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This paper deals with the problem of trajectory tracking for a broad class of uncertain nonlinear
systems with multiple inputs each one subject to an unknown symmetric deadzone. On the basis
of a model of the deadzone as a combination of a linear term and a disturbance-like term, a
continuous-time recurrent neural network is directly employed in order to identify the uncertain
dynamics. By using a Lyapunov analysis, the exponential convergence of the identification
error to a bounded zone is demonstrated. Subsequently, by a proper control law, the state of
the neural network is compelled to follow a bounded reference trajectory. This control law is
designed in such a way that the singularity problem is conveniently avoided and the exponential
convergence to a bounded zone of the difference between the state of the neural identifier and
the reference trajectory can be proven. Thus, the exponential convergence of the tracking error
to a bounded zone and the boundedness of all closed-loop signals can be guaranteed. One of the
main advantages of the proposed strategy is that the controller can work satisfactorily without any
specific knowledge of an upper bound for the unmodeled dynamics and/or the disturbance term.

1. Introduction

After more than a half century of ongoing research, the adaptive control of linear and
nonlinear systems with linearly parameterized unknown constants is currently a solid area
within an automatic control theory. In order to extend these results to more general classes
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of systems, during the last twenty years, intense research has been carried out relying on the
universal approximation capability of the artificial neural networks [1–7].

An artificial neural network can be simply considered as a nonlinear generic
mathematical formula whose parameters are adjusted in order to represent the behavior of a
static or dynamic system [5]. These parameters are called weights. Generally speaking, ANN
can be classified as feedforward (static) ones, based on the back propagation technique [2], or
as recurrent (dynamic) ones [4]. In the first network type, system dynamics is approximated
by a static mapping. These networks have two major disadvantages: a slow learning rate
and a high sensitivity to training data. The second approach (recurrent ANN) incorporates
feedback into its structure. Due to this feature, recurrent neural networks can overcomemany
problems associated with static ANN, such as global extrema search, and consequently have
better approximation properties [8]. Depending on their structure, recurrent neural networks
can be classified as discrete-time ones or continuous-time ones.

Much of the first effort of research about the theory and application of the control
based on continuous-time recurrent neural networks was synthesized in [4, 6, 9, 10]. In [9],
a strategy of indirect adaptive control based on a parallel recurrent neural network was
presented. In that study, the asymptotic convergence of the average integral identification
error to a bounded zone was guaranteed. In order to prove this result, a Riccati matrix
equation was employed. Based on the neural model of the uncertain system, a local optimal-
type controller was developed. In spite of the significant contributions presented in that
study, the usage of the Riccati matrix equation can be some restrictive and certain important
questions such as the possible singularity of the control law were not considered. On the
basis of this work, the exponential convergence of the identification error to a bounded zone
could be guaranteed in [11–13]. However, the need of a Riccati matrix equation could not
be avoided. In [10], a tracking controller based on a series-parallel neural network model
was proposed. In that study, the assumptions about the uncertain system were less restrictive
than in [9], Riccati matrix equation was not necessary, and the possibility of the singularity
problem for the control law was conveniently avoided. In contrast, the control law proposed
by [10] is some complex. In spite of the importance of the aforementioned works, the case
when the presence of a deadzone degrades the performance of an automatic control system
was not taken into account.

The deadzone is a nonsmooth nonlinearity commonly found in many practical
systems such as hydraulic positioning systems [14], pneumatic servo systems [15], and DC
servo motors and so on. When the deadzone is not considered explicitly during the design
process, the performance of the control system could be degraded due to an increase of the
steady-state error, the presence of limit cycles, or inclusive instability [16–19]. A direct way
of compensating the deleterious effect of the deadzone is by calculating its inverse. However,
this is not an easy question because in many practical situations, both the parameters and
the output of the deadzone are unknown. To overcome this problem, in a pioneer work [16],
Tao and Kokotović proposed to employ an adaptive inverse of the deadzone. This scheme
was applied to linear systems in a transfer function form. Cho and Bai [20] extended this
work and achieved a perfect asymptotic adaptive cancellation of the deadzone. However,
their work assumed that the deadzone output was measurable. In [21], the work of Tao
and Kokotović was extended to linear systems in a state space form with nonmeasurable
deadzone output. In [22], a new smooth parameterization of the deadzone was proposed
and a class of SISO systems with completely known nonlinear functions and with linearly
parameterized unknown constants was controlled by using backstepping technique. In order
to avoid the construction of the adaptive inverse, in [23], the same class of nonlinear systems
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as in [22] was controlled by means of a robust adaptive approach and by modeling the
deadzone as a combination of a linear term and a disturbance-like term. The controller design
in [23] was based on the assumption that maximum and minimum values for the deadzone
parameters are a priori known. However, a specific procedure to find such bounds was not
provided. Based on the universal approximation property of the neural networks, a wider
class of SISO systems in Brunovsky canonical form with completely unknown nonlinear
functions and unknown constant control gain was considered in [24–26]. Apparently, the
generalization of these results to the case when the control gain is varying, state dependent
is trivial. Nevertheless, the solution to this problem is not so simple due to the singularity
possibility for the control law. In [27, 28], this problem was overcome satisfactorily.

All the aforementioned works about deadzone studied a very particular class of
systems, that is, systems in strict Brunovsky canonical form with a unique input. In this
paper, by combining, in an original way, the design strategies from [9, 10, 23], we can handle
a broad class of uncertain nonlinear systems with multiple inputs each one subject to an
unknown symmetric deadzone. On the basis of a model of the deadzone as a combination
of a linear term and a disturbance-like term, a continuous-time recurrent neural network is
directly employed in order to identify the uncertain dynamics. By using a Lyapunov analysis,
the exponential convergence of the identification error to a bounded zone is demonstrated.
Subsequently, by a proper control law, the state of the neural network is compelled to follow
a bounded reference trajectory. This control law is designed in such a way that the singularity
problem is conveniently avoided as in [10] and the exponential convergence to a bounded
zone of the difference between the state of the neural identifier and the reference trajectory
can be proven. Thus, the exponential convergence of the tracking error to a bounded zone
and the boundedness of all closed-loop signals can be guaranteed. This is the first time, up
to the best of our knowledge, that recurrent neural networks are utilized in the context of
uncertain system control with deadzone.

2. Preliminaries

In this study, the system to be controlled consists of an unknown multi-input nonlinear plant
with unknown deadzones in the following form:

Plant: ẋ(t) = f(x(t)) + g(x(t))u(t) + ξ(t), (2.1)

Deadzone: ui(t) = DZi(vi(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

mi(vi(t) − bi,r) vi(t) ≥ bi,r ,

0 bi,l < vi(t) < bi,r ,

mi(vi(t) − bi,l) vi(t) ≤ bi,l,

(2.2)

where x(t) ∈ �n is the measurable state vector for t ∈ �+ := {t : t ≥ 0}, f : �n → �n

is an unknown but continuous nonlinear vector function, g : �n → �n×q is an unknown
but continuous nonlinear matrix function, ξ(t) ∈ �n represents an unknown but bounded
deterministic disturbance, the ith element of the vector u(t) ∈ �q, that is, ui(t), represents the
output of the ith deadzone, vi(t) is the input to the ith deadzone, bi,r and bi,l represent the
right and left constant breakpoints of the ith deadzone, andmi is the constant slope of the ith
deadzone. In accordance with [16, 17], the deadzone model (2.2) is a static simplification of
diverse physical phenomena with negligible fast dynamics. Note that v(t) ∈ �q is the actual
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control input to the global system described by (2.1) and (2.2). Hereafter it is considered that
the following assumptions are valid.

Assumption 2.1. The plant described by (2.1) is controllable.

Assumption 2.2. The ith deadzone output, that is, ui(t) is not available for measurement.

Assumption 2.3. Although the ith deadzone parameters bi,r , bi,l, and mi are unknown
constants, we can assure that bi,r > 0, bi,l < 0, and mi > 0 for all i ∈ {1, 2, . . . q}.

2.1. Statement of the Problem

The objective that we are trying to achieve is to determine a control signal v(t) such that
the state x(t) follows a given bounded reference trajectory xr(t), and, at the same time, all
closed-loop signals stay bounded.

Assumption 2.4. Without the loss of generality, we consider that xr(t) is generated by the
following exosystem:

ẋr(t) = B(xr(t)), (2.3)

where B : �n → �n is an unknown but continuous nonlinear vector function.

2.2. Deadzone Representation as a Linear Term and a Disturbance-Like Term

The deadzone model (2.2) can alternatively be described as [23, 29]:

ui(t) = mivi(t) + di(t), (2.4)

where di(t) is given by

di(t) =

⎧
⎪⎪⎨

⎪⎪⎩

−mibi,r , vi(t) ≥ bi,r ,

−mivi(t), bi,l < vi(t) < bi,r ,

−mibi,l, vi(t) ≤ bi,l.

(2.5)

Note that (2.5) is the negative of a saturation function. Thus, although di(t) could not be
exactly known, its boundedness can be assured. Consider that the positive constant di is an
upper bound for di(t), that is, |di(t)| ≤ di.

Based on (2.4), the relationship between u(t) and v(t) can be expressed as

u(t) = Mv(t) + d(t), (2.6)

where M := diag(m1, m2, . . . mq) and d(t) ∈ Rq is given by d(t) := [d1(t), d2(t), . . . , dq(t)]
T .

Clearly, d(t) ∈ L∞. Consider that the positive constant d is an upper bound for d(t).
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3. Neural Identifier

In this section, the identification problem of the unknown global dynamics described by (2.1)
and (2.2) using a recurrent neural network is considered.

Note that an alternative representation for (2.1) is given by

ẋ(t) = Ax(t) +W∗
1σ(x(t)) +W∗

2φ(x(t))u(t) +ω(x(t), u(t)) + ξ(t), (3.1)

where A ∈ �n×n is a Hurwitz matrix, W∗
1 ∈ �n×m and W∗

2 ∈ �n×r are unknown constant
weight matrices, and σ(·) is the activation vector function with sigmoidal components, that
is, σ(·) := [σ1(·), . . . , σm(·)]	

σj(x(t)) :=
aσj

1 + exp
(−∑n

i=1 cσj,ixi(t)
) − dσj for j = 1, . . . , m, (3.2)

where aσj , cσj,i, and dσj are positive constants which can be specified by the designer, φ(·) :
�n → �r×q is a sigmoidal function, that is,

φij(x(t)) :=
aφij

1 + exp
(−∑n

l=1 cφij,lxl(t)
) − dφij for i = 1, . . . , r, j = 1, . . . , q, (3.3)

where aφij , cφij,l, and dφij are positive constants which can be specified by the designer, and
ω : �n×�q → �n is the unmodeled dynamics which can be defined simply asω(x(t), u(t)) :=
f(x(t)) + g(x(t))u(t) −Ax(t) −W∗

1σ(x(t)) −W∗
2φ(x(t))u(t).

Assumption 3.1. On a compact set Ω ⊂ �n, unmodeled dynamics ω(x(t), u(t)) is bounded by
ω, that is, |ω(x(t), u(t))| ≤ ω. The disturbance ξ(t) is also bounded, that is, |ξ(t)| ≤ Υ. Both ω
and Υ are positive constants not necessarily a priori known.

By substituting (2.6) into (3.1), we get

ẋ(t) = Ax(t) +W∗
1σ(x(t)) +W∗

2φ(x(t))Mv(t) +W∗
2φ(x(t))d(t) +ω(x(t), u(t)) + ξ(t). (3.4)

Remark 3.2. It can be observed that by using the model (2.6), the actual control input v(t)
appears now directly into the dynamics.

Since, by construction, φ(x(t)) is bounded, the term W∗
2φ(x(t))d(t) is also bounded.

Let us define the following expression: ζ(t) := W∗
2φ(x(t))d(t)+ω(x(t), u(t))+ξ(t). Clearly, this

expression is bounded. Let us denote an upper bound for ζ(t) as ζ. This bound is a positive
constant not necessarily a priori known. Now, note that the term W∗

2φ(x(t))Mv(t) can be
alternatively expressed as S∗φ(x(t))v(t), where S∗ ∈ �n×r is an unknown weight matrix. In
view of the above, (3.4) can be rewritten as

ẋ(t) = Ax(t) +W∗
1σ(x(t)) + S∗φ(x(t))v(t) + ζ(t). (3.5)
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Now, consider the following series-parallel structure for a continuous-time recurrent neural
network

˙̂x(t) = Ax̂(t) +W1(t)σ(x(t)) + S(t)φ(x(t))v(t), (3.6)

where x̂t ∈ �n is the state of the neural network, v(t) ∈ �q is the control input, and
W1(t) ∈ �n×m and S(t) ∈ �n×r are the time-varying weight matrices. The problem of
identifying system (2.1)-(2.2) based on the recurrent neural network (3.6) consists of, given
the measurable state x(t) and the input v(t), adjusting online the weights W1(t) and S(t) by
proper learning laws such that the identification error Δ(t) := x̂(t) − x(t) can be reduced.
Specifically, the following learning laws are here used:

·
W1(t) = −k1Δ(t)σT (x(t)) − �1W1(t), (3.7)

·
S (t) = −k2Δ(t)vT (t)φT (x(t)) − �2S(t), (3.8)

where k1, �1, k2, and �2 are positive constants selectable by the designer.
Based on the learning laws (3.7) and (3.8), the following result is here established.

Theorem 3.3. If the Assumptions 2.2, 2.3, and 3.1 are satisfied, the constant a is selected greater than
0.5, and the weight matricesW1(t), S(t) of the neural network (3.6) are adjusted by the learning laws
(3.7) and (3.8), respectively, then

(a) the identification error and the weights of the neural network (3.6) are bounded:

Δ(t),W1(t), S(t) ∈ L∞, (3.9)

(b) the norm of the identification error, that is, |x̂(t) − x(t)| converges exponentially fast to a
zone bounded by the term

√

2β
α
, (3.10)

where α := min{(2a − 1), �1, �2}, β := (1/2)ζ
2
+ (�1/2k1) tr{W∗T

1 W∗
1} + (�2/2k2)

tr{S∗TS∗}.

Proof of Theorem 3.3. First, let us determine the dynamics of the identification error. The first
derivative of Δ(t) is simply

Δ̇(t) = ˙̂x(t) − ẋ(t). (3.11)
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Substituting (3.6) and (3.5) into (3.11) yields

Δ̇t = Ax̂(t) +W1(t)σ(x(t)) + S(t)φ(x(t))v(t) −Ax(t) −W∗
1σ(x(t))

− S∗φ(x(t))v(t) − ζ(t)

= AΔ(t) + W̃1(t)σ(x(t)) + S̃(t)φ(x(t))v(t) − ζ(t),

(3.12)

where W̃1(t) := W1(t) −W∗
1 and S̃(t) := S(t) − S∗.

Consider the following Lyapunov function candidate

V (t) =
1
2
ΔT (t)Δ(t) +

1
2k1

tr
{
W̃T

1 (t)W̃1(t)
}
+

1
2k2

tr
{
S̃T (t)S̃(t)

}
. (3.13)

The first derivative of V (t) is

V̇ (t) = ΔT (t)Δ̇(t) +
1
k1

tr
{

˙̃W
T

1 (t)W̃1(t)
}

+
1
k2

tr
{
˙̃S
T
(t)S̃(t)

}

. (3.14)

Substituting (3.12) into (3.14) and taking into account that, for simplicity, A can be selected
asA = −aI, where a is a positive constant greater than 0.5 and I ∈ �n×n is the identity matrix,
yields

V̇ (t) = −a|Δ(t)|2 + ΔT (t)W̃1(t)σ(x(t)) + ΔT (t)S̃(t)φ(x(t))v(t) −ΔT (t)ζ(t)

+
1
k1

tr
{

˙̃W
T

1 (t)W̃1(t)
}

+
1
k2

tr
{
˙̃S
T
(t)S̃(t)

}

.
(3.15)

Since W̃1(t) := W1(t) − W∗
1 and S̃(t) := S(t) − S∗, the first derivatives for ˙̃W1(t) and

˙̃S(t) are

clearly ˙̃W1(t) = Ẇ1(t) and
˙̃S(t) = Ṡ(t), respectively. However, Ẇ1(t) and Ṡ(t) are given by the

learning laws (3.7) and (3.8). Therefore, by substituting (3.7) into ˙̃W1(t) = Ẇ1(t) and (3.8)
into ˙̃S(t) = Ṡ(t) and the corresponding expressions into the right-hand side of (3.15), it is
possible to obtain

V̇ (t) = −a|Δ(t)|2 + ΔT (t)W̃1(t)σ(x(t)) + ΔT (t)S̃(t)φ(x(t))v(t) −ΔT (t)ζ(t)

+ tr
{
−σ(x(t))ΔT (t)W̃1(t)

}
− �1
k1

tr
{
WT

1 (t)W̃1(t)
}
+ tr

{
−φ(x(t))v(t)ΔT (t)S̃(t)

}

− �2
k2

tr
{
ST (t)S̃(t)

}
.

(3.16)
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We can see that

tr
{
−σ(x(t))ΔT (t)W̃1(t)

}
= − tr

{
σ(x(t))ΔT (t)W̃1(t)

}
= − tr

{
ΔT (t)W̃1(t)σ(x(t))

}

= −ΔT (t)W̃1(t)σ(x(t)),

tr
{
−φ(x(t))v(t)ΔT (t)S̃(t)

}
= − tr

{
φ(x(t))v(t)ΔT (t)S̃(t)

}
= − tr

{
ΔT (t)S̃(t)φ(x(t))v(t)

}

= −ΔT (t)S̃(t)φ(x(t))v(t).
(3.17)

Substituting (3.17) into (3.16) and reducing the like terms yields

V̇ (t) = −a|Δ(t)|2 −ΔT (t)ζ(t) − �1
k1

tr
{
WT

1 (t)W̃1(t)
}
− �2
k2

tr
{
ST (t)S̃(t)

}
. (3.18)

Now, it can be proven that [10]

tr
{
WT

1 (t)W̃1(t)
}
=

1
2
tr
{
WT

1 (t)W1(t)
}
+
1
2
tr
{
W̃T

1 (t)W̃1(t)
}
− 1
2
tr
{
W∗T

1 W∗
1

}
,

tr
{
ST (t)S̃(t)

}
=

1
2
tr
{
ST (t)S(t)

}
+
1
2
tr
{
S̃T (t)S̃(t)

}
− 1
2
tr
{
S∗TS∗

}
.

(3.19)

Likewise, it is easy to show that

−ΔT (t)ζ(t) ≤ 1
2
|Δ(t)|2 + 1

2
|ζ(t)|2 ≤ 1

2
|Δ(t)|2 + 1

2
ζ
2
. (3.20)

If (3.19) and the inequality (3.20) are substituted into (3.18), we obtain

·
V (t) ≤ −a|Δ(t)|2 + 1

2
|Δ(t)|2 + 1

2
ζ
2 − �1

2k1
tr
{
WT

1 (t)W1(t)
}
− �1
2k1

tr
{
W̃T

1 (t)W̃1(t)
}

+
�1
2k1

tr
{
W∗T

1 W∗
1

}
− �2
2k2

tr
{
ST (t)S(t)

}
− �2
2k2

tr
{
S̃T (t)S̃(t)

}
+

�2
2k2

tr
{
S∗TS∗

}
(3.21)

or

V̇ (t) ≤ −(2a − 1)
{
1
2
|Δ(t)|2

}

− �1

(
1
2k1

tr
{
W̃T

1 (t)W̃1(t)
})

− �2

(
1
2k2

tr
{
S̃T (t)S̃(t)

})

+
1
2
ζ
2
+

�1
2k1

tr
{
W∗T

1 W∗
1

}
+

�2
2k2

tr
{
S∗TS∗

}
.

(3.22)

In view of α := min{(2a − 1), �1, �2}, β := (1/2)ζ
2
+ (�1/2k1) tr{W∗T

1 W∗
1} + (�2/2k2) tr{S∗TS∗},

the following bound as a function of V (t) can finally be determined for V̇ (t),

V̇ (t) ≤ −αV (t) + β. (3.23)
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Equation (3.23) can be rewritten in the following form

V̇ (t) + αV (t) ≤ β. (3.24)

Multiplying both sides of the last inequality by exp(αt), it is possible to obtain

exp(αt)V̇ (t) + α exp(αt)V (t) ≤ β exp(αt). (3.25)

The left-hand side of (3.25) can be rewritten as

d

dt

(
exp(αt)V (t)

) ≤ β exp(αt) (3.26)

or equivalently as

d
(
exp(αt)V (t)

) ≤ β exp(αt)dt. (3.27)

Integrating both sides of the last inequality from 0 to t yields

exp(αt)V (t) − V (0) ≤
∫ t

0
β exp(ατ)dτ. (3.28)

Adding V (0) to both sides of the last inequality, we obtain

exp(αt)V (t) ≤ V (0) +
∫ t

0
β exp(ατ)dτ. (3.29)

Multiplying both sides of the inequality (3.29) by exp(−αt) yields

V (t) ≤ exp(−αt)V (0) + exp(−αt)
∫ t

0
β exp(ατ)dτ (3.30)

and, consequently

V (t) ≤ V (0) exp(−αt) + β

α

(
1 − exp(−αt)). (3.31)

As by definition α and β are positive constants, the right-hand side of the last inequality can
be bounded by V (0)+(β/α). Thus, V (t) ∈ L∞ and since by construction V (t) is a nonnegative
function, the boundedness ofΔ(t), W̃1(t), and S̃(t) can be guaranteed. BecauseW∗

1 and S∗ are
bounded, W1(t) = W̃1(t) +W∗

1 , and S(t) = S̃(t) + S∗ must be bounded too and the first part of
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Theorem 3.3 has been proven. With respect to the second part of this theorem, from (3.13), it
is evident that (1/2)|Δ(t)|2 ≤ V (t). Taking into account this fact and from (3.31), we get

|Δ(t)| ≤
√

2V (0) exp(−αt) + 2β
α

(
1 − exp(−αt)). (3.32)

By taking the limit as t → ∞ of the inequality (3.32), we can guarantee that |Δ(t)| converges
exponentially fast to a zone bounded by the term

√
2β/α and the last part of Theorem 3.3 has

been proven.

Remark 3.4. It is very important to mention that the identification process based on
Theorem 3.3 can be accomplished without the a priori knowledge about W∗

1 , S
∗, and ζ.

4. Controller Design

In this section, a proper control law v(t) in order to solve the tracking problem is determined.
Note that the dynamics of the exosystem (2.3) can be alternatively represented as

ẋr(t) = Axr(t) +W∗
r σr(xr(t)) +ωr(xr(t)), (4.1)

where A ∈ �n×n is the same Hurwitz matrix as in (3.6), W∗
r ∈ �n×mr is an unknown constant

weight matrix, σr(·) is an activation vector function with sigmoidal components, that is,
σr(·) := [σr1(·), . . . , σrmr (·)]	

σrj(x(t)) :=
aσrj

1 + exp
(−∑n

i=1 cσrj,ixi(t)
) − dσrj for j = 1, . . . , mr, (4.2)

where aσrj , cσrj,i, and dσrj are positive constants which can be specified by the designer, and
ωr : �n → �n is an error term which can be defined simply as

ωr(x(t)) := B(xr(t)) −Axr(t) −W∗
r σr(xr(t)). (4.3)

Assumption 4.1. On a compact setΩ ⊂ �n, the error termωr(xr(t)) is bounded by the positive
constant not necessarily a priori known ωr , that is, |ωr(xr(t))| ≤ ωr .

Let us define the virtual tracking error e(t) as

e(t) := x̂(t) − xr(t). (4.4)

The first derivative of (4.4) is simply

ė(t) = ˙̂x(t) − ẋr(t). (4.5)
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Substituting (3.6) and (4.1) into (4.5) yields

ė(t) = Ax̂(t) +W1(t)σ(x(t)) + S(t)φ(x(t))v(t) −Axr(t) −W∗
r σr(xr(t)) −ωr(xr(t)). (4.6)

By adding and subtracting the termWr(t)σr(xr(t)) into (4.6), we obtain

ė(t) = Ae(t) +W1(t)σ(x(t)) + S(t)φ(x(t))v(t) + W̃r(t)σr(xr(t))

−Wr(t)σr(xr(t)) −ωr(xr(t)),
(4.7)

where W̃r(t) := Wr(t) −W∗
r .

Consider the following Lyapunov function candidate:

V2(t) =
1
2
γeT (t)e(t) +

1
2
tr
{
W̃T

r (t)W̃r(t)
}
, (4.8)

where γ is a positive constant. The first derivative of V2(t) is

·
V 2(t) = γeT (t)ė(t) + tr

{
˙̃W
T

r (t)W̃r(t)
}

. (4.9)

Substituting (4.7) into (4.9) and taking into account that A was selected in Section 3 as A =
−aI yields

V̇2(t) = −γa|e(t)|2 + γeT (t)W1(t)σ(x(t)) + γeT (t)S(t)φ(x(t))v(t) + γeT (t)W̃r(t)σr(xr(t))

− γeT (t)Wr(t)σr(xr(t)) − γeT (t)ωr(xr(t)) + tr
{

˙̃W
T

r (t)W̃r(t)
}

.

(4.10)

If the learning law for Wr(t) is selected as

Ẇr(t) = −γe(t)σT
r (xr(t)) − �rWr(t), (4.11)

where �r is a positive constant and the control law v(t) is chosen as

v(t) =
1
λr

φT (x(t))ST (t)Wr(t)σr(xr(t))

1 + ‖S(t)‖2∥∥φ(x(t))∥∥2
− ke(t), (4.12)
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where λr and k are positive constants and taking into account that ˙̃Wr(t) = Ẇr(t) then, (4.10)
becomes

V̇2(t) = −γa|e(t)|2 + γeT (t)W1(t)σ(x(t)) +
γ

λr

eT (t)S(t)φ(x(t))φT (x(t))ST (t)Wr(t)σr(xr(t))

1 + ‖S(t)‖2∥∥φT (x(t))
∥
∥2

− γkeT (t)S(t)φ(x(t))e(t) + γeT (t)W̃r(t)σr(xr(t)) − γeT (t)Wr(t)σr(xr(t))

− γeT (t)ωr(xr(t)) − γ tr
{
σr(xr(t))eT(t)W̃r(t)

}
− �r tr

{
WT

r (t)W̃r(t)
}
.

(4.13)

It can be proven that

tr
{
σr(xr(t))eT (t)W̃r(t)

}
= tr

{
eT(t)W̃r(t)σr(xr(t))

}
= eT (t)W̃r(t)σr(xr(t)),

tr
{
WT

r (t)W̃r(t)
}
=

1
2
tr
{
WT

r (t)Wr(t)
}
+
1
2
tr
{
W̃T

r (t)W̃r(t)
}
− 1
2
tr
{
W∗T

r W∗
r

}
.

(4.14)

By substituting (4.14) into (4.13) and reducing the like terms, we obtain

V̇2(t) = −γa|e(t)|2 + γeT (t)W1(t)σ(x(t)) +
γ

λr

eT (t)S(t)φ(x(t))φT (x(t))ST (t)Wr(t)σr(xr(t))

1 + ‖S(t)‖2∥∥φT (x(t))
∥
∥2

− γkeT (t)S(t)φ(x(t))e(t) − γeT (t)Wr(t)σr(xr(t)) − γeT (t)ωr(xr(t))

− �r
2
tr
{
WT

r (t)Wr(t)
}
− �r

2
tr
{
W̃T

r (t)W̃r(t)
}
+
�r
2
tr
{
W∗T

r W∗
r

}
.

(4.15)

Taking into account that ±yTz ≤ |y| |z| for y ∈ �n, z ∈ �n and ‖Y‖2 = tr{YTY} for Y ∈ �L1×L2 ,
(4.15) becomes

V̇2(t) ≤ −γa|e(t)|2 + γ |e(t)| ‖W1(t)‖ |σ(x(t))| +
γ

λr

|e(t)| ‖S(t)‖2∥∥φ(x(t))∥∥2‖Wr(t)‖ |σr(xr(t))|
1 + ‖S(t)‖2∥∥φT (x(t))

∥
∥2

+ γk|e(t)|2‖S(t)‖∥∥φ(x(t))∥∥ + γ |e(t)| ‖Wr(t)‖ |σr(xr(t))|

+ γ |e(t)| |ωr(xr(t))| − �r
2
‖Wr(t)‖2 − �r

2

∥
∥
∥W̃r(t)

∥
∥
∥
2
+
�r
2
‖W∗

r ‖2.
(4.16)

Note that

‖S(t)‖2∥∥φ(x(t))∥∥2

1 + ‖S(t)‖2∥∥φT (x(t))
∥
∥2

≤ 1. (4.17)
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On the other hand, by construction, σ(x(t)) and σr(xr(t)) are bounded. Consider that s1
and sr are the corresponding upper bounds, that is, |σ(x(t))| ≤ s1 and |σr(xr(t))| ≤ sr
(both s1 and sr can be calculated). Likewise, by construction, φ(x(t)) is bounded and S(t)
is bounded from Theorem 3.3. Consider that μ is an upper bound for ‖S(t)‖ ‖φ(x(t))‖, that is,
‖S(t)‖ ‖φ(x(t))‖ ≤ μ. In view of the above and selecting a > μk and

γ
(
a − μk

)
= γ1 + γ2, (4.18)

where γ1 > 0.5 and γ2 are two positive constants, we can obtain

V̇2(t) ≤ −γ1|e(t)|2 − γ2|e(t)|2 + γ |e(t)| ‖W1(t)‖s1 +
γ

λr
|e(t)| ‖Wr(t)‖sr + γ |e(t)| ‖Wr(t)‖sr

+ γ |e(t)| |ωr(xr(t))| − �r
2
‖Wr(t)‖2 − �r

2

∥
∥
∥W̃r(t)

∥
∥
∥
2
+
�r
2
‖W∗

r ‖2
(4.19)

or

V̇2(t) ≤ −γ1|e(t)|2 − γ2|e(t)|2 + γsr

(

1 +
1
λr

)

|e(t)| ‖Wr(t)‖ − �r
2
‖Wr(t)‖2

+ γ |e(t)|{‖W1(t)‖s1 + |ωr(xr(t))|} − �r
2

∥
∥
∥W̃r(t)

∥
∥
∥
2
+
�r
2
‖W∗

r ‖2.
(4.20)

Now, in accordance with Theorem 3.3, W1(t) ∈ L∞. Based on this fact together with the
Assumption 4.1, the boundedness of the term ‖W1(t)‖s1 + |ωr(xr(t))| can be concluded.
Consider that the unknown positive constant ε is an upper bound for that term, that is,
‖W1(t)‖s1 + |ωr(xr(t))| ≤ ε. Thus, it is easy to show that

γ |e(t)|{‖W1(t)‖s1 + |ωr(xr(t))|} ≤ γ |e(t)|ε ≤ 1
2
|e(t)|2 + 1

2
γ2ε2. (4.21)

On the other hand, if the constants �r and λr are selected in such a way that

�r >
γ2s2r
2γ2

,

λr ≥
γsr

√
2γ2�r − γsr

(4.22)

then the following can be established

γsr

(

1 +
1
λr

)

≤
√

2γ2�r. (4.23)
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Based on (4.23), it can be proven that

−γ2|e(t)|2 + γsr

(

1 +
1
λr

)

|e(t)| ‖Wr(t)‖ − �r
2
‖Wr(t)‖2 ≤ −

⎛

⎝
√
γ2|e(t)| −

√

�r
2
‖Wr(t)‖

⎞

⎠

2

≤ 0.

(4.24)

Substituting (4.21) and (4.24) into (4.20) yields

V̇2(t) ≤ −γ1|e(t)|2 + 1
2
|e(t)|2 − �r

2

∥
∥
∥W̃r(t)

∥
∥
∥
2
+
1
2
γ2ε2 +

�r
2
‖W∗

r ‖2. (4.25)

Defining αr := min{(2γ1 − 1)/γ, �r}, βr := (1/2)γ2ε2 + (�r/2)‖W∗
r ‖2, (4.25) becomes

V̇2(t) ≤ −αrV2(t) + βr. (4.26)

This means that

V2(t) ≤ V2(0) exp(−αrt) +
βr
αr

(
1 − exp(−αrt)

)
. (4.27)

As by definition αr and βr are positive constants, the right-hand side of the last inequality is
bounded by V (0) + (βr/αr). Next, V2(t) ∈ L∞ and consequently e(t), W̃r(t), and Wr(t) ∈ L∞.

As by hypothesis xr(t) ∈ L∞, the boundedness of e(t) guarantees the boundedness
of x̂(t). Remember that Theorem 3.3 guarantees that Δ(t) ∈ L∞. By the definition of Δ(t),
that is, Δ(t) = x̂(t) − x(t) and considering that x̂(t) ∈ L∞, the boundedness of x(t) can be
concluded. From (4.12), we can see that the control law v(t) is selected in such a way that
the denominator is never equal to zero although ‖S(t)‖ = 0 and/or ‖φ(x(t))‖ = 0. Besides,
we can verify that v(t) is formed by bounded elements. Next, the control input v(t) must be
bounded too. On the other hand, note that the following is true:

1
2
γ |e(t)|2 ≤ V2(t). (4.28)

Taking into account (4.28) and from (4.27), we get

|e(t)| ≤
√

2
γ
V2(0) exp(−αrt) +

2βr
γαr

(
1 − exp(−αrt)

)
. (4.29)

Now, the ultimate objective is to achieve that the state x(t) of the unknown system (2.1)-
(2.2) follows the reference trajectory xr(t). Thus, we need to know if the actual tracking error
x(t) − xr(t) converges or not to a some value. Note that

|x(t) − xr(t)| = |x(t) − x̂(t) + x̂(t) − xr(t)| ≤ |x̂(t) − x(t)| + |x̂(t) − xr(t)| = |Δ(t)| + |e(t)|.
(4.30)
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Clearly, |x(t) − xr(t)| ∈ L∞. Finally, by substituting (3.32) and (4.29) into (4.30), we have

|x(t) − xr(t)| ≤
√

2V (0) exp(−αt) + 2β
α

(
1 − exp(−αt))

+

√
2
γ
V2(0) exp(−αrt) +

2βr
γαr

(
1 − exp(−αrt)

)
.

(4.31)

By taking the limit as t → ∞ of the last inequality, we can guarantee that |x(t) − xr(t)|
converges exponentially fast to a zone bounded by the term

√
2β/α +

√
2βr/γαr . Thus, the

following theorem has been proven

Theorem 4.2. Given the Assumptions 2.1–4.1, if the control law (4.12) is used together with the
learning laws (3.8) and (4.11) then it can be guaranteed that

(a) the weight matrixWr(t), the virtual tracking error, the actual tracking error, the state of the
neural network, the system state, and the control input are bounded:

Wr(t), e(t), x(t) − xr(t), x̂(t), x(t), v(t) ∈ L∞, (4.32)

(b) the actual tracking error |x(t) − xr(t)| converges exponentially to a zone bounded by the
term

√

2β
α

+

√
2βr
γαr

, (4.33)

where α and β are defined as in Theorem 3.3 and αr := min{(2γ1 − 1)/γ, �r}, βr :=
(1/2)γ2ε2 + (�r/2)‖W∗

r ‖2.

5. Numerical Example

In this section, a simple but illustrative simulation example is presented in order to show the
feasibility of the suggested approach. Consider the first order nonlinear system given by

ẋ(t) = −x(t) sin(x(t)) +
(
0.2 + co s2(x(t))

)
u(t) + ξ(t). (5.1)

The initial condition for system (5.1) is x(0) = 1; u(t) is the deadzone output; the parameters
of the deadzone are m = 1.6, br = 2.5, and bl = −2; ξ(t), the disturbance term is selected as
ξ(t) = 0.5 sin(13t). The following reference trajectory is employed yr(t) = sin(t) − 1.5 sin(2t).
The parameters for the neural identifier and the control law are selected by trial and error as
x̂(0) = 0, a = 2000, k1 = 500000, l1 = 1, W1(0) = 0, k2 = 200, l2 = 50, S(0) = 0.5, σ(x(t)) =
φ(x(t)) = 2/(1+exp(−x(t)))−1, γ = 300, lr = 31,Wr(0) = −1, σr(xr(t)) = 2/(1+exp(−xr(t)))−1,
γ1 = 1, γ2 = 1499, sr = 1, μ = 8, k = 249.375, and λr = 62. The simulation is carried out bymeans
of Simulink with ode45 method, relative tolerance equal to 1e − 7, and absolute tolerance
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Figure 1: Tracking process: reference trajectory: solid line; system output: dashed line.
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Figure 2: Control signal v(t).

equal to 1e − 9. The results of the tracking process are presented in Figures 1–3 for the first
20 seconds. In Figure 1, the output of the nonlinear system (5.1), x(t), is represented by a
dashed line whereas the reference trajectory xr(t) is represented by a solid line. In Figure 2,
the control signal v(t) acting as the input of the deadzone is shown. In Figure 3, a zoom
of Figure 2 is presented. From Figure 3, we can appreciate that the control law v(t) avoids
properly the deadzone.

6. Conclusions

In this paper, an adaptive scheme based on a continuous-time recurrent neural network is
proposed in order to handle the tracking problem for a broad class of nonlinear systems
with multiple inputs each one subject to an unknown symmetric deadzone. The need of
an inverse adaptive commonly required in many previous works is conveniently avoided
by considering the deadzone as a combination of a linear term and a disturbance-like
term. Thus, the identification of the unknown dynamics together with the deadzone can
be carried out directly by using a recurrent neural network. The exponential convergence
of the identification error norm to a bounded zone is thoroughly proven by a Lyapunov
analysis. Subsequently, the state of the neural network is compelled to follow a reference
trajectory by using a control law designed in such a way that the singularity problem is
conveniently avoided without the need of any projection strategy. By another Lyapunov
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Figure 3: Zoom of Figure 2.

analysis, the exponential convergence of the difference between the neural network state and
the reference trajectory is demonstrated. As the tracking error is bounded by the identification
error and the difference between the neural network state and the reference trajectory, the
exponential convergence of the tracking error to a bounded zone is also proven. Besides, the
boundedness of the system state, the neural network state, the weights, and the control signal
can be guaranteed. The proposed control scheme presents two important advantages:

(i) the specific knowledge of a bound for the unmodeled dynamics and/or the
disturbance term is not necessary,

(ii) the determination of the first derivative for the reference trajectory is not required.
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[13] J. H. Pérez-Cruz, A. Y. Alanis, J. J. Rubio, and J. Pacheco, “System identification using multilayer
differential neural networks: a new result,” Journal of Applied Mathematics, vol. 2012, Article ID 529176,
20 pages, 2012.
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