥ 3) quadrate and arranged counterclockwise, as shown
in Figure 1.

As we rotate regular 𝑛 quadrate according to 2𝜋/𝑛 coun-
terclockwise, vertex 𝑖 has moved to the position originally
occupied by vertex 𝑖 + 1 (mod 𝑛), so this rotation is the
conversion on 𝑋, marked as 𝑅

1
:

𝑅
1
= (

0 1 2 ⋅ ⋅ ⋅ 𝑛 − 1

1 2 3 ⋅ ⋅ ⋅ 0
) . (2)

The conversion according to 2𝑘 (𝜋/𝑛) is marked as 𝑅
𝑘
:

𝑅
𝑘
= (

0 1 2 ⋅ ⋅ ⋅ 𝑛 − 1

𝑘 𝑘 + 1 𝑘 + 2 ⋅ ⋅ ⋅ 𝑘 + 𝑛 − 1
) , (3)

where the addition and subtraction are the modulo 𝑛 opera-
tion (as the same for the entire paper), 𝑅

0
is the identity, and

𝑅
𝑘
can be shown as

𝑅
𝑘
(𝑖) = 𝑘 + 𝑖, 𝑖 = 0, 1, . . . , 𝑛 − 1. (4)

Another conversion is reflection in the symmetric axis
according to 𝜋, named as reflectivity conversion. Because
there is 𝑛 symmetric axis, we mark the axis through vertex
0 as 𝐿

0
, the axis through the vertex of the midpoint of edge

[0, 1] as 𝐿
1
, . . ., until 𝐿

𝑛−1
. The corresponding reflectivity

conversion is marked as 𝑀
0
,𝑀
1
, . . . ,𝑀

𝑛−1
. For instance,

𝑀
0
= (

0 1 ⋅ ⋅ ⋅ 𝑛 − 1

0 𝑛 − 1 ⋅ ⋅ ⋅ 1
) . (5)

We can prove that

𝑀
𝑘
= 𝑘 + 𝑛 − 𝑖, 𝑘 = 0, 1, . . . , 𝑛 − 1. (6)

Let

𝐷
𝑛
= {𝑅
𝑘
,𝑀
𝑘
| 𝑘 = 0, 1, . . . , 𝑛 − 1} . (7)

Then 𝐷
𝑛
is closed under the composite operation of the

conversion, the identity 𝑅
0
exists, and each element has

inverse, so 𝐷
𝑛
forms group, which is dihedral group.

3. The Generation Algorithm on
the Cycle Decomposition Expressions of
𝐷
𝑛

Group Based on Permutation and
Complexity Analysis

3.1. The Cycle Decomposition Expressions of 𝐷
𝑛
Group. The

representation of each permutation as a product of disjoint
cycles and the decomposition is unique [3]; the product of
disjoint cycles is named as cycle decomposition expression
of elements of the group. We can devise an algorithm
for converting the permutation expression into the cycle
decomposition expression of 𝐷

𝑛
Group.

3.2. The Algorithm Design for Converting the Permutation
Expression into the Cycle Decomposition Expression of 𝐷

𝑛

Group. Let 𝑝
𝑘
[𝑖, 𝑗] (𝑖 = 0, 1; 𝑗 = 0, 1, . . . , 𝑛 − 1) express the

element (𝑖 column 𝑗 row) in the permutation expression of
each element of the𝐷

𝑛
group and traverse all the elements of

𝑝
𝑘
starting from 𝑝

𝑘
[0, 0]; the algorithm is shown as follows.

Algorithm 1. Consider the following.

(1) Start from 𝑝
𝑘
[0, 0], if 𝑝

𝑘
[0, 0]! = 𝑝

𝑘
[0, 1]; then go to

(3).
(2) 𝑝
𝑘
[0, 0] is the fixed pointwhich forms an independent

cycle; it is denoted by (𝑝
𝑘
[0, 0]); go to (7).

(3) Search for the element equal to 𝑝[1, 0] from 𝑝
𝑘
[0, 1]

to 𝑝
𝑘
[0, 𝑛 − 1]; suppose that the element is 𝑝

𝑘
[0, 𝑗].

(4) Search for 𝑝
𝑘
[1, 𝑗], if 𝑝

𝑘
[1, 𝑗]! = 𝑝

𝑘
[0, 0]; then go to

(6).
(5) 𝑝
𝑘
[0, 0] and 𝑝

𝑘
[1, 𝑗] form a cycle; it is denoted by

𝑝
𝑘
[1, 𝑗]; go to (7).

(6) Search for the element equal to 𝑝
𝑘
[1, 𝑗] at 𝑝

𝑘
[0, 𝑖]

which has not been written into the cycle; then judge
the element whether it is equal to 𝑝

𝑘
[0, 0] or not;

proceed the next searching until you get the element
equal to 𝑝

𝑘
[0, 0] that form a cycle.

(7) During the next searching, delete all the 𝑝
𝑘
[𝑖, 𝑗] that

have been written into the cycle from the original
data structure; go to (1), until all the 𝑝

𝑘
[𝑖, 𝑗] have

been written into the expression of the product of the
cycles.

In the analysis of the algorithm, we know that this con-
version method is of low efficiency from formula (14), so it
cannot be used for problem of great size by group 𝐷

𝑛
; a fast

generation algorithmon the cycle decomposition expressions
of 𝐷
𝑛
group based on permutation must be designed.



Abstract and Applied Analysis 3

3.3. The Time Complexity of Generation Algorithm Based on
Permutation. Computational complexity is divided into two
kinds: one is time complexity, and the other is space com-
plexity. The analysis of space complexity is similar to that
of time complexity, and the analysis of space complexity is
more simple [12]; in this paper, the two algorithms’ space
complexities are the same on the whole, so we limit our study
to the time complexity.

First apply formulae (4) and (6) to solve 𝑀
𝑘
, 𝑅
𝑘
(𝑘 =

0, 1, . . . , 𝑛 − 1); we estimate the time complexity. Formula (4)
is corresponding to the second row of 𝑀

𝑘
; formula (6) is

corresponding to the second row of 𝑅
𝑘
; for each 𝑅

𝑘
or 𝑀
𝑘
,

we need 𝑛 additions (modulo 𝑛); thus we obtain the second
row of the permutation, then express it as the form of formula
(3), so we get the expression of permutation of 𝑀

𝑘
and 𝑅

𝑘
.

There are 2𝑛 elements in the𝐷
𝑛
group, so the time complexity

function 𝑇
1
(𝑛) of the algorithm is

𝑇
1
(𝑛) = 𝑛 ∗ (2𝑛) = 2𝑛

2

. (8)

After obtaining the expression of permutation of all ele-
ments in the𝐷

𝑛
group, we apply the conversion algorithm in

Section 3.2 to every element in the group to get their cycle
decomposition expression. The main operation is compari-
son in this conversion algorithm.

Begin with the first row and the first column 𝑝
𝑘
[0, 0],

comparing 𝑝
𝑘
[0, 0] with 𝑝

𝑘
[1, 0], searching the element

which is same to𝑝
𝑘
[1, 0] in the first row if𝑝

𝑘
[0, 0] and𝑝

𝑘
[1, 0]

are not equal. Comparing 𝑝
𝑘
[1, 𝑗] (𝑗 = 1, . . . , 𝑛 − 1) with

𝑝
𝑘
[1, 0] one by one, at most (𝑛 − 1) comparisons are made;

then comparing 𝑝
𝑘
[1, 𝑗] with 𝑝

𝑘
[0, 0], searching the element

which is same to𝑝
𝑘
[1, 𝑗] in the first row if𝑝

𝑘
[1, 𝑗] and𝑝

𝑘
[0, 0]

are not equal, at most (𝑛 − 2) comparisons are made, and
so forth, the rest may be deduced by analogy and the time
complexity function 𝑇

2
(𝑛) of the algorithm is

𝑇
2
(𝑛) = 𝑛!. (9)

As there are 2𝑛 elements in the 𝐷
𝑛
group, the time

complexity function of the generation algorithm based on
permutation is

𝑇
3
(𝑛) = 𝑛

2

+ 2𝑛 ∗ 𝑛! = 2𝑛 (𝑛 + 𝑛!) . (10)

We can observe from (10) that the complexity of the genera-
tion algorithm based on permutation is 𝑄

1
(𝑛 ∗ 𝑛!) with very

low efficiency which is unable to fulfill the requirement in the
solution of large size problems using 𝐷

𝑛
group. So a faster

generation algorithm needs to be developed.

4. The Derivation of the Common
Formula for the Cycle Decomposition
Expressions of 𝐷

𝑛
Group

There are two types of 𝐷
𝑛
group’s elements: one is derived

from reflectivity conversion 𝑀
𝑘
(𝑘 = 0, 1, . . . , 𝑛 − 1), and

the other from rotation conversion 𝑅
𝑘
(𝑘 = 0, 1, . . . , 𝑛 − 1);

the cycle decomposition expressions of these two kinds of
elements adhere to different rules, so we can research cycle

1

2

i−

i L0

L1

L2

O

i + 1
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Ln−1

Figure 1: Regular 𝑛 quadrate.
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Figure 2: Regular 6 quadrate.

decomposition expressions of 𝐷
𝑛
group, respectively; then,

we can get each common formula to fulfill fast generation
algorithm on the cycle decomposition expressions of 𝐷

𝑛

group.
The 𝐷

𝑛
group is corresponding to a regular 𝑛 quadrate

(as shown in Figure 1). For𝐷
𝑛
group of low order, we can get

the cycle decomposition expressions of each element in the
group by eyes, observe the vertex’s constituting rule in every
cyclewith induction. Based on an exhausted series of the cycle
decomposition expressions of 𝐷

𝑛
group, we bring forward

the common formula and then prove it by mathematical
induction.

(1)The Cycle Decomposition Expressions for 𝐷
𝑛
Group of Low

Order. For instance, we enumerate all the cycle decomposi-
tion expressions of 𝐷

6
group. 𝐷

6
group is corresponding to

the Regular 6 quadrate, as shown in Figure 2, where 𝑅
𝑘
(𝑘 =

0, 1, 2, . . . , 5) are the cycle decomposition expressions of the
reflectivity conversion, and 𝑀

𝑘
(𝑘 = 0, 1, 2, . . . , 5) are the



4 Abstract and Applied Analysis

cycle decomposition expressions of the rotation conversion.
The main text paragraph is as follows (see Figure 2):

𝑅
0
= (0) (1) (2) (3) (4) (5) , 𝑀

0
= (0) (3) (1 5) (2 4) ,

𝑅
1
= (0 1 2 3 4 5) , 𝑀

1
= (0 1) (2 5) (3 4) ,

𝑅
2
= (0 2 4) (1 3 5) , 𝑀

2
= (1) (4) (0 2) (3 5) ,

𝑅
3
= (0 3) (1 4) (2 5) , 𝑀

3
= (1 2) (0 3) (4 5) ,

𝑅
4
= (0 4 2) (1 5 3) , 𝑀

4
= (2) (5) (0 4) (1 3) ,

𝑅
5
= (0 5 4 3 2 1) , 𝑀

5
= (2 3) (1 4) (0 5) .

(11)

(2) The Common Cycle Decomposition Expressions for 𝐷
𝑛

Group with Reflectivity Conversion. The cycle decomposition
expressions for 𝑀

𝑘
are not only related to the parity of 𝑛 in

the 𝐷
𝑛
group but also to the parity of 𝑘 in the element 𝑀

𝑘
,

so the formula can be divided into four instances.

(a) 𝑛 is odd in the 𝐷
𝑛
group and 𝑘 is also odd in 𝑀

𝑘
.

While 𝑘 equals 1, take reflectivity conversion that 𝐿
1 is the

axis (as shown in Figure 1); 0 and 1 compose the transposition,
that is, (1, 0); 2 and 𝑛 − 1 compose the transposition, that
is, (2, 𝑛 − 1), and so forth.

There are (𝑛 − 1)/2 transpositions and a fixed point ((1 −

1)/2 + (𝑛 − 1)/2 + 1).
While 𝑘 is general,

𝑘 − 1

2
+ 1 and 𝑘 − 1

2
compose the transposition,

that is, (𝑘 − 1

2
+ 1,

𝑘 − 1

2
) ;

𝑘 − 1

2
+ 2 and 𝑘 − 1

2
+ 1 compose the transposition,

that is, (𝑘 − 1

2
+ 2,

𝑘 − 1

2
+ 1) ; . . . .

(12)

There are (𝑛 − 1)/2 transpositions and a fixed point ((1 −

1)/2 + (𝑛 − 1)/2 + 1).
Now we obtain the following common formula:

𝑀
𝑘
= (

𝑘

2
)(

𝑘

2
+ 1,

𝑘

2
− 1)(

𝑘

2
+ 2,

𝑘

2
− 2) ⋅ ⋅ ⋅

(
𝑘

2
+

𝑛

2
− 1,

𝑘

2
−

𝑛

2
+ 1)(

𝑛

2
+

𝑘

2
) .

(13)

We can prove that formula (8) is valid for 𝑘 = 1, 𝑘 = 2𝑗 +

1 and 𝑘 = (2(𝑗 = 1)+1) = 2𝑗+3 bymathematical induction.

So formula (8) is true for all positive integers 𝑘. In the same
way we can obtain the following three formulae.

(b) 𝑛 is odd in the 𝐷
𝑛
group and 𝑘 is even in 𝑀

𝑘
:

𝑀
𝑘
= (

𝑘

2
)(

𝑘

2
+ 1,

𝑘

2
− 1)(

𝑘

2
+ 2,

𝑘

2
− 2) ⋅ ⋅ ⋅

(
𝑘

2
+

𝑛 − 1

2
,
𝑘

2
−

𝑛 − 1

2
) .

(14)

There are (𝑛 − 1)/2 transpositions.

(c) 𝑛 is even in the 𝐷
𝑛
group and 𝑘 is odd in 𝑀

𝑘
:

𝑀
𝑘
= (

𝑘 − 1

2
+ 1,

𝑘 − 1

2
)(

𝑘 − 1

2
+ 2,

𝑘 − 1

2
− 1) ⋅ ⋅ ⋅

(
𝑘 − 1

2
+

𝑛

2
,
𝑘 − 1

2
−

𝑛

2
− 1) .

(15)

There are 𝑛/2 transpositions.

(d) 𝑛 is even in the 𝐷
𝑛
group and 𝑘 is even in 𝑀

𝑘
:

𝑀
𝑘
= (

𝑘

2
)(

𝑘

2
+ 1,

𝑘

2
− 1)(

𝑘

2
+ 2,

𝑘

2
− 2) ⋅ ⋅ ⋅

(
𝑘

2
+

𝑛

2
− 1,

𝑘

2
−

𝑛

2
+ 1)(

𝑘

2
+

𝑛

2
) .

(16)

There are (𝑛 − 2)/2 transpositions and two fixed points.

(3) The Common Cycle Decomposition Expressions for the
Element 𝑅

𝑘
in the Group with Rotation Conversion. The type

of 𝑅
𝑘
is (𝑛/𝑑)

𝑑

, 𝑑 = (𝑘, 𝑛), and the type of 𝑅
𝑘
varies along

with the value of 𝑘 and 𝑛. There are two instances.

(a) 𝑛 is prime. While 𝑘 equals 0, we deal with it as follows:

𝑅
0
= (0) (1) ⋅ ⋅ ⋅ (𝑛 − 1) . (17)

While 𝑘 = 1, 2, . . . , 𝑛 − 1, 𝑑 = (𝑘, 𝑛) = 1, the type of 𝑅
𝑘
is

(𝑛/𝑑)
𝑑

= 𝑛
1; that is, every element 𝑅

𝑘
in the group makes up

of a cycle, and there are 𝑛 terms in the cycle, it is denoted by

𝑅
𝑘
= (0 𝑘 𝑘 + 𝑘 ⋅ ⋅ ⋅ 𝑘 + 𝑘 + ⋅ ⋅ ⋅ + 𝑘) . (18)

(b) 𝑛 is composite. When 𝑘 equals 0, 𝑅
0
is the same to formula

(14).

While 𝑘 = 1, 2, . . . , 𝑛 − 1, the type of 𝑅
𝑘
is (𝑛/𝑑)

𝑑

, 𝑑 =

(𝑘, 𝑛), 𝑅
𝑘
makes up of 𝑑 cycles, and there are (𝑛/𝑑) terms in

each cycle; we can obtain

𝑅
𝑘
= (0, 𝑘, 𝑘 + 𝑘, . . .) (1, 1 + 𝑘, 1 + 𝑘 + 𝑘, . . .) ⋅ ⋅ ⋅

((𝑑 − 1) , (𝑑 − 1) + 𝑘, (𝑑 − 1) + 𝑘 + 𝑘, . . .) .
(19)
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5. The Generation Algorithm on the Cycle
Decomposition Expressions of 𝐷

𝑛
Group

Based on the Classification Formulae and
Complexity Analysis

5.1.The Idea of the AlgorithmDesigning. Thegeneration algo-
rithm on the cycle decomposition expressions of 𝐷

𝑛
group

based on the classification Formulae is relatively simple. For
𝑀
𝑘
(𝑘 = 0, 1, . . . , 𝑛−1)with reflectivity conversion, first judge

the parity of 𝑛 and 𝑘; then substitute them into formulae (13)–
(16), thus we can get the cycle decomposition expressions of
𝑛 elements of the group. For 𝑅

𝑘
(𝑘 = 0, 1, . . . , 𝑛 − 1) with

rotation conversion, substitute 𝑘 = 0 into formula (17) and
get 𝑅
0
; while 𝑛 is prime, substitute 𝑘 into formula (18); while

𝑛 is composite, substitute 𝑘 into formula (19); thus, we can
obtain all the cycle decomposition expressions of 𝑅

𝑘
(𝑘 =

0, 1, . . . , 𝑛 − 1).

5.2. Algorithm. Consider the following.

(1) Input 𝑛, 𝑘 = 0.
(2) If 𝑛 is even, then go to (6).
(3) If 𝑘 is even, then go to (5).
(4) Substitute 𝑘 into formula (8); we obtain𝑀

𝑘
, 𝑘 = 𝑘+1,

𝑘 < 𝑛; go to (3); else go to (9).
(5) Substitute 𝑘 into formula (9); we obtain𝑀

𝑘
, 𝑘 = 𝑘+1,

𝑘 < 𝑛; go to (3); else go to (9).
(6) If 𝑘 is even, go to (8).
(7) Substitute 𝑘 into formula (10); we obtain𝑀

𝑘
, 𝑘 = 𝑘+1,

𝑘 < 𝑛; go to (6); else go to (9).
(8) Substitute 𝑘 into formula (13); we obtain𝑀

𝑘
, 𝑘 = 𝑘+1,

𝑘 < 𝑛; go to (6); else go to (9).
(9) Substitute 𝑘 = 0 into formula (14); we obtain 𝑅

0
.

(10) If 𝑛 is composite, go to (13).
(11) Substitute 𝑘 into formula (15).
(12) 𝑘 = 𝑘 + 1, 𝑘 < 𝑛; go to (11); else go to (15).
(13) Substitute 𝑘 into formula (16).
(14) 𝑘 = 𝑘 + 1, 𝑘 < 𝑛; go to (13).
(15) Stop.

5.3. The Time Complexity of the Generation Algorithm Based
on Classification Formulae. The generation algorithm on the
cycle decomposition expressions of 𝐷

𝑛
group based on the

classification Formulae is relatively simple. Judge the parity
of 𝑛 and each 𝑘 (𝑘 = 1, 2, . . . , 𝑛); substitute 𝑘 into Formulae
(8)∼(13); thus get 𝑀

𝑘
the cycle expression. For 𝑅

𝑘
, the only

thing is to judge the fraction of 𝑛. For every𝑀
𝑘
or 𝑅
𝑘
, at most

2𝑛 additions are made. As there are 2𝑛 elements in the 𝐷
𝑛

group, so the time complexity function is

𝑇
4
= 2𝑛 + 𝑛 ∗ (2𝑛) = 2𝑛

2

+ 2𝑛 = 2 (𝑛
2

+ 𝑛) . (20)

As a result, the time complexity of generation algorithm
based on permutation is 𝑂

1
(𝑛) = 𝑂(𝑛 ∗ 𝑛!), while the time

complexity of generation algorithm based on classification
Formulae is 𝑂

2
(𝑛) = 𝑂(𝑛

2

), so the time complexity of gener-
ation algorithm based on permutation is much more greater
than that of generation algorithm based on classification
Formulae.The results of the process show that the generation
algorithm which is based on the classification formula is of
superiority.

6. Conclusions

This paper includes the reflectivity and rotation conversion,
which derived six commonFormulae on cycle decomposition
expressions of𝐷

𝑛
group; it designed the generation algorithm

on the cycle decomposition expressions of 𝐷
𝑛
group, which

is based on the method of replacement conversion and the
classification formula; algorithm analysis and the results of
the process show that the generation algorithm which is
based on the classification formula is outperformed by the
general algorithmwhich is based on replacement conversion,
it has great significance to solve the necklace problem and
the combinational scheme of the satellite status in the orbit
of LEO/MEO satellite network, especially the structural
problems of combinational scheme, by using group theory
and computer.
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