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We study the existence and asymptotic stability in pthmoment of amild solution to a class of nonlinear fractional neutral stochastic
differential equationswith infinite delays inHilbert spaces. A set of novel sufficient conditions are derivedwith the help of semigroup
theory and fixed point technique for achieving the required result.The uniqueness of the solution of the considered problem is also
studied under suitable conditions. Finally, an example is given to illustrate the obtained theory.

1. Introduction

Thestochastic differential equations have beenwidely applied
in science, engineering, biology, mathematical finance and in
almost all applied sciences. In the present literature, there are
many papers on the existence and uniqueness of solutions
to stochastic differential equations (see [1–4] and references
therein). More recently, Chang et al. [5] investigated the exis-
tence of square-mean almost automorphic mild solutions to
nonautonomous stochastic differential equations in Hilbert
spaces by using semigroup theory and fixed point approach.
Fu and Liu [2] discussed the existence and uniqueness of
square-mean almost automorphic solutions to some linear
and nonlinear stochastic differential equations and in which
they studied the asymptotic stability of the unique square-
mean almost automorphic solution in the square-mean sense.
On the other hand, recently fractional differential equations
have found numerous applications in various fields of science
and engineering [6]. The existence and uniqueness results
for abstract stochastic delay differential equation driven by
fractional Brownian motions have been studied in [7]. In
particular the stability investigation of stochastic differential
equations has been investigated by several authors [8–15].

Let 𝐾 and 𝐻 be two real separable Hilbert spaces with
inner products ⟨⋅, ⋅⟩

𝐾
and ⟨⋅, ⋅⟩

𝐻
, respectively. We denote

their norms by | ⋅ |
𝐾
and | ⋅ |

𝐻
. To avoid confusion we just

use ⟨⋅, ⋅⟩ for the inner product and | ⋅ | for the norm. Let
{𝑒
𝑖
}
∞

𝑖=1
be an orthonormal basis of 𝐾. Throughout the paper,

we assume that (Ω,F, 𝑃; F) (F = {F
𝑡
}
𝑡≥0
) is a complete

filtered probability space satisfying that F
0
contains all 𝑃-

null sets of F. Suppose {𝑊(𝑡) : 𝑡 ≥ 0} is cylindrical 𝐾-
valued Brownianmotionwith a trace class operator𝑄, denote
trac𝑄 = ∑

∞

𝑖=1
𝜆
𝑖
= 𝜆 < ∞, which satisfies that 𝑄𝑒

𝑖
= 𝜆
𝑖
𝑒
𝑖
.

So, actually, 𝑊(𝑡) = ∑
∞

𝑖=1
√𝜆
𝑖
𝑊
𝑖
(𝑡)𝑒
𝑖
, where {𝑊

𝑖
(𝑡)}
∞

𝑖=1
are

mutually independent one-dimensional standard Brownian
motions. Define L(𝐾,𝐻) as the set of all bounded linear
operators 𝐴 : 𝐾 → 𝐻 with the following norm:

|𝐴| = (

∞

∑

𝑖=1

𝐴𝑒𝑖


2
)

1/2

< ∞. (1)

It is obvious that L(𝐾,𝐻) is a Hilbert space with an inner
product induced by the above norm. Let 𝐴 ∈ L(𝐾,𝐻) be
called a Hilbert-Schmidt operator. We further assume that
the filtration is generated by the cylindrical Brownianmotion
𝑊(⋅) and augmented, that is,

F
𝑡
= 𝜎 {𝑊 (𝑠) ; 0 ≤ 𝑠 ≤ 𝑡} ∨N, (2)

whereN is the 𝑃-null sets.
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The qualitative properties of stochastic fractional differ-
ential equations have been considered only in few publica-
tions. El-Borai et al. [16] studied the existence uniqueness,
and continuity of the solution of a fractional stochastic
integral equation. Ahmed [17] derived a set of sufficient
conditions for controllability of fractional stochastic delay
equations by using a stochastic version of the well-known
Banachfixed point theoremand semigroup theory.Moreover,
theory of neutral differential equations is of both theoretical
and practical interests. For a large class of electrical net-
works containing lossless transmission lines, the describing
equations can be reduced to neutral differential equations.
However, to the author’s best knowledge no work has been
reported in the present literature regarding the existence,
uniqueness, and asymptotic stability of mild solutions for
neutral stochastic fractional differential equations with infi-
nite delay in Hilbert spaces. Motivated by this consideration,
in this paper we consider the nonlinear fractional neutral
stochastic differential equations with infinite delays in the
following form:

𝑐
𝐷
𝛼

𝑡
[𝑋 (𝑡) + 𝑔 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡)))]

= 𝐴𝑋 (𝑡) + 𝑓 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡)))

+ 𝜎 (𝑡, 𝑋 (𝑡 − 𝜈 (𝑡)))
𝑑𝑊 (𝑡)

𝑑𝑡
, 𝑡 ≥ 0,

(3)

𝑋
0 (⋅) = 𝜑 ∈ BF ([𝑚 (0) , 0] ,𝐻) , (4)

where 𝐴 is the infinitesimal generator of a strongly continu-
ous semigroup of a bounded linear operator 𝑆(𝑡), 𝑡 ≥ 0 in the
Hilbert space𝐻,𝑓 : 𝑅

+
×𝐻 → 𝐻, 𝜎 : 𝑅

+
×𝐻 → L(𝐾,𝐻)

are two Borel measurable mappings, and 𝑔 : 𝑅
+
× 𝐻 → 𝐻

is continuous mapping. The fractional derivative 𝑐𝐷𝛼
𝑡
, 𝛼 ∈

(0, 1) is understood in the Caputo sense. In addition, let
𝜏(𝑡), 𝜈(𝑡) ∈ 𝐶(𝑅

+
, 𝑅
+
) satisfy 𝑡 − 𝜏(𝑡) → ∞, 𝑡 − 𝜈(𝑡) → ∞

as 𝑡 → ∞. Let 𝑚(0) = max{inf
𝑠≥0
(𝑠 − 𝜏(𝑠)), inf

𝑠≥0
(𝑠 −

𝜈(𝑠))}. Here BF0
([𝑚(0), 0],𝐻) denote the family of all

almost surely bounded,F
0
-measurable, continuous random

variables 𝜑(𝑡) : [𝑚(0), 0] → 𝐻 with norm |𝜑|B =

sup
𝑚(0)≤𝑡≤0

𝐸|𝜑(𝑡)|
𝐻
. Throughout this paper, we assume that

𝑝 ≥ 2 is an integer.

2. Preliminaries and Basic Properties

Let 𝐴 be the infinitesimal generator of an analytic semigroup
𝑆(𝑡) in𝐻.Then, (𝐴−𝜂𝐼) is invertible and generates a bounded
analytic semigroup for 𝜂 > 0 large enough.Therefore, we can
assume that the semigroup 𝑆(𝑡) is bounded and the generator
𝐴 is invertible. It follows that (−𝐴)𝜂, 0 < 𝜂 ≤ 1 can be
defined as a closed linear invertible operator with its domain
𝐷(−𝐴)

𝜂 being dense in𝐻. We denote by𝐻
𝜂
the Banach space

𝐷(−𝐴)
𝜂 endowed with the norm |𝑥|

𝜂
= |(−𝐴)

𝜂
𝑥|, which is

equivalent to the graph normof (−𝐴)𝜂. Formore details about
semigroup theory, one can refer [18].

Lemma 1 (see [18]). Suppose that the preceding conditions are
satisfied.

(a) Let 0 < 𝜂 ≤ 1, then𝐻
𝜂
is a Banach space.

(b) If 0 < 𝜈 ≤ 𝜂, then the embedding𝐻
𝜈
⊂ 𝐻
𝜂
is compact

whenever the resolvent operator of 𝐴 is compact.
(c) For every 𝜂 ∈ (0, 1], there exists a positive constant 𝐶

𝜂

such that ‖𝐴𝜂𝑆(𝑡)‖ ≤ 𝐶
𝜂
/𝑡
𝜂
, 𝑡 > 0.

Definition 2 (see [19]). The fractional integral of order 𝑞 with
the lower limit 0 for a function 𝑓 is defined as

𝐼
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, 𝑡 > 0, 𝑞 > 0 (5)

provided the righthand side is pointwise defined on [0,∞),
where Γ(⋅) is the gamma function.

Definition 3 (see [19]). The Caputo derivative of order 𝛼 for a
function 𝑓 : [0,∞) → 𝑅 can be written as

𝑐
𝐷
𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

𝑓
(𝑛)
(𝑠)

(𝑡 − 𝑠)
𝛼+1−𝑛

𝑑𝑠 = 𝐼
𝑛−𝛼

𝑓
(𝑛)
(𝑡) ,

𝑡 > 0, 0 ≤ 𝑛 − 1 < 𝛼 < 𝑛.

(6)

If 𝑓 is an abstract function with values in 𝐻, then integrals
which appear in the above definitions are taken in Bochner’s
sense.

According to Definitions 2 and 3, it is suitable to rewrite
the stochastic fractional equation (3) in the equivalent inte-
gral equation

𝑋 (𝑡) = [𝜑 (0) + 𝑔 (0, 𝜑)] − 𝑔 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡)))

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝐴𝑋 (𝑠) + 𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))

+𝜎 (𝑠, 𝑋 (𝑠−𝜈 (𝑠)))
𝑑𝑊 (𝑠)

𝑑𝑠
]𝑑𝑠.

(7)

In view of [18, Lemma 3.1] and by using Laplace trans-
form, we present the following definition of mild solution of
(3).

Definition 4. A stochastic process {𝑋(𝑡) : 𝑡 ∈ [0, 𝑇]}, 0 ≤

𝑇 < ∞ is called a mild solution of (3), if

(i) 𝑋(𝑡) isF
𝑡
-adapted and is measurable, 𝑡 ≥ 0;

(ii) 𝑋(𝑡) ∈ 𝐻 has càdlàg paths on 𝑡 ∈ [0, 𝑇] almost surely
and for each 𝑡 ∈ [0, 𝑇], the function (𝑡 − 𝑠)𝛼−1𝐴𝑇

𝛼
(𝑡 −

𝑠)𝑔(𝑠, 𝑋(𝑠−𝜏(𝑠))) is integrable such that the following
integral equation is satisfied:

𝑋(𝑡) = 𝑆
𝛼 (𝑡) [𝜑 (0) + 𝑔 (0, 𝜑)] − 𝑔 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡)))

− ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐴𝑇
𝛼 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝜎 (𝑠, 𝑋 (𝑠 − 𝜈 (𝑠))) 𝑑𝑊 (𝑠) ,

(8)
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(iii) 𝑋
0
(⋅) = 𝜑 ∈ BF([𝑚(0), 0],𝐻),

where

𝑆
𝛼 (𝑡) 𝑋 = ∫

∞

0

𝜂
𝛼 (𝜃) 𝑆 (𝑡

𝛼
𝜃)𝑋𝑑𝜃,

𝑇
𝛼 (𝑡) 𝑋 = 𝛼∫

∞

0

𝜃𝜂
𝛼 (𝜃) 𝑆 (𝑡

𝛼
𝜃)𝑋𝑑𝜃

(9)

with 𝜂
𝛼
a probability density function defined on (0,∞).

The following properties of 𝑆
𝛼
(𝑡) and𝑇

𝛼
(𝑡) [18] are useful.

Lemma 5. Under previous assumptions on 𝑆(𝑡), 𝑡 ≥ 0 and𝐴,

(i) 𝑆
𝛼
(𝑡) and 𝑇

𝛼
(𝑡) are strongly continuous;

(ii) for any𝑋 ∈ 𝐻, 𝛽 ∈ (0, 1) and 𝜃 ∈ (0, 1] one has

𝐴𝑇
𝛼 (𝑡) 𝑋 = 𝐴

1−𝛽
𝑇
𝛼 (𝑡) 𝐴

𝛽
𝑋,


𝐴
𝜃
𝑇
𝛼 (𝑡)


≤
𝛼𝐶
𝜃

𝑡𝛼𝜃

Γ (2 − 𝜃)

Γ (1 + 𝛼 (1 − 𝜃))
, 𝑡 ∈ [0, 𝑇] .

(10)

Definition 6. Let 𝑝 ≥ 2 be an integer. Equation (8) is said to
be stable in 𝑝th moment if for arbitrarily given 𝜖 > 0 there
exists a 𝛿 > 0 such that

𝐸(sup
𝑡≥0

|𝑋 (𝑡)|
𝑝
) < 𝜖, when 𝜑

B
< 𝛿. (11)

Definition 7. Let 𝑝 ≥ 2 be an integer. Equation (8) is said to
be asymptotically stable in 𝑝th moment if it is stable in 𝑝th
moment and, for any 𝜑 ∈ BF([𝑚(0, 0)],𝐻), it holds

lim
𝑇→∞

𝐸(sup
𝑡≥𝑇

|𝑋 (𝑡)|
𝑝
) = 0. (12)

3. Main Result

In this section, we prove the existence, uniqueness, and
stability of the solution to fractional stochastic equation (3)
by using the Banach fixed point approach.

In order to obtain the existence and stability of the
solution to (3), we impose the following assumptions on (3).

(H1) There exist constants 𝑀 ≥ 1 and 𝑎 > 0 such that
|𝑆(𝑡)| ≤ 𝑀𝑒

−𝑎𝑡.
(H2) There exists a positive constant 𝐿

1
, for every 𝑡 ≥ 0 and

𝑥, 𝑦 ∈ 𝐻, such that
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

 ≤ 𝐿
1

𝑥 − 𝑦
 ,

𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)
 ≤ 𝐿
1

𝑥 − 𝑦
 .

(13)

(H3) There exist 0 < 𝛽 < 1 such that 𝑔 is 𝐻
𝛽
-valued,

(−𝐴)
𝛽
𝑔 is continuous and there exists a positive

constant𝑀
𝑔
such that


(−𝐴)
𝛽
𝑔 (𝑡, 𝑥) − (−𝐴)

𝛽
𝑔 (𝑡, 𝑦)


≤ 𝑀
𝑔

𝑥 − 𝑦


(14)

for every 𝑡 ≥ 0 and 𝑥, 𝑦 ∈ 𝐻.

(H4) Θ = [4
(𝑝−1)

|(−𝐴)
(−𝛽)

|
𝑝

𝑀
𝑝

𝑔
+ 4
𝑝−1

𝑀
𝑝

𝑔
𝐾(𝛼, 𝛽)(𝑇

𝛼𝛽
/

𝛼𝛽)
𝑝
+ 4
𝑝−1

𝛼
𝑝
𝑀
𝑝
𝐿
𝑝

1
𝐿
𝑝
+ 4
𝑝−1

𝐶
𝑝
𝛼
𝑝
𝑀
𝑝
𝐿
𝑝

1
𝐿
(𝑝/2)

] <

1, where 𝐶
𝑃

= (𝑝(𝑝 − 1))/2
𝑝/2, 𝑀

𝑡
=

∫
𝑡

0
𝜃𝜂
𝛼
(𝜃)𝑒
−𝑎𝑡
𝛼𝜃

𝑑𝜃, 𝐿 = ∫
𝑇

0
𝑀
(𝑡−𝑠)

(𝑡 − 𝑠)
𝛼−1

𝑑𝑠 and
𝐿

= ∫
𝑇

0
[𝑀
𝑡−𝑠
(𝑡 − 𝑠)

𝛼−1
]
2

𝑑𝑠.

In addition, in order to derive the stability of the
solution, we further assume that

(H5)

𝑔 (𝑡, 0) = 0, 𝑓 (𝑡, 0) = 0, 𝜎 (𝑡, 0) = 0. (15)

It is obvious that (3) has a trivial solution when 𝜑 = 0

under the assumption (H5).

Lemma 8. Let 𝑝 ≥ 2, 𝑡 > 0 and letΦ be anL(𝐾,𝐻)-valued,
predictable process such that 𝐸∫𝑡

0
|Φ(𝑠)|

𝑝

L
𝑑𝑠 < ∞. Then,

sup
0≤𝑠≤𝑡

𝐸



∫

𝑠

0

Φ (𝑢) 𝑑𝑊 (𝑢)



𝑝

≤ (
𝑝 (𝑝 − 1)

2
)

𝑝/2

(∫

𝑡

0

(𝐸

Φ(𝑠)
𝑝

L


)
2/𝑝

)

𝑝/2

.

(16)

Theorem 9. Let 𝑝 ≥ 2 be an integer. Assume that the
conditions (H1)–(H4) hold, then the nonlinear fractional
neutral stochastic differential equation (3) is asymptotically
stable in the 𝑝th moment.

Proof. Denote by B the space of all F
0
-adapted process

𝜙(𝑡, 𝑤) : [𝑚(0), 0] × Ω → 𝑅, which is almost surely
continuous in 𝑡 for fixed𝑤 ∈ Ω and satisfies 𝜙(𝑡, 𝑤) = 𝜑(𝑡) for
𝑡 ∈ [𝑚(0), 0] and𝐸|𝜙(𝑡, 𝑤)|𝑝 → 0 as 𝑡 → 0. It is then routine
to check that B is a Banach space when it is equipped with a
norm defined by |𝜑|B = sup

𝑡≥0
𝐸|𝜑(𝑡)|

𝑝

𝐻
. Define the nonlinear

operator Ψ : B → B such that (Ψ𝑋)(𝑡) = 𝜑(𝑡), 𝑡 ∈ [𝑚(0), 0]

and, for 𝑡 ≥ 0,

(Ψ𝑋) (𝑡) = 𝑆
𝛼 (𝑡) [𝜑 (0) + 𝑔 (0, 𝜑)] − 𝑔 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡)))

− ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐴𝑇
𝛼 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

+∫

𝑡

0

(𝑡−𝑠)
𝛼−1

𝑇
𝛼 (𝑡−𝑠) 𝜎 (𝑠, 𝑋 (𝑠−𝜈 (𝑠))) 𝑑𝑊 (𝑠) .

(17)

As mentioned in Luo [20], to prove the asymptotic stability
it is enough to show that the operator Ψ has a fixed point
in 𝐻. To prove this result, we use the contraction mapping
principle. To apply the contraction mapping principle, first
we verify the mean square continuity of Ψ on [0,∞). Let
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𝑋 ∈ B, 𝑡
1
≥ 0 and let |ℎ| be sufficiently small, and observe

that

𝐸
(Ψ𝑋) (𝑡1 + ℎ) − (Ψ𝑋) (𝑡1)



𝑝

≤ 5
𝑝−1

5

∑

𝑖=1

𝐸
𝐹𝑖 (𝑡1 + ℎ) − 𝐹𝑖 (𝑡1)



𝑝
.

(18)

Note that

𝐸
𝐹1(𝑡1 + ℎ) − 𝐹1(𝑡1)



𝑝

= 𝐸
(𝑆𝛼 (𝑡1 + ℎ) − 𝑆𝛼 (𝑡1)) [𝜑 (0) − 𝑔 (0, 𝜑)]



𝑝
.

(19)

The strong continuity of 𝑆
𝛼
(𝑡) [18] implies that the right hand

of (19) goes to 0 as |ℎ| → 0. In view of Lemma 5 and the
Holder’s inequality, the third term of (18) becomes

𝐸
𝐹3 (𝑡1 + ℎ) − 𝐹3(𝑡1)



𝑝

= 𝐸



∫

𝑡1+ℎ

0

(𝑡
1
+ ℎ − 𝑠)

𝛼−1

(−𝐴) 𝑇𝛼 (𝑡1 + ℎ − 𝑠) 𝑔

× (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

− ∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

(−𝐴) 𝑇𝛼 (𝑡1 − 𝑠) 𝑔

× (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

≤ 3
𝑝−1

𝐸



∫

𝑡1+ℎ

𝑡1

(𝑡
1
+ ℎ − 𝑠)

𝛼−1

(−𝐴) 𝑇𝛼 (𝑡1 + ℎ − 𝑠) 𝑔

× (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

+ 3
𝑝−1

𝐸



∫

𝑡1

0

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

] (−𝐴) 𝑇𝛼

× (𝑡
1
+ ℎ − 𝑠) 𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

+ 3
𝑝−1

𝐸



∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

(−𝐴)

× [𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠) − 𝑇

𝛼
(𝑡
1
− 𝑠)] 𝑔

× (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

≤ 3
𝑝−1

𝐸(∫

𝑡1+ℎ

𝑡1

(𝑡
1
+ ℎ − 𝑠)

𝛼−1 
(−𝐴)
1−𝛽

𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠)



×

(−𝐴)
𝛽
𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))


𝑑𝑠)

𝑝

+ 3
𝑝−1

𝐸(∫

𝑡1

0

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

]

×

(−𝐴)
1−𝛽

𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠)



×

(−𝐴)
𝛽
𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))


𝑑𝑠)

𝑝

+ 3
𝑝−1

𝐸(∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1 

(−𝐴)
1−𝛽

×
𝑇𝛼 (𝑡1 + ℎ − 𝑠) − 𝑇𝛼 (𝑡1 − 𝑠)



×

(−𝐴)
𝛽
𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))


𝑑𝑠)

𝑝

≤ 3
𝑝−1

𝐾(𝛼, 𝛽)𝑀
𝑝

𝑔
(∫

𝑡1+ℎ

𝑡1

(𝑡
1
+ ℎ − 𝑠)

𝛼𝛽−1
𝑑𝑠)

𝑝−1

× ∫

𝑡1+ℎ

𝑡1

(𝑡
1
+ ℎ − 𝑠)

𝛼𝛽−1
𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|

𝑝
𝑑𝑠

+ 3
𝑝−1

𝐾(𝛼, 𝛽)𝑀
𝑝

𝑔

×(∫

𝑡1

0

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

(𝑡
1
+ ℎ − 𝑠)

𝛼(𝛽−1)
𝑑𝑠)

𝑝−1

× ∫

𝑡1

0

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

(𝑡
1
+ ℎ − 𝑠)

𝛼(𝛽−1)
𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|

𝑝
𝑑𝑠

+ 3
𝑝−1

𝜖
𝑝
𝑀
𝑝

𝑔


(−𝐴)
1−𝛽

𝑝

(∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

𝑑𝑠)

𝑝−1

× ∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠

≤ 3
𝑝−1

𝐾(𝛼, 𝛽)𝑀
𝑝

𝑔
(
ℎ
𝛼𝛽

𝛼𝛽
)

𝑝−1

× ∫

𝑡1+ℎ

𝑡1

(𝑡
1
+ ℎ − 𝑠)

𝛼𝛽−1
𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|

𝑝
𝑑𝑠

+ 3
𝑝−1

𝐾(𝛼, 𝛽)𝑀
𝑝

𝑔

×(∫

𝑡1

0

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

(𝑡
1
+ ℎ − 𝑠)

𝛼(𝛽−1)
𝑑𝑠)

𝑝−1

× ∫

𝑡1

0

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

(𝑡
1
+ ℎ − 𝑠)

𝛼(𝛽−1)
𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|

𝑝
𝑑𝑠

+ 3
𝑝−1

𝜖
𝑝
𝑀
𝑝

𝑔


(−𝐴)
1−𝛽

𝑝

(
𝑡
𝛼

1

𝛼
)

𝑝−1

× ∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠,

(20)
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where 𝐾(𝛼, 𝛽) = 𝛼
𝑝
Γ
𝑝

(1+𝛽)
𝐶
𝑝

1−𝛽
/Γ
𝑝

(1+𝛼𝛽)
. Since 𝜖 is sufficiently

small, the right hand side of the above equation tends to zero
as |ℎ| → 0.

Next we consider

𝐸
𝐹4 (𝑡1 + ℎ) − 𝐹4 (𝑡1)



𝑝

= 𝐸



∫

𝑡1+ℎ

0

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠)

× 𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

−∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

𝑇
𝛼
(𝑡
1
− 𝑠) 𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

≤ 3
𝑝−1

𝐸



∫

𝑡1+ℎ

𝑡1

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠)

×𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

+ 3
𝑝−1

𝐸



∫

𝑡1

0

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

]

×𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠) 𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

+ 3
𝑝−1

𝐸



∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

[𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠) − 𝑇

𝛼
(𝑡
1
− 𝑠)] 𝑓

× (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

+ 3
𝑝−1

𝐸(∫

𝑡1

0

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

]

×
𝑇𝛼 (𝑡1 + ℎ − 𝑠)



𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))
 𝑑𝑠)

𝑝

+ 3
𝑝−1

𝐸(∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1 𝑇𝛼 (𝑡1 + ℎ − 𝑠) − 𝑇𝛼 (𝑡1 − 𝑠)



×
𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))

 𝑑𝑠)

𝑝

.

(21)

By the Holder’s inequality, we obtain

≤ 3
𝑝−1

𝐿
𝑝

1
𝑀
𝑝
𝛼
𝑝
(∫

𝑡1+ℎ

𝑡1

𝑀
𝑡1+ℎ−𝑠

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
𝑑𝑠)

𝑝−1

× ∫

𝑡1+ℎ

𝑡1

𝑀
𝑡1+ℎ−𝑠

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|

𝑝
𝑑𝑠

+ 3
𝑝−1

𝐿
𝑝

1
𝑀
𝑝
𝛼
𝑝

× (∫

𝑡1

0

𝑀
𝑡1+ℎ−𝑠

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

] 𝑑𝑠)

𝑝−1

× ∫

𝑡1

0

𝑀
𝑡1+ℎ−𝑠

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

] 𝐸

× |𝑋 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠

+ 3
𝑝−1

𝜖
𝑝
𝐿
𝑝

1
(
𝑡
𝛼

1

𝛼
)

𝑝−1

× ∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠.

(22)

Therefore, the right hand side of the above equation tends to
zero as |ℎ| → 0 and 𝜖 sufficiently small. Further, we have

𝐸
𝐹5 (𝑡1 + ℎ) − 𝐹5 (𝑡1)



𝑝

= 𝐸



∫

𝑡1+ℎ

0

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠)

× 𝜎 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑊 (𝑠)

− ∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

𝑇
𝛼
(𝑡
1
− 𝑠)

×𝜎 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑊 (𝑠)



𝑝

≤ 3
𝑝−1

𝐸



∫

𝑡1+ℎ

𝑡1

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠)

×𝜎 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑊 (𝑠)



𝑝

+ 3
𝑝−1

𝐸



∫

𝑡1

0

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

]

×𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠) 𝜎 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑊 (𝑠)



𝑝

+ 3
𝑝−1

𝐸



∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

[𝑇
𝛼
(𝑡
1
+ ℎ − 𝑠) − 𝑇

𝛼
(𝑡
1
− 𝑠)]

×𝜎 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑊 (𝑠)



𝑝

≤ 3
𝑝−1

𝐶
𝑝
𝐸(∫

𝑡1+ℎ

𝑡1

(𝑡
1
+ ℎ − 𝑠)

2(𝛼−1)𝑇𝛼 (𝑡1 + ℎ − 𝑠)


2

×|𝜎 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))|
2
𝑑𝑠)

𝑝/2

+ 3
𝑝−1

𝐶
𝑝
𝐸(∫

𝑡1

0

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

]
2

×
𝑇𝛼 (𝑡1 + ℎ − 𝑠)



2

×|𝜎 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))|
2
𝑑𝑠)

𝑝/2
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+ 3
𝑝−1

𝐶
𝑝
𝐸(∫

𝑡1

0

(𝑡
1
− 𝑠)
2(𝛼−1)

×
𝑇𝛼 (𝑡1 + ℎ − 𝑠) − 𝑇𝛼 (𝑡1 − 𝑠)



2

×|𝜎 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))|
2
𝑑𝑠)

𝑝/2

≤ 3
𝑝−1

𝐶
𝑝
𝐿
𝑝

1
𝑀
𝑝
𝛼
𝑝

× (∫

𝑡1+ℎ

𝑡1

(𝑀
𝑡1+ℎ−𝑠

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
)
𝑝/(𝑝−2)

𝑑𝑠)

(𝑝−2)/2

× ∫

𝑡1+ℎ

𝑡1

(𝑀
𝑡1+ℎ−𝑠

(𝑡
1
+ ℎ − 𝑠)

𝛼−1
)
𝑝/2

× 𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠 + 3

𝑝−1
𝐶
𝑝
𝐿
𝑝

1
𝑀
𝑝
𝛼
𝑝

× (∫

𝑡1

0

(𝑀
𝑡1+ℎ−𝑠

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1

−(𝑡
1
− 𝑠)
𝛼−1

])
𝑝/(𝑝−2)

𝑑𝑠)

(𝑝−2)/2

× ∫

𝑡1

0

(𝑀
𝑡1+ℎ−𝑠

[(𝑡
1
+ ℎ − 𝑠)

𝛼−1
− (𝑡
1
− 𝑠)
𝛼−1

])
𝑝/2

× 𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠

+ 3
𝑝−1

𝜖
𝑝
𝐶
𝑝
𝐿
𝑝

1
(

𝑡
𝑝𝛼−2/𝑝−2

1

𝑝𝛼 − 2/𝑝 − 2
)

(𝑝−2)/2

× ∫

𝑡1

0

(𝑡
1
− 𝑠)
𝑝(𝛼−1)/2

𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠.

(23)

As above, the right hand side of the above inequality tends
to zero. Similarly, we have 𝐹

2
→ 0 as ℎ → 0. Thus Ψ is

continuous in 𝑝th moment on [0,∞).
Next we show that Ψ(B) ∈ B. Let 𝑋 ∈ B. From (18), we

have

𝐸|(Ψ𝑋) (𝑡)|
𝑝

≤ 6
𝑝−1

𝐸
𝑆𝛼 (𝑡) 𝜑 (0)



𝑝
+ 6
𝑝−1

𝐸
𝑆𝛼 (𝑡) 𝑔 (0, 𝜑)



𝑝

+ 6
𝑝−1

𝐸
𝑔 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡)))



𝑝

+ 6
𝑝−1

𝐸



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(−𝐴) 𝑇𝛼 (𝑡 − 𝑠)

×𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

+ 6
𝑝−1

𝐸



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

+ 6
𝑝−1

𝐸



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠)

×𝜎 (𝑠, 𝑋 (𝑠 − 𝜈 (𝑠))) 𝑑𝑊 (𝑠)



𝑝

.

(24)

Now, we estimate the terms on the right hand side of (24) by
using the assumptions (H1), (H3), and (H4). Now, we have

6
𝑝−1

𝐸
𝑆𝛼 (𝑡) 𝜑 (0)



𝑝

≤ 6
𝑝−1

𝑀
𝑝
(∫

∞

0

𝜂
𝛼 (𝜃) 𝑒

−𝛼𝑡
𝛼
𝜃
𝑑𝜃)

𝑝

𝜑


𝑝

B

→ 0 as 𝑡 → ∞,

6
𝑝−1

𝐸
𝑆𝛼 (𝑡) 𝑔 (0, 𝜑)



𝑝

≤ 6
𝑝−1

𝑀
𝑝
(∫

∞

0

𝜂
𝛼 (𝜃) 𝑒

−𝛼𝑡
𝛼
𝜃
𝑑𝜃)

𝑝

(−𝐴)
−𝛽

𝑝

𝑀
𝑝

𝑔

𝜑


𝑝

B

→ 0 as 𝑡 → ∞,

6
𝑝−1

𝐸
𝑔 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡)))



𝑝

≤ 6
𝑝−1

(−𝐴)
−𝛽

𝑝

𝑀
𝑝

𝑔
𝐸|𝑋 (𝑡 − 𝜏 (𝑡))|

𝑝
.

(25)

For 𝑋(𝑡) ∈ B and for any 𝜖 > 0 there exists a 𝑡
1
> 0 such that

𝐸|𝑋(𝑡 − 𝜏(𝑡))|
𝑝
≤ 𝜖 for 𝑡 ≥ 𝑡

1
.

Therefore,

6
𝑝−1

𝐸
𝑔 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡)))



𝑝
→ 0 as 𝑡 → ∞. (26)

For the fourth term of (24), we have

6
𝑝−1

𝐸



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(−𝐴) 𝑇𝛼 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

≤ 6
𝑝−1

𝐸(∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 

(−𝐴)
1−𝛽

𝑇
𝛼 (𝑡 − 𝑠)



×

(−𝐴)
𝛽
𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))


𝑑𝑠)

𝑝

≤ 6
𝑝−1

𝑀
𝑝

𝑔
𝐾(𝛼, 𝛽) (∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝛽−1

𝑑𝑠)

𝑝−1

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝛽−1

𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠

≤ 6
𝑝−1

𝑀
𝑝

𝑔
𝐾(𝛼, 𝛽)(

𝑇
𝛼𝛽

𝛼𝛽
)

𝑝−1

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝛽−1

𝐸|𝑋 (𝑠 − 𝜏 (𝑠))|
𝑝
𝑑𝑠 → 0 as 𝑡 → ∞.

(27)
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Also, we have

6
𝑝−1

𝐸



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠



𝑝

≤ 6
𝑝−1

𝐸(∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑇𝛼 (𝑡 − 𝑠)



×
𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))

 𝑑𝑠)

𝑝

≤ 6
𝑝−1

𝛼
𝑝
𝑀
𝑝
𝐿
𝑝

1
(∫

𝑡

0

𝑀
𝑡−𝑠(𝑡 − 𝑠)

𝛼−1
𝑑𝑠)

𝑝−1

× ∫

𝑡

0

𝑀
𝑡−𝑠(𝑡 − 𝑠)

𝛼−1
𝐸|𝑋 (𝑠 − 𝜏 (𝑠) ))|𝑝𝑑𝑠,

6
𝑝−1

𝐸



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠) 𝜎 (𝑠, 𝑋 (𝑠 − 𝜈 (𝑠))) 𝑑𝑊 (𝑠)



𝑝

≤ 6
𝑝−1

𝐶
𝑝
𝐸



∫

𝑡

0

(𝑡 − 𝑠)
2(𝛼−1)𝑇𝛼 (𝑡 − 𝑠)



2

×|𝜎 (𝑠, 𝑋 (𝑠 − 𝜈 (𝑠)))|
2
𝑑𝑠



𝑝/2

≤ 6
𝑝−1

𝐶
𝑝
𝐿
𝑝

1
𝛼
𝑝
𝑀
𝑝
(∫

𝑡

0

[𝑀
𝑡−𝑠(𝑡 − 𝑠)

𝛼−1
]
𝑝/(𝑝−2)

𝑑𝑠)

𝑝−2/𝑝

× ∫

𝑡

0

𝑀
𝑡−𝑠(𝑡 − 𝑠)

𝛼−1
𝐸|𝑋 (𝑠 − 𝜈 (𝑠))|

𝑝
𝑑𝑠.

(28)

By the same discussion as above, we have that (28) tends to
zero as 𝑡 → ∞. Thus 𝐸|Ψ𝑋(𝑡)|𝑝 → 0 as 𝑡 → ∞. We
conclude that Ψ(B) ∈ B.

Finally, we prove thatΨ has a unique fixed point. Indeed,
for any𝑋,𝑌 ∈ B, we have

sup
𝑡∈[0,𝑇]

𝐸|(Ψ𝑋) (𝑡) − (Ψ𝑌) (𝑡)|
𝑝

≤ 4
𝑝−1 sup
𝑡∈[0,𝑇]

𝐸
𝑔 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡))) − 𝑔 (𝑡, 𝑌 (𝑡 − 𝜏 (𝑡)))



𝑝

+ 4
𝑝−1 sup
𝑡∈[0,𝑇]

𝐸



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(−𝐴) 𝑇𝛼 (𝑡 − 𝑠)

× [𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))

−𝑔 (𝑠, 𝑌 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠



𝑝

+ 4
𝑝−1 sup
𝑡∈[0,𝑇]

𝐸



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))

−𝑓 (𝑠, 𝑌 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠



𝑝

+ 4
𝑝−1 sup
𝑡∈[0,𝑇]

𝐸



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼 (𝑡 − 𝑠)

× [𝜎 (𝑠, 𝑋 (𝑠 − 𝜈 (𝑠)))

−𝜎 (𝑠, 𝑌 (𝑠 − 𝜈 (𝑠)))] 𝑑𝑊 (𝑠)



𝑝

≤ 4
𝑝−1

(−𝐴)
−𝛽

𝑝

𝑀
𝑝

𝑔
sup
𝑡∈[0,𝑇]

𝐸|𝑋 (𝑡) − 𝑌 (𝑡)|
𝑝

+ 4
𝑝−1 sup
𝑡∈[0,𝑇]

𝐸(∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 

(−𝐴)
1−𝛽

𝑇
𝛼 (𝑡 − 𝑠)



×

(−𝐴)
𝛽
[𝑔 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))

−𝑔 (𝑠, 𝑌 (𝑠−𝜏 (𝑠)))]

𝑑𝑠)

𝑝

+ 4
𝑝−1 sup
𝑡∈[0,𝑇]

𝐸(∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑇𝛼 (𝑡 − 𝑠)



×
𝑓 (𝑠, 𝑋 (𝑠 − 𝜏 (𝑠)))

−𝑓 (𝑠, 𝑌 (𝑠 − 𝜏 (𝑠)))
 𝑑𝑠)

𝑝

+ 4
𝑝−1

𝐶
𝑝
sup
𝑡∈[0,𝑇]

𝐸(∫

𝑡

0

(𝑡 − 𝑠)
2(𝛼−1)𝑇𝛼 (𝑡 − 𝑠)



2

× |𝜎 (𝑠, 𝑋 (𝑠 − 𝜈 (𝑠)))

−𝜎 (𝑠, 𝑌 (𝑠 − 𝜈 (𝑠)))|
2
𝑑𝑠)

𝑝/2

≤ [4
𝑝−1

(−𝐴)
−𝛽

𝑝

𝑀
𝑝

𝑔
+ 4
𝑝−1

𝑀
𝑝

𝑔
𝐾(𝛼, 𝛽)(

𝑇
𝛼𝛽

𝛼𝛽
)

𝑝

+ 4
𝑝−1

𝛼
𝑝
𝑀
𝑝
𝐿
𝑝

1
𝐿
𝑝

+4
𝑝−1

𝐶
𝑝
𝛼
𝑝
𝑀
𝑝
𝐿
𝑝

1
𝐿
𝑝/2

] sup
𝑡∈[0,𝑇]

𝐸|𝑋 (𝑡) − 𝑌 (𝑡)|
𝑝
.

(29)

Therefore, Ψ is a contradiction mapping and hence there
exists a unique fixed point, which is a mild solution of (3)
with 𝑋(𝑠) = 𝜑(𝑠) on [𝑚(0), 0] and 𝐸|𝑋(𝑡)|

𝑝
→ 0 as

𝑡 → ∞.
To show the asymptotic stability of the mild solution of

(3), as the first step, we have to prove the stability in 𝑝th
moment. Let 𝜖 > 0 be given and choose 𝛿 > 0 such that 𝛿 < 𝜖

satisfies 6𝑝−1[𝑀𝑝+𝑀𝑝|(−𝐴)−𝛽|𝑝𝑀𝑝
𝑔
]𝛿+6
𝑝−1

[|(−𝐴)
−𝛽
|
𝑝
𝑀
𝑝

𝑔
+

𝑀
𝑝

𝑔
𝐾(𝛼, 𝛽)(𝑇

𝛼𝛽
/𝛼𝛽)
𝑝

+ 𝛼
𝑝
𝑀
𝑝
𝐿
𝑝

1
𝐿
𝑝
+ 𝐶
𝑝
𝛼
𝑝
𝑀
𝑝
𝐿
𝑝

1
𝐿
𝑝/2

]𝜖 <

𝜖.
If 𝑋(𝑡) = 𝑋(𝑡, 𝜑) is mild solution of (3), with |𝜑|𝑝

B
< 𝛿,

then (Ψ𝑋)(𝑡) = 𝑋(𝑡) satisfies 𝐸|𝑋(𝑡)|𝑝 < 𝜖 for every 𝑡 ≥ 0.
Notice that 𝐸|𝑋(𝑡)|𝑝 < 𝜖 on 𝑡 ∈ [𝑚(0), 0]. If there exists 𝑡
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such that 𝐸|𝑋(𝑡)|𝑝 = 𝜖 and 𝐸|𝑋(𝑠)|𝑝 < 𝜖 for 𝑠 ∈ [𝑚(0), 𝑡].
Then (24) show that

𝐸
𝑋 (𝑡)



𝑝

≤ 6
𝑝−1

[𝑀
𝑝
(𝜂
𝛼 (𝜃) 𝑒

−𝛼𝑡
𝛼

𝜃
)

𝑝

+𝑀
𝑝
(𝜂
𝛼 (𝜃) 𝑒

−𝛼𝑡
𝛼

𝜃
)

𝑝
(−𝐴)
−𝛽

𝑝

𝑀
𝑝

𝑔
] 𝛿

+ 6
𝑝−1

[

(−𝐴)
−𝛽

𝑝

𝑀
𝑝

𝑔
+𝑀
𝑝

𝑔
𝐾(𝛼, 𝛽)(

𝑇
𝛼𝛽

𝛼𝛽
)

𝑝

+𝛼
𝑝
𝑀
𝑝
𝐿
𝑝

1
𝐿
𝑝
+ 𝐶
𝑝
𝛼
𝑝
𝑀
𝑝
𝐿
𝑝

1
𝐿
𝑝/2

] 𝜖

< 𝜖

(30)

which contradicts the definition of 𝑡. Therefore, the mild
solution of (3) is asymptotically stable in 𝑝th moment.

In particular, when 𝑝 = 2 from Theorem 9 we have the
following.

Theorem 10. Suppose that the conditions (H1)–(H3) hold.
Then, the stochastic fractional differential equations (3)
are mean square asymptotically stable if 4𝑀2

𝑔
[|(−𝐴)

−𝛽
|
2
+

𝑉(𝛼, 𝛽)(𝑇
𝛼𝛽
/𝛼𝛽)
2

] + 4𝛼
2
𝑀
2
𝐿
2

1
[𝐿
2
+ 𝐿

] < 1, where 𝑉(𝛼, 𝛽) =

𝛼
2
Γ
2

(1+𝛽)
𝐶
2

1−𝛽
/Γ
2

(1+𝛼𝛽)
.

When 𝑔 ≡ 0, 𝑝 = 2, (3) reduces to
𝑐
𝐷
𝛼

𝑡
𝑋 (𝑡) = 𝐴𝑋 (𝑡) + 𝑓 (𝑡, 𝑋 (𝑡 − 𝜏 (𝑡)))

+ 𝜎 (𝑡, 𝑋 (𝑡 − 𝜈 (𝑡)))
𝑑𝑊 (𝑡)

𝑑𝑡
, 𝑡 ≥ 0,

𝑋
0 (⋅) = 𝜑 ∈ BF ([𝑚 (0) , 0] ,𝐻) .

(31)

From Theorems 9 and 10, we can easily get the following
result.

Corollary 11. Suppose the assumptions (H1) and (H2) hold.
Then, the stochastic equations (8) are mean square asymptoti-
cally stable if 2𝛼2𝑀2𝐿2

1
[𝐿
2
+ 𝐿

] < 1.

Example 12. Consider the following stochastic nonlinear
fractional partial differential equation with infinite delay in
the following form

𝑐
𝐷
𝛼

𝑡
[𝑢 (𝑡, 𝑦) + 𝑔(𝑡, 𝑢 (𝑡 − 𝜏, 𝑦)]

=
𝜕
2
𝑢 (𝑡, 𝑦)

𝜕𝑦2
+ 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏, 𝑦))

+ �̂� (𝑡, 𝑢 (𝑡 − 𝜏, 𝑦))
𝑑𝑊 (𝑡)

𝑑𝑡
,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0,

𝑢 (𝑡, 𝑦) = 𝜙 (𝑡, 𝑦) , 𝑦 ∈ [0, 𝜋] , 𝑡 ≤ 0,

(32)

where 𝑊(𝑡) denotes a standard cylindrical Wiener process
and a standard one-dimensional Brownian motion. To write
the system (32) into the abstract form of (3), we consider the
space𝐻 = 𝐾 = 𝐿

2
[0, 𝜋] and define the operator 𝐴 : 𝐷(𝐴) ⊂

𝐻 → 𝐻 by 𝐴𝑤 = 𝑤
 with domain

𝐷 (𝐴) = {𝑤 ∈ 𝑋; 𝑤, 𝑤
 are absolutely continuous,

𝑤

∈ 𝑋, 𝑤 (0) = 𝑤 (𝜋) = 0} ,

(33)

𝐴𝑤 =

∞

∑

𝑛=1

𝑛
2
(𝑤, 𝑤
𝑛
) 𝑤
𝑛
, 𝑤 ∈ 𝐷 (𝐴) , (34)

where𝑤
𝑛
(𝑠) = √2 sin(𝑛𝑠), 𝑛 = 1, 2, . . . is the orthogonal set of

eigenvectors in𝐴. It is well known that𝐴 generates a compact,
analytic semigroup {𝑆(𝑡), 𝑡 ≥ 0} in𝑋 and

𝑆 (𝑡) 𝑤 =

∞

∑

𝑛=1

𝑒
−𝑛
2
𝑡
(𝑤, 𝑤
𝑛
) 𝑤
𝑛
. (35)

It is well known that |𝑆(𝑡)| ≤ 𝑒
−𝜋
2
𝑡. Take 𝑝 = 2. Since𝑀 = 1,

we can get the inequality 4[|(−𝐴)−𝛽|2 + 𝑉(𝛼, 𝛽)(𝜋
𝛼𝛽
/𝛼𝛽)
2

+

𝛼
2
(𝐿
2
+ 𝐿

)] < 1. Further, if we impose suitable conditions

on 𝑔, 𝑓, and �̂� to verify assumptions of Theorem 10, then we
can conclude that the mild solution of (32) is mean square
asymptotically stable.
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