
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 842515, 17 pages
doi:10.1155/2012/842515

Research Article
Fixed Points, Maximal Elements and Equilibria of
Generalized Games in Abstract Convex Spaces

Yan-Mei Du

Department of Mathematics, Tianjin Polytechnic University, Tianjin, Hedong 300387, China

Correspondence should be addressed to Yan-Mei Du, duyanmei@tjpu.edu.cn

Received 24 October 2012; Accepted 23 November 2012

Academic Editor: Yongfu Su

Copyright q 2012 Yan-Mei Du. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We firstly prove some new fixed point theorems for set-valued mappings in noncompact abstract
convex space. Next, two existence theorems of maximal elements for class of AC,θ mapping and
AC,θ-majorized mapping are obtained. As in applications, we establish new equilibria existence
theorems for qualitative games and generalized games. Our theorems improve and generalize the
most known results in recent literature.

1. Introduction

Since Borglin and Keiding [1] proved a new existence theorem for a compact generalized
games (=abstract economy)withKF-majorized preference correspondences. Following their
ideas, many authors studied the existence of equilibria for generalized games, for example;
see Ding [2], Shen [3], Chowdhury et al. [4], Briec and Horvath [5], Ding and Wang [6], Kim
et al. [7], Kim and Tan [8], Lin et al. [9], Lin and Liu [10], Du and Deng [11], and so forth. In
the setting, convexity assumptions play a crucial role. Since Horvath [12, 13] introduced H-
space by replacing convex hulls by contract subsets, many authors have put forward abstract
convex spaces without linear structure, for example: G-convex space [14] and FC-space [15].
As a result, many authors established existence theorems of maximal elements and equilibria
of generalized games with majorized correspondences inH-space, G-convex space, and FC-
space, respectively. For example, see Hou [16], Ding [17], Ding and Xia [18], Yang and Deng
[19], Ding and Feng [20], and others.

In 2006, Park [21] introduce the concept of an abstract convex space, which is a
topological space without any convexity structure and linear structure. Moreover, abstract
convex space include topological vector spaces, H-space, G-convex space, and FC-space as
special cases (see Park [21–23]). Abstract convex space will be the framework of this paper.
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In this paper, we will introduce the new class of AC,θ mapping and AC,θ-majorized
mapping in abstract convex space. Some new fixed point theorems for set-valued mappings
are proved under very weak coercive conditions. Next, two existence theorems of maximal
elements for class ofAC,θ mapping andAC,θ-majorized mapping are obtained. As in applica-
tions, we establish new equilibria existence theorems for qualitative games and generalized
games. Our results generalized and improve the corresponding results due to Ding and Feng
[20], Ding and Wang [6], Park [22, 24], Yuan [25], Chowdhury et al. [4], Tan and Yuan [26],
Borglin-Keiding [1], Yannelis [27], and so forth.

2. Preliminaries

Let X be a nonempty subset of topological space E. We shall denote by 2X the family of all
subsets of X, by 〈X〉 the family of all nonempty finite subsets of X, by intE(X), the interior of
X in E, and by clE(X) the closure of X in E.

If Y is a topological space and T, S : X → 2Y are two mappings, for any D ⊂ X and
y ∈ Y , let S(D) = ∪x∈DS(x) and S−(y) = {x ∈ X : y ∈ S(x)}. The dom S denotes the domain of
S, that is, dom S = {x ∈ X : S(x)/= ∅}, and T∩S : X → 2Y is a mapping defined by (T∩S)(x) =
T(x) ∩ S(x) for each x ∈ X. The graph of T is the set Gr(T) = {(x, y) ∈ X × Y : y ∈ T(x)},
and the mapping T : X → 2Y is defined by T(x) = {y ∈ Y : (x, y) ∈ clX×Y (Gr(T))}. The map-
ping cl T : X → 2Y is defined by (cl T)(x) = clY (T(x)) for each x ∈ X.

A subset A of E is said to be compactly open (resp., compactly closed) in E if for each
nonempty compact subset C of E, A ∩ C is open (resp., closed) in E. Ding [28] define the
compact interior and the compact closure of A denoted by cint(A) and ccl(A) as

cint(A) =
⋃{

B ⊂ E : B ⊂ A and B is compactly open in E
}
,

ccl(A) =
⋂{

B ⊂ E : A ⊂ B and B is compactly closed in E
}
.

(2.1)

It is easy to see that for any nonempty compact subsetK of E, we have cint(A)∩K = intK(A ∩
K), ccl(A) ∩ K = clK(A ∩ K), and hence cint(A) (resp., ccl(A)) is compactly open (resp.,
compactly closed) inE. By the definitions, a subsetA ofE is compactly open (resp., compactly
closed) in E if and only if cint(A) = A (resp., ccl(A) = A).

Definition 2.1 (see [21, 22]). An abstract convex space (E,D;Γ) consists of a topological space
E, a nonempty set D, and a mapping Γ : 〈D〉 → 2E with nonempty values ΓA = Γ(A) for
each A ∈ 〈D〉.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD′ = ∪{ΓA | A ∈ 〈
D′〉} ⊂ E. (2.2)

A subset X of E is called a Γ-convex subset of (E,D;Γ) relative to D′ if for any N ∈
〈D′〉, we have ΓN ⊂ X, that is, coΓD′ ⊂ X. Then, (X,D′;Γ|〈D′〉) is called a Γ-convex subspace
of (E,D;Γ).

When D ⊂ E, the space is denoted by (E ⊃ D;Γ). In such a case, a subset X of E is said
to be Γ-convex if coΓ(X ∩ D) ⊂ X; in other words, X is Γ-convex relative to D′ = X ∩ D. If
E = D, let (E;Γ) = (E, E;Γ).
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Definition 2.2 (see [22]). Let (E,D;Γ) be an abstract convex space. If a mapping G : D → 2E

satisfies

ΓA ⊂ G(A) =
⋃

y∈A
G
(
y
) ∀A ∈ 〈D〉, (2.3)

Then, G is called a KKM mapping.

Definition 2.3 (see [22]). The partial KKM principle for an abstract convex space (E,D;Γ) is
the statement that, for any closed-valued KKM mapping G : D → 2E, the family {G(y)}y∈D
has the finite intersection property.

Definition 2.4. LetX be a topological space, and Y be a nonempty subset of an abstract convex
space (E;Γ). Let θ : X → Y be a single-valued mapping. Then, the mappings ψ, φ : X → 2Y

are said to be anAC,θ-pair if

(a) for each x ∈ X, θ(x) /∈ coΓ(φ(x)) ⊂ Y and ψ(x) ⊂ φ(x),
(b) the mapping ψ− : Y → 2X is compactly open valued on Y .

Definition 2.5. LetX be a topological space, and Y be a nonempty subset of an abstract convex
space (E;Γ). Let θ : X → Y be a single-valued mapping, and P : X → 2Y be a set-valued
mapping. Then,

(i) P is said to be of class AC,θ if there exists anAC,θ-pair such that

(a) domP ⊂ domψ,
(b) for each x ∈ X, P(x) ⊂ φ(x).

(ii) (ψx, φx;Nx) is said to be an AC,θ-majorant of P at x ∈ X ifNx is an open neighbor-
hood of x in X and the mapping φx, ψx : X → 2Y such that

(a) for each z ∈ Nx, P(z) ⊂ φx(z), θ(z) /∈ coΓ(φx(z)) and {z ∈ Nx : P(z)/= ∅} ⊂
{z ∈Nx : ψx(z)/= ∅},

(b) for each z ∈ X, ψx(z) ⊂ φx(z) and coΓ(φx(z)) ⊂ Y ,
(c) the mapping ψ−

x : Y → 2X is compactly open valued on Y .

(iii) P is said to be an AC,θ-majorized mapping if for each x ∈ X with P(x)/= ∅, there
exists an AC,θ-majorant (ψx, φx;Nx) of P at x, and for any nonempty finite subset
A ∈ 〈dom P〉, the set {z ∈ ∩x∈ANx : P(z)/= ∅} ⊂ {z ∈ ∩x∈ANx : ψx(z)/= ∅}.

Remark 2.6. We note that our notions of the mapping P being of class AC,θ (resp., AC,θ-
majorized) improve notions of mapping of class L∗

θ,F
(resp., L∗

θ,F
-majorized), respectively

introduced by Ding and Feng [20] from FC-space to abstract convex space, which in turn
generalize the corresponding notions in Ding andWang [6], Chowdhury et al. [4], Yuan [25],
Ding et al. [29], and Ding [30].

In this paper, we shall deal mainly with either the case (I) X = Y , and X is an abstract
convex space, and θ = IX , which is the identity mapping on X or the case (II) X = Πi∈IXi,
and θ = πi : X → Xi is the projection of X onto Xi and Xi is an abstract convex space. In both
cases (I) and (II), we shall writeAC in place of AC,θ.



4 Abstract and Applied Analysis

Lemma 2.7 (see, [24]). Let (E,D;Γ) be an abstract convex space and (X,D′;Γ′) be a subspace. If
(E,D;Γ) satisfies the partial KKM principle, then so does (X,D′;Γ′).

Lemma 2.8 (see, [22]). Let (E,D;Γ) be an abstract convex space satisfying the partial KKM princi-
ple, and S : D → 2E be a mapping such that:

(i) for each z ∈ X, S(z) is open,

(ii) E =
⋃
z∈M S(z) for someM ∈ 〈D〉.

then, there exists anN ∈ 〈D〉 such that ΓN ∩⋂
z∈N S(z)/= ∅.

3. Fixed Point Theorems

Theorem 3.1. Let (E,D;Γ) be an abstract convex space satisfying the partial KKM principle, and K
be a nonempty compact subset of E. Suppose that F : E → 2D, G : E → 2E be mappings such that

(i) F(x) ⊂ G(x) for each x ∈ E;
(ii) for each y ∈ D, F−(y) is compactly open in E and for each x ∈ K, F(x)/= ∅,
(iii) for each N ∈ 〈D〉, there exists a compact abstract convex subset LN of E containing N

such that

LN \K ⊂
⋃{

cint
(
G−(y

))
: y ∈ LN

}
. (3.1)

Then, there exists a point x̂ ∈ E, such that x̂ ∈ coΓ(G(x̂)).

Proof. Since for each x ∈ K, F(x)/= ∅, then K ⊂ ∪{F−(y) : y ∈ D}. By (i) and (ii), then K ⊂
{cint(G−(y)) : y ∈ D}. Since K is a nonempty compact subset of E, there exists a finite set
N ∈ 〈D〉 such that

K ⊂
⋃{

cint
(
G−(y

))
: y ∈N}

. (3.2)

By (iii), there exists a compact abstract convex subset LN of E containingN such that

LN \K ⊂
⋃{

cint
(
G−(y

))
: y ∈ LN

}
. (3.3)

By (3.2) andN ⊂ LN , then

LN ∩K ⊂
⋃{

cint
(
G−(y

))
: y ∈N} ⊂

⋃{
cint

(
G−(y

))
: y ∈ LN

}
. (3.4)

By (3.3) and (3.4), we have

LN ⊂
⋃{

cint
(
G−(y

))
: y ∈ LN

}
. (3.5)

Since LN is compact, there exists a finite set B = {z1, z2, . . . , zm} ∈ 〈LN〉, such that

LN =
m⋃

i=1

cint
(
G−(zi)

) ∩ LN =
m⋃

i=1

intLN
(
G−(zi) ∩ LN

)
. (3.6)
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Let D′ = LN ∩ D and define Γ′ : 〈D′〉 → 2LN by Γ′A = ΓA ∩ LN for each A ∈ 〈D′〉, then (LN,
D′;Γ′) is an abstract convex space. Since (E,D;Γ) satisfies the partial KKM principle, so does
(LN,D′;Γ′) by Lemma 2.7.

Define S : LN → 2LN by S(z) = cint(G−(z)) ∩ LN for each z ∈ LN . It is easy to
prove that the all the hypotheses of Lemma 2.8 are satisfied. By Lemma 2.8, there exists a
finite set M ∈ 〈LN〉 such that Γ′M ∩ ⋂

z∈M S(z)/= ∅. Let x̂ ∈ Γ′M ∩ ⋂
z∈M S(z), then for each

z ∈ M, x̂ ∈ S(z) = cint(G−(z)) ∩ LN ⊂ G−(z), that is M ⊂ G(x̂) and ΓM ⊂ coΓ(G(x̂)). Since
x̂ ∈ Γ′M = ΓM ∩ LN ⊂ ΓM, thus x̂ ∈ coΓ(G(x̂)). This completes the proof.

Remark 3.2. Theorem 3.1 generalizes Theorem 3.1 of Ding and Feng [20] and Theorem 3.1 of
Ding and Wang [6] from FC-space to abstract convex space, and the coercive condition (iii)
in Theorem 2.1 is weaker than the condition (3) in Theorem 3.1 of Ding and Wang [6].

Corollary 3.3. Let (E,D;Γ) be an abstract convex space satisfying the partial KKM principle, andK
be a nonempty compact subset of E. Suppose that F : E → 2D, G : E → 2E be mappings such that

(i) F(x) ⊂ G(x) for each x ∈ E,
(ii) for each y ∈ D, F−(y) is compactly open in E and for each x ∈ K, F(x)/= ∅,
(iii) for each N ∈ 〈D〉, there exists a compact abstract convex subset LN of E containing N

such that for each x ∈ LN \K, there exists a point y ∈ LN such that x /∈ clX[X \G−(y)].

Then, there exists a point x̂ ∈ E, such that x̂ ∈ coΓ(G(x̂)).

Proof. By (iii), for eachN ∈ 〈D〉, there exists a compact abstract convex subset LN of E con-
tainingN such that for each x ∈ LN \K, there exists y ∈ LN such that x /∈ clX[X\G−(y)], then
x ∈ (clX[X\G−(y)])c = int(G−(y)), thus x ∈ ∪{int(G−(y)) : y ∈ LN} ⊂ {cint(G−(y)) : y ∈ LN},
that is LN\K ⊂ {cint(G−(y)) : y ∈ LN}. Hence, all the hypotheses of Theorem 3.1 are satisfied.
By Theorem 3.1, there exists a point x̂ ∈ E, such that x̂ ∈ coΓ(G(x̂)). This completes the proof.

Remark 3.4. Corollary 3.3 generalizes Theorem 3.2 of Ding and Feng [20] from FC-space to
abstract convex space. Moreover, Corollary 3.3 improves the corresponding result of Park
[22, 24].

4. Existence of Maximal Elements

LetX be a topological space, and P : X → 2X be amapping. A point x̂ ∈ X is called amaximal
element of T if T(x̂) = ∅.

In the section, We firstly prove a selection theorem for AC-majorized mapping. Next,
we will establish some new existence theorems of maximal elements for class AC mapping
and AC-majorized mapping defined on noncompact abstract convex space.

Lemma 4.1. Let X be a regular topological space, and Y be a nonempty subset of an abstract convex
space (E;Γ). Let θ : X → E, and P : X → 2Y be an AC,θ-majorized mapping. If each open subset of
X containing the set B = domP is paracompact, then there exists a AC,θ-pair ψ, φ : X → 2Y such
that P(x) ⊂ φ(x) for each x ∈ X and domP ⊂ domψ.
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Proof. Since P is anAC,θ-majorized mapping, for each x ∈ B, letNx be an open neighborhood
of x in X, and ψx, φx : X → 2Y be mappings such that

(1) for each z ∈ Nx, P(z) ⊂ φx(z), θ(z) /∈ coΓ(φx(z)) and {z ∈ Nx : P(z)/= ∅} ⊂ {z ∈
Nx : ψx(z)/= ∅},

(2) for each z ∈ X, ψx(z) ⊂ φx(z) and coΓ(φx(z)) ⊂ Y ,
(3) the mapping ψ−

x : Y → 2X is compactly open valued on Y ,

(4) for each A ∈ 〈domP〉, {z ∈ ∩x∈ANx : P(z)/= ∅} ⊂ {z ∈ ∩x∈ANx : ∩x∈Aψx(z)/= ∅}.
Since X is regular, for each x ∈ B, there exists an open neighborhood Gx of x in X such

that clXGx ⊂ Nx. Let G = ∪x∈BGx, then G is an open subset of X containing B, so that G is
paracompact by assumption. By Theorem VIII.1.4 of Dugundji [31], the open covering {Gx}
of G has an open precise neighborhood finite refinement G′

x. Given any x ∈ B, we define the
mappings ψ ′

x, φ
′
x : G → 2Y by

ψ ′
x(z) =

{
ψx(z) if z ∈ G ∩ clXG′

x,

Y if z ∈ G \ clXG′
x,

φ′
x(z) =

{
φx(z) if z ∈ G ∩ clXG′

x,

Y if z ∈ G \ clXG′
x,

(4.1)

then we have

(i) by (2), for each z ∈ G, ψ ′
x(z) ⊂ φ′

x(z),

(ii) by (1), domP ⊂ domψ ′
x, and P(z) ⊂ φ′

x(z) for each z ∈ G,
(iii) for each y ∈ Y , the set

(
ψ ′
x

)−(
y
)
=
{
z ∈ G ∩ clXG′

x : y ∈ ψx(z)
} ∪ {

z ∈ G \ clXG′
x : y ∈ Y}

=
[(
G ∩ clXG′

x

) ∩ ψ−
x

(
y
)] ∪ (

G \ clXG′
x

)

=
[
G ∩ ψ−

x

(
y
)] ∪ (

G \ clXG′
x

)
.

(4.2)

It follows that for each nonempty compact subset C of X, the set

(
ψ ′
x

)−(
y
) ∩ C =

[
G ∩ ψ−

x

(
y
) ∩ C] ∪ [(

G \ clXG′
x

) ∩ C] (4.3)

is open in C by (3). Thus, the mapping (ψ ′
x)

− : Y → 2G is compactly open valued on Y . Now,
define ψ, φ : X → 2Y by

ψ(z) =

⎧
⎨

⎩
∩
x∈B

ψ ′
x(z) if z ∈ G,

∅ if z ∈ X \G,

φ(z) =

⎧
⎨

⎩
∩
x∈B

φ′
x(z) if z ∈ G,

∅ if z ∈ X \G.

(4.4)
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(a) For each z ∈ X, by (i), ψ(z) ⊂ φ(z) and coΓ(φ(z)) ⊂ Y . If z ∈ X \ G, then φ(z) = ∅,
so that θ(z) /∈ coΓ(φ(z)); if z ∈ G, then z ∈ G ∩ clXG′

x for some x ∈ B, so that
φ′
x(z) = φx(z), and hence φ(z) ⊂ φx(z), by (1), we have θ(z) /∈ coΓ(φ(z)). Therefore,
θ(z) /∈ coΓ(φ(z)) for all z ∈ X.

(b) Now, we show that the mapping ψ− : Y → 2X is compactly open valued on Y .
Indeed, let y ∈ Y be such that ψ−(y)/= ∅ and C be a nonempty compact subset of X.
Given a point u,

u ∈ ψ−(y
) ∩ C =

{
z ∈ X : y ∈ ψ(z)} ∩ C =

{
z ∈ G : y ∈ ψ(z)} ∩ C. (4.5)

Since {G′
x} is a neighborhood finite refinement, there exists an open neighborhood Mu of

u in G such that {x ∈ B : Mu ∩ G′
x /= ∅} = {x1, x2, . . . , xn}. Note that for each x ∈ B with

x /∈ {x1, x2, . . . , xn}, ∅ = Mu ∩G′
x = Mu ∩ clXG′

x, so that ψ ′
x(z) = Y for z ∈ Mu. Then, we have

ψ(z) = ∩x∈Bψ ′
x(z) = ∩ni=1ψ ′

xi(z) for all z ∈Mu. It follows that

ψ−(y
)
=
{
z ∈ X : y ∈ ψ(z)} =

{
z ∈ G : y ∈ ∩

x∈B
ψ ′
x(z)

}

⊃
{
z ∈Mu : y ∈ ∩

x∈B
ψ ′
x(z)

}

=
{
z ∈Mu : y ∈ n∩

i=1
ψ ′
xi(z)

}

= Mu ∩
{
z ∈ G : y ∈ n∩

i=1
ψ ′
xi(z)

}

= Mu ∩
[
n∩
i=1

(
ψ ′
xi

)−(
y
)]
.

(4.6)

Since (ψ ′
xi)

−(y) is compactly open in X by (iii), thenM′
u =Mu ∩ [∩ni=1(ψ ′

xi)
−(y)]∩C is an open

neighborhood of u in C such thatM′
u ⊂ ψ−(y)∩C. This shows that ψ− : Y → 2X is compactly

open valued on Y .
By (a) and (b), thus (ψ, φ) is an AC,θ-pair.
Next, we claim that dom P ⊂ dom ψ, indeed, for eachw ∈ domP , wemust havew ∈ G.

Since {G′
x} is neighborhood finite, then the set {x ∈ B : w ∈ clXG′

x} = {x′
1, x

′
2, . . . , x

′
m}. If x /∈

{x′
1, x

′
2, . . . , x

′
m},w ∈ G\clXG′

x, and ψ
′
x(w) = Y , thus we have ψ(w) = ∩x∈Bψ ′

x(w) = ∩mi=1ψ ′
x′i
(w).

Since w ∈ ∩mi=1clXG′
x′i
⊂ ∩mi=1Nx′i , by (4), ψ(w)/= ∅. Hence, domP ⊂ domψ.

Finally, we prove that P(z) ⊂ φ(z) for each z ∈ X. Indeed, let z ∈ X with P(z)/= ∅, then
z ∈ G. For each x ∈ B, if z ∈ G \ clXG′

x, then φ′
x(z) = Y , and so P(z) ⊂ φ′

x(z), and if z ∈
G ∩ clXG′

x, we have z ∈ clXG′
x ⊂ clXGx ⊂ Nx, so that by (1), P(z) ⊂ φx(z) ⊂ φ′

x(z). It follows
that P(z) ⊂ φ′

x(z) for all x ∈ B so that P(z) ⊂ ∩x∈Bφ′
x(z) = φ(z). This completes the proof.

Remark 4.2. Lemma 4.1 generalizes Lemma 4.1 of Ding and Feng [20], Lemma 5.1 of Ding
and Wang [15], Theorem 3.1 of Yuan [25], Lemma 3.1 of Chowdhury et al. [4], and Lemma
3.1 of Tan and Yuan [26].
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Theorem 4.3. Let (X;Γ) be an abstract convex space satisfying the partial KKM principle, and letK
be a nonempty compact subset of X. Suppose that the mapping P : X → 2X is of classAC and satisfy

(i) for each N ∈ 〈X〉, there exists a compact abstract convex subset LN of X containing N
such that

LN \K ⊂
⋃{

cint
(
P−(y

))
: y ∈ LN

}
. (4.7)

Then, there exists a point x̂ ∈ K such that P(x̂) = ∅.

Proof. Since P is of class AC, then there exists an AC-pair (φ, ψ) such that

(a) dom P ⊂ domψ, P(x) ⊂ φ(x) for each x ∈ X,

(b) for each x ∈ X, x /∈ coΓ(φ(x)) ⊂ X and ψ(x) ⊂ φ(x),
(c) the mapping ψ− : X → 2X is compactly open valued on X.

Suppose that for each x ∈ K, P(x)/= ∅. By (a), ψ(x)/= ∅ for each x ∈ K. By (i) and
(a), for each N ∈ 〈X〉, there exists a compact abstract convex subset LN of X containing N
such that LN \ K ⊂ ∪{cint(P−(y)) : y ∈ LN} ⊂ ∪{cint(φ−(y)) : y ∈ LN}. Therefore, ψ and φ
satisfy all the hypotheses of Theorem 3.1. By Theorem 3.1, there exists a point x ∈ K such that
x ∈ coΓ(φ(x)). Which contradicts with condition (b). Hence, there exists a point x̂ ∈ K such
that P(x̂) = ∅. This completes the proof.

Remark 4.4. Theorem 4.3 generalizes most existence theorems of maximal elements in the
literature, for example; see Theorem 4.1 of Ding and Feng [20], Theorem 3.2 of Yuan [25],
Theorem 3.1 of Chowdhury et al. [4], Theorem 3.2 of Tan and Yuan [26], Theorem 5.2 of
Ding and Wang [6], and so on.

As an application of Lemma 4.1 and Theorem 4.3, we have the following existence
theorem maximal elements.

Theorem 4.5. Let (X;Γ) be a paracompact abstract convex space satisfying the partial KKM princi-
ple, and letK be a nonempty compact subset of X. Let P : X → 2X be anAC majorized mapping and
satisfy

(i) for each N ∈ 〈X〉, there exists a compact abstract convex subset LN of X containing N
such that

LN \K ⊂
⋃{

cint
(
P−(y

))
: y ∈ LN

}
. (4.8)

Then, there exists a point x̂ ∈ K such that P(x̂) = ∅.

Proof. Suppose that P(x)/= ∅ for all x ∈ X, then domP = X is paracompact. By Lemma 4.1 P
is of classAC. Therefore, all the hypotheses of Theorem 4.3 are satisfied. By Theorem 4.3, there
exists a point x̂ ∈ K such that P(x̂) = ∅. Which is a contradiction. Thus, there exists a point
x̂ ∈ X such that P(x̂) = ∅. By the assumptions, x̂ must in K. This completes the proof.

Remark 4.6. Theorem 4.5 generalizes Theorem 5.3 of Ding and Wang [6], Theorem 3.2 of
Chowdhury et al. [4], Theorem 3.3 of Tan and Yuan [26], Corollary 1 of Borglin-Keiding [1],
and Theorem 2 of Yannelis [27].
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5. Existence of Equilibrium of Points

Let I be a (finite or infinite) set of players. For each i ∈ I, let its strategy set X and Yi (i ∈ I)
be nonempty set, and let Y =

∏
i∈IYi. Pi : X → 2Yi be the preference correspondence of i-th

player. The collection Λ = (X;Yi;Pi)i∈I will be called a qualitative game. A point x̂ ∈ X is said
to be an equilibrium of the qualitative game, if Pi(x̂) = ∅ for each i ∈ I.

A generalized game is a quintuple family Λ = (X;Yi;Ai;Bi;Pi; θi)i∈I , where X is a
nonempty set, I is a (finite or infinite) set of players such that for each i ∈ I, Yi is a nonempty
set and Y =

∏
i∈IYi. Ai, Bi : X → 2Yi , θi : X → Yi are the constraint correspondences, and

Pi : X → 2Yi is the preference correspondence. An equilibrium of the generalized game Λ is
a point x̂ ∈ X such that for each i ∈ I, θi(x̂) ∈ Bi(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅. If θi = πi : X → Xi

is the projection of X onto Xi, then our definition of an equilibrium point coincides with the
standard definition given by Chowdhury et al. [4], and if, in addition, Ai = Bi for each i ∈
I, our definition of an equilibrium point generalizes the standard definition, for example,
Borglin and Keiding [1] and Gale and Mas-Colell [32].

Lemma 5.1 (see [33]). Let {(Xi,Di;Γi)}i∈I be a family of abstract convex spaces. Let X := Πi∈IXi

be equipped with the product topology, and let D := Πi∈IDi. For each i ∈ I, let πi : D → Di be the
projection. For each A ∈ 〈D〉, define Γ(A) := Πi∈IΓi(πi(A)). Then, (X,D;Γ) is an abstract convex
space.

As an application of Theorem 4.3, we prove the following existence theorem of
equilibrium points for one person game in abstract convex space.

Theorem 5.2. Let (X;Γ) be an abstract convex space satisfying the partial KKM principle andK be a
closed and compact subset ofX, and letK = coΓK. Suppose that the mappingsA, B, andP : X → 2X

satisfy

(i) for each x ∈ X, coΓ(A(x)) ⊂ B(x) and A(x) ∩ P(x) ⊂ K,

(ii) the mapping A− : X → 2X is compactly open valued on X,

(iii) the mapping A ∩ P : X → 2X is of class AC and A(x)/= ∅ for each x ∈ K,

(iv) for each N ∈ 〈X〉, there exists a compact abstract convex subset LN of X containing N
such that

LN \K ⊂
⋃{

cint
(
(A ∩ P)−(y)) : y ∈ LN

}
. (5.1)

Then, there exists a point x̂ ∈ K such that x̂ ∈ B(x̂) and A(x̂) ∩ P(x̂) = ∅.

Proof. LetW = {x ∈ X : x /∈ B(x)}, thenW is open in X. Define Q : X → 2X by

Q(x) =

⎧
⎪⎪⎨

⎪⎪⎩

K if x ∈ X \K,
A(x) if x ∈ K ∩W,

A(x) ∩ P(x) if x ∈ K \W.

(5.2)
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By (iii), A ∩ P is of class AC, then there exist two mappings ψ, φ : X → 2X such that

(a) for each x ∈ X, A(x) ∩ P(x) ⊂ φ(x) and dom (A ∩ P) ⊂ domψ,

(b) for each x ∈ X, x /∈ coΓ(φ(x)) and ψ(x) ⊂ φ(x),
(c) the mapping ψ− : X → 2X is compactly open valued on X.

Define Ψ,Φ : X → 2X by

Ψ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

K if x ∈ X \K,
A(x) if x ∈ K ∩W,

ψ(x) if x ∈ K \W,

Φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

K if x ∈ X \K,
A(x) if x ∈ K ∩W,

φ(x) if x ∈ K \W.

(5.3)

Then, we have

(a′) for each x ∈ X, Q(x) ⊂ Φ(x) by (a) and dom Q ⊂ domΨ,

(b′) for each x ∈ X, Ψ(x) ⊂ Φ(x) by (b), if x ∈ X \ K, x /∈ K = coΓK = coΓΦ(x) and
if x ∈ K ∩W , x /∈ B(x) by (i), and x /∈ coΓ(A(x)) = coΓ(Φ(x)) and if x ∈ K \W ,
x /∈ coΓ(φ(x)) = coΓ(Φ(x)) by (b), thus x /∈ coΓ(Φ(x)) for each x ∈ X,

(c′) for each y ∈ X, then it is easy to verify that the set

Ψ−(y
)
=
{
x ∈ X : y ∈ Ψ(x)

}
= (X \K) ∪ [

A−(y
) ∩K ∩W] ∪ [

ψ−(y
) ∩ (K \W)

]
(5.4)

is compactly open in X by (ii) and (c). This shows that Q is of class AC. By the definition of
Q, condition (i) and (iv), for eachN ∈ 〈X〉, there exists a compact abstract convex subset LN
of X containingN such that

LN \K ⊂
⋃{

cint
(
(A ∩ P)−(y)) : y ∈ LN

} ⊂
⋃{

cint
(
Q−(y

))
: y ∈ LN

}
. (5.5)

Hence, all the hypotheses of Theorem 4.3 are satisfied. By Theorem 4.3, there exists a point
x̂ ∈ K such that Q(x̂) = ∅. By the definition of Q and condition (iii), x̂ ∈ K \W ⊂ K, that is,
x̂ ∈ B(x̂) and A(x̂) ∩ P(x̂) = ∅. This completes the proof.

Remark 5.3. Theorem 5.2 improves and generalizes Theorem 5.1 of Ding and Feng [20], The-
orem 6.1 of Ding and Wang [6], Theorem 4.1 of Yuan [25], Theorem 4.1 of Chowdhury et al.
[4], and Theorem 4.1 of Tan and Yuan [26].

As another application of Theorem 4.5, we can obtain the following existence of
equilibria for qualitative games.
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Theorem 5.4. Let Λ = (X;Xi;Pi)i∈I be a qualitative game, For each i ∈ I, suppose that the following
conditions are satisfied

(i) (Xi;Γi)i∈I is a family of paracompact abstract convex space such that (X;Γ) satisfies the
partial KKM principle, and K is a nonempty compact subset of X,

(ii) Pi : X → 2Xi is an AC-majorized mapping,

(iii) Wi = {x ∈ X : Pi(x)/= ∅} is open in X,

(iv) for each N ∈ 〈X〉, there exists a compact abstract convex subset LN of X containing N
such that

LN \K ⊂
⋃{

cint
(
P−
i

(
πi
(
y
)))

: y ∈ LN
}
. (5.6)

Then, Λ has an equilibrium point in K.

Proof. For each x ∈ X, let I(x) = {i ∈ I : Pi(x)/= ∅}. Define a mapping P ′
i : X → 2X by P ′

i (x) =
π−
i (Pi(x)) = Πj∈I,j /= iXi ⊗ Pi(x) for each x ∈ X, where the mapping πi : X → Xi is projection

of X onto Xi. Furthermore, define the mapping P : X → 2X by

P(x) =

⎧
⎨

⎩
∩

i∈I(x)
P ′
i (x) if I(x)/= ∅,

∅ if I(x) = ∅.
(5.7)

Then, for each x ∈ X, P(x)/= ∅ if and only if I(x)/= ∅. We will show that P is an AC-majorized
mapping. For each x ∈ X with P(x)/= ∅, let i ∈ I(x) with Pi(x)/= ∅, by (ii), and let Nx be an
open neighborhood of x in X, and ψi,x, φi,x : X → 2Xi be mappings such that

(a) for each z ∈ Nx, Pi(z) ⊂ φi,x(z), zi /∈ coΓ(φi,x(z)), and {z ∈ Nx : Pi(z)/= ∅} ⊂ {z ∈
Nx : ψi,x(z)/= ∅},

(b) for each z ∈ X, ψi,x(z) ⊂ φi,x(z) and coΓ(φi,x(z)) ⊂ Xi,

(c) the mapping ψ−
i,x : Xi → 2X is compactly open valued on Xi,

(d) for each finite subset A ∈ 〈domPi〉, {z ∈ ∩x∈ANx : Pi(z)/= ∅} ⊂ {z ∈ ∩x∈ANx :
∩x∈Aψi,x(z)/= ∅}.

By (iii), we may assume thatNx ⊂Wi, hence Pi(z)/= ∅ and i ∈ I(z) for all z ∈Nx. Now, define
two mappings ψx, φx : X → 2X by

ψx(z) = π−
i

(
ψi,x(z)

)
, φx(z) = π−

i

(
φi,x(z)

)
for each z ∈ X. (5.8)

Then, we have

(a’) for each z ∈ Nx, by (a), P(z) = ∩i∈I(z)P ′
i (z) ⊂ P ′

i (z) = π−
i (Pi(z)) ⊂ π−

i (φi,x(z)) =
φx(z) and z /∈ coΓ(φx(z)),

(b’) for each z ∈ X, ψx(z) ⊂ φx(z) by (b),

(c’) for each y ∈ X, ψ−
x (y) = {z ∈ X : y ∈ ψx(z)} = {z ∈ X : yi ∈ ψi,x(z)} = ψ−

i,x(y) is
compactly open in X by (c),
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(d’) for each finite subset A = {x1, x2, . . . , xn} ∈ 〈domP〉, put ∪{B : B ⊂ A and
∩x∈BI(x)/= ∅} = {xi1 , xi2 , . . . , xim}. For each i ∈ ∩m

k=1I(xik), then

∩
x∈A

ψx(z) = ∩
x∈A

π−
i

(
ψi,x(z)

)
= Π

j /= ik , k=1,...,n
Xj ⊗

m∩
k=1

ψi,xik (z)⊗
n

Π
k=m+1

ψik, xik (z). (5.9)

For each z ∈ ∩x∈ANx, if ∩x∈Aψx(z) = ∅, then there exists a set A1 = {xi1 , xi2 , . . . , xim} ⊂ A,
such that ∩x∈A1ψi,x(z) = ∅, by (d), Pi(z) = ∅. Thus, {z ∈ ∩x∈ANx : P(z)/= ∅} ⊂ {z ∈ ∩x∈ANx :
∩x∈Aψx(z)/= ∅}. This shows that P is an AC-majorized mapping. By P−(y) = P−

i (πi(y)) and
condition (iv), for each N ∈ 〈X〉, there exists a compact abstract convex subset LN of X
containingN such that

LN \K ⊂
⋃{

cint
(
P−
i

(
πi
(
y
)))

: y ∈ LN
}
=
⋃{

cint
(
P−(y

))
: y ∈ LN

}
. (5.10)

Hence, all the hypotheses of Theorem 4.5 are satisfied. By Theorem 4.5, there exists a point
x̂ ∈ K such that P(x̂) = ∅. This implies that I(x̂) = ∅ and therefore Pi(x̂) = ∅ for each i ∈ I,
that is, x̂ is an equilibrium point of Λ.

Remark 5.5. Theorem 5.4 improves and generalizes Theorem 5.2 of Ding and Feng [20],
Theorem 6.2 of Ding and Wang [6], Theorem 4.2 of Yuan [25], Theorem 4.2 of Chowdhury
et al. [4], and Theorem 4.2 of Tan and Yuan [26].

Applying Theorem 5.4, we prove that the following equilibria existence theorem for a
noncompact generalized games.

Theorem 5.6. Let Λ = (X;Xi;Ai;Bi;Pi, π)i∈I be a generalized game. Let K be a compact and closed
subset of X and coΓ(πi(K)) = πi(K). Suppose that for each i ∈ I,

(i) (Xi,Γi) is a paracompact abstract convex space such that (X;Γ) satisfies the partial KKM
principle,

(ii) for each x ∈ X, coΓ(Ai(x)) ⊂ Bi(x), Ai(x) ∩ Pi(x) ⊂ πi(K) and domAi = X,

(iii) for each y ∈ Xi, A−
i (y) is compactly open in X,

(iv) Wi = {x ∈ X : (Ai ∩ Pi)(x)/= ∅} is open in X,

(v) Ai ∩ Pi : X → 2Xi is an AC-majorized mapping,

(vi) for each N ∈ 〈X〉, there exists a compact abstract convex subset LN of X containing N
such that

LN \K ⊂
⋃{

cint
(
(Ai ∩ Pi)−

(
y
))

: y ∈ LN
}
. (5.11)

Then, Λ has an equilibrium point x̂ in K.
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Proof. For each i ∈ I, let Fi = {x ∈ X : xi /∈ Bi(x)}, then Fi is open in X. Define Qi : X → 2Xi

by

Qi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

πi(K) if x ∈ X \K,
(Ai ∩ Pi)(x) if x ∈ K \ Fi,
Ai(x) if x ∈ Fi ∩K.

(5.12)

We will prove that the qualitative game Λ′ = (X;Xi,Qi)i∈I satisfies all the hypotheses of
Theorem 5.4. For each i ∈ I, we have that the set

{x ∈ X : Qi(x)/= ∅} = {x ∈ X \K : πi(K)/= ∅} ∪ {x ∈ K \ Fi : (Ai ∩ Pi)(x)/= ∅}
∪ {x ∈ K ∩ Fi : Ai(x)/= ∅}
= (X \K) ∪ [(K \ Fi) ∩Wi] ∪ (Ki ∩ Fi)
= (X \K) ∪ [K ∩ (Wi ∪ Fi)]
= (X \K) ∪Wi ∪ Fi

(5.13)

is open in X and hence the condition (iii) of Theorem 5.4 is satisfied. By (v), for each x ∈ Wi,
there exist an open neighborhood Nx of x in X and two mappings ψi,x, φi,x : X → 2Xi such
that

(a) for each z ∈ Nx, (Ai ∩ Pi)(z) ⊂ φi,x(z), zi /∈ coΓ(φi,x(z)) and {z ∈ Nx : (Ai ∩
Pi)(z)/= ∅} ⊂ {z ∈Nx : ψi,x(z)/= ∅},

(b) for each z ∈ X, ψi,x(z) ⊂ φi,x(z) and coΓ(φi,x(z)) ⊂ Xi,

(c) the mapping ψ−
i,x : Xi → 2X is compactly open valued on Xi,

(d) for each nonempty finite subset A ∈ 〈dom(Ai ∩ Pi)〉,

{
z ∈ ∩

x∈A
Nx : (Ai ∩ Pi)(z)/= ∅

}
⊂
{
z ∈ ∩

x∈A
Nx : ∩

x∈A
ψi,x(z)/= ∅

}
. (5.14)

Define Ψi,x,Φi,x : X → 2Xi by

Ψi,x(z) =

⎧
⎪⎪⎨

⎪⎪⎩

πi(K) if z ∈ X \K,
ψi,x(z) if z ∈ K \ Fi,
Ai(z) if z ∈ Fi ∩K,

Φi,x(z) =

⎧
⎪⎪⎨

⎪⎪⎩

πi(K) if z ∈ X \K,
φi,x(z) if z ∈ K \ Fi,
Ai(z) if z ∈ Fi ∩K.

(5.15)
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Now for each x ∈ X with Qi(x)/= ∅, the set

Ux =

⎧
⎪⎪⎨

⎪⎪⎩

X \K if x ∈ X \K,
Nx if x ∈ K \ Fi,
Fi if x ∈ Fi ∩K

(5.16)

is open in X. Then,

(a’) for each z ∈ Ux, Qi(z) ⊂ Φi,x(z) by (a) if z ∈ X \K, zi /∈ coΓ(πi(K)) = coΓ(Φi,x(z))
and if z ∈ Nx, z /∈ coΓ(φi,x(z)) = coΓ(Φi,x(z)) by (a) if z ∈ Fi, z /∈ coΓ(Ai(z)) =
coΓ(Φi,x(z)) by (ii), that is, z /∈ coΓ(Φi,x(z)) for each z ∈ X, and {z ∈ Ux :
Qi(z)/= ∅} ⊂ {z ∈ Ux : Ψi,x(z)/= ∅} by (a),

(b’) for each z ∈ X, Ψi,x(z) ⊂ Φi,x(z) by (b) and coΓ(Ψi,x(z)) ⊂ Xi,

(c’) for each y ∈ Xi,

Ψ−
i,x

(
y
)
=
{
z ∈ X : y ∈ Ψi,x(z)

}
=
{
z ∈ X \K : y ∈ πi(K)

}

∪ {
z ∈ K \ Fi : y ∈ ψi,x(z)

} ∪ {
z ∈ K ∩ Fi : y ∈ Ai(z)

}

= (X \K) ∪
[
ψ−
i,x

(
y
) ∩ (K ∩ Fi)

]
∪ [

A−
i

(
y
) ∩K ∩ Fi

]
(5.17)

is compactly open by (c) and (iii),

(d’) for each A ∈ 〈domQi〉, put

A = [A ∩ (X \K)] ∪ [A ∩ (K \ Fi)] ∪ [A ∩K ∩ Fi] = A1 ∪A2 ∪A3. (5.18)

Case I. If A3 /= ∅, ∩x∈AUx ⊂ Fi ∩K, then

{
z ∈ ∩

x∈A
Ux : ∩x∈AΨi,x(z)/= ∅

}
=
{
z ∈ ∩

x∈A
Ux : Ai(z)/= ∅

}

=
{
z ∈ ∩

x∈A
Ux : Qi(z)/= ∅

}
.

(5.19)

Case II. If A3 = ∅, then

(1) if A1 /= ∅, A2 /= ∅, then ∩x∈AUx = (∩x∈A2Nx) ∩ (X \K) ⊂ X \K, and

{
z ∈ ∩

x∈A
Ux : ∩

x∈A
Ψi,x(z)/= ∅

}
=
{
z ∈ ∩

x∈A
Ux : πi(K)/= ∅

}

=
{
z ∈ ∩

x∈A
Ux : Qi(z)/= ∅

}
.

(5.20)
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(2) If A2 = ∅, A1 /= ∅, ∩x∈AUx = X \K, that is similar to the condition (1).

(3) If A1 = ∅, A2 /= ∅, then

{
z ∈ ∩

x∈A
Ux : ∩

x∈A
Ψi,x(z)/= ∅

}
=
{
z ∈

(
∩

x∈A2

Nx

)
∩ (X \K) : Ψi,x(z)/= ∅

}

∪
{
z ∈

(
∩

x∈A2

Nx

)
∩ (K \ Fi) : Ψi,x(z)/= ∅

}

∪
{
z ∈

(
∩

x∈A2

Nx

)
∩ (K ∩ Fi) : Ψi,x(z)/= ∅

}

=
{
z ∈

(
∩

x∈A2

Nx

)
∩ (X \K) : πi(K)/= ∅

}

∪
{
z ∈

(
∩

x∈A2

Nx

)
∩ (K \ Fi) : ∩

x∈A
ψi,x(z)/= ∅

}

∪
{
z ∈

(
∩

x∈A2

Nx

)
∩ (K ∩ Fi) : Ai(z)/= ∅

}

⊃
{
z ∈

(
∩

x∈A2

Nx

)
∩ (X \K) : πi(K)/= ∅

}

∪
{
z ∈

(
∩

x∈A2

Nx

)
∩ (K \ Fi) : (Ai ∩ Pi)(z)/= ∅

}

∪
{
z ∈

(
∩

x∈A2

Nx

)
∩ (K ∩ Fi) : Ai(z)/= ∅

}

=
{
z ∈ ∩

x∈A2

Nx : Qi(z)/= ∅
}
.

(5.21)

Thus, Qi is an AC-majorized mapping. By the definition of Q and condition (vi) for each
N ∈ 〈X〉, there exists a compact abstract convex subset LN of X containingN such that

LN \K ⊂
⋃{

cint
(
(Ai ∩ Pi)−

(
y
))

: y ∈ LN
} ⊂

⋃{
cint

(
Q−
i

(
y
))

: y ∈ LN
}
. (5.22)

Hence, all the hypotheses of Theorem 5.4 are satisfied. By Theorem 5.4, there exists a point
x̂ ∈ K such that Qi(x̂) = ∅ (i ∈ I). By the definition of Qi, x̂ ∈ K \ Fi ⊂ K, that is for all i ∈ I,
x̂i ∈ Bi(x̂), and Ai(x̂) ∩ Pi(x̂) = ∅. This completes the proof.

Remark 5.7. Theorem 5.6 generalized Theorem 5.3 of Ding and Feng [20], Theorem 6.3 of Ding
and Wang [6], Theorem 4.4 of Chowdhury et al. [4], and Theorem 4.3 of Tan and Yuan [26].
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