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Recently, Dere and Simsek (2012) have studied the applications of umbral algebra to some special
functions. In this paper, we investigate some properties of umbral calculus associated with p-adic
invariant integrals on Zp. From our properties, we can also derive some interesting identities of
Bernoulli polynomials.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Zp,Qp, and Cp denote the ring of p-
adic integers, the field of p-adic rational numbers, and the completion of algebraic closure of
Qp, respectively.

Let N ∪ {0}. Let UD(Zp) be space of uniformly differentiable functions on Zp. For
f ∈ UD(Zp), the p-adic invariant integral on Zp is defined by

∫
Zp

f(x)dμ(x) = lim
N→∞

1
pN

pN−1∑
x=0

f(x), (1.1)

see [1, 2].
From (1.1), we have

∫
Zp

f(x + n)dμ(x) −
∫
Zp

f(x)dμ(x) =
n∑
l=0

f ′(l), n ∈ N, (1.2)
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where f ′(l) = (df(x)/dx)|x=l (see [1–6]). Let F be the set of all formal power series in the
variable t over Cp with

F =

{
f(t) =

∞∑
k=0

ak

k!
tk | ak ∈ Cp

}
. (1.3)

Let P = Cp[x] and let P
∗ denote the vector space of all linear functional on P.

The formal power series,

f(t) =
∞∑
k=0

ak

k!
tk ∈ F, (1.4)

defines a linear functional on P by setting

〈
f(t) | xn〉 = an, ∀n ≥ 0, (1.5)

see [7, 8].
In particular, by (1.4) and (1.5), we get

〈
tk | xn

〉
= n!δn,k, (1.6)

where δn,k is the Kronecker symbol (see [7]). Here, F denotes both the algebra of formal
power series in t and the vector space of all linear functional on P, so an element f(t) of Fwill
be thought of as both a formal power series and a linear functional. We shall call F the umbral
algebra. The umbral calculus is the study of umbral algebra.

The order o(f(t)) of power series f(t)(/= 0) is the smallest integer k for which ak does
not vanish. We define o(f(t)) = ∞ if f(t) = 0. From the definition of order, we note that
o(f(t)g(t)) = o(f(t)) + o(g(t)) and o(f(t) + g(t)) ≥ min{o(f(t)), o(g(t))}.

The series f(t) has a multiplicative inverse, denoted by f(t)−1 or 1/f(t), if and only if
o(f(t)) = 0.

Such a series is called invertible series. A series f(t) for which o(f(t)) = 1 is called a
delta series (see [7, 8]). Let f(t), g(t) ∈ F. Then, we have

〈
f(t)g(t) | p(x)〉 = 〈

f(t) | g(t)p(x)〉 = 〈
g(t) | f(t)p(x)〉. (1.7)

By (1.5) and (1.6), we get

〈
eyt | xn〉 = yn,

〈
eyt | p(x)〉 = p

(
y
)
, (1.8)

see [7].
Notice that for all f(t) in F,

f(t) =
∞∑
k=0

〈
f(t) | xk

〉
k!

tk, (1.9)
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and for all polynomials p(x),

p(x) =
∑
k≥0

〈
tk | p(x)〉

k!
xk, (1.10)

see [7, 8].
Let f1(t), f2(t), . . . , fm(t) ∈ F. Then, we have

〈
f1(t)f2(t) · · · fm(t) | xn〉 = ∑(

n
i1, . . . , im

)〈
f1(t) | xi1

〉
· · ·

〈
fm(t) | xim

〉
, (1.11)

where the sum is over all nonnegative integers i1, i2, . . . , im such that i1 + · · · + im = n (see [8]).
By (1.10), we get

p(k)(x) =
dkp(x)
dxk

=
n∑
l=k

〈
tl | p(x)〉

l!
l(l − 1) · · · (l − k + 1)xl−k. (1.12)

Thus, from (1.12), we have

p(k)(0) =
〈
tk | p(x)

〉
=
〈
1 | p(k)(x)

〉
, (1.13)

see [7].
By (1.13), we get

tkp(x) = p(k)(x) =
dk

(
p(x)

)
dxk

. (1.14)

Thus, by (1.14), we see that

eytp(x) = p
(
x + y

)
. (1.15)

Let us assume that sn(x) is a polynomial of degree n. Suppose that f(t), g(t) ∈ F with
o(f(t)) = 1 and o(g(t)) = 0. Then, there exists a unique sequence sn(x) of polynomials
satisfying 〈g(t)f(t)k | sn(x)〉 = n!δn,k for all n, k ≥ 0.

The sequence sn(x) is called the Sheffer sequence for (g(t), f(t)), which is denoted by
sn(x) ∼ (g(t), f(t)).

The Sheffer sequence for (g(t), t) is called the Appell sequence for g(t), or sn(x) is
Appell for g(t), which is indicated by sn(x) ∼ (g(t), t).
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For p(x) ∈ P, it is known that

〈
f(t) | xp(x)〉 = 〈

∂tf(t) | p(x)
〉
=
〈
f ′(t) | p(x)〉,

〈
eyt − 1 | p(x)〉 = p

(
y
) − p(0),

(1.16)

see [7, 8].
Let sn(x) ∼ (g(t), f(t)). Then, we have

h(t) =
∞∑
k=0

〈h(t) | sk(x)〉
k!

g(t)f(t)k, h(t) ∈ F, (1.17)

p(x) =
∞∑
k=0

〈
g(t)f(t)k | p(x)

〉
k!

sk(x), p(x) ∈ P, (1.18)

1

g
(
f(t)

)eyf(t) = ∞∑
k=0

sk
(
y
)

k!
tk, for any y ∈ Cp, (1.19)

where f(t) is the compositional inverse of f(t), and

f(t)sn(x) = nsn−1(x), (1.20)

see [7, 8].
We recall that the Bernoulli polynomials are defined by the generating function to be

t

et − 1
ext = eB(x)t =

∞∑
n=0

Bn(x)
tn

n!
, (1.21)

with the usual convention about replacing Bn(x) by Bn(x) (see [1–16]).
In the special case, x = 0, Bn(0) = Bn are called the nth Bernoulli numbers. By (1.21),

we easily get

Bn(x) = (B + x)n =
n∑
l=0

(
n
l

)
Blx

n−l =
n∑
l=0

(
n
l

)
Bn−lxl. (1.22)

Thus, by (1.22), we see that Bn(x) is a monic polynomial of degree n. It is easy to show that

B0 = 1, Bn(1) − Bn = δ1,n, (1.23)

see [13–15].
From (1.2), we can derive the following equation:

∫
Zp

f(x + 1)dμ(x) −
∫
Zp

f(x)dμ(x) = f ′(0). (1.24)
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Let us take f(x) = etx ∈ UD(Zp). Then, from (1.21), (1.22), (1.23), and (1.24), we have

∫
Zp

xndμ(x) = Bn,

∫
Zp

(
x + y

)n
dμ

(
y
)
= Bn(x), (1.25)

where n ≥ 0 (see [1, 2]). Recently, Dere and simsek have studied applications of umbral
algebra to some special functions (see [7]). In this paper, we investigate some properties of
umbral calculus associated with p-adic invariant integrals on Zp. From our properties, we can
derive some interesting identities of Bernoulli polynomials.

2. Applications of Umbral Calculus Associated with p-Adic
Invariant Integrals on Zp

Let sn(x) be an Appell sequence for g(t). By (1.19), we get

1
g(t)

xn = sn(x), iff xn = g(t)sn(x). (2.1)

Let us take g(t) = ((et − 1)/t) ∈ F. Then, g(t) is clearly invertible series. From (1.21) and (2.1),
we have

∞∑
k=0

Bk(x)
k!

tk =
1

g(t)
ext. (2.2)

Thus, by (2.2), we get

1
g(t)

xn = Bn(x), tBn(x) = B′
n(x) = nBn−1(x), (n ≥ 0). (2.3)

From (1.21), (2.1), and (2.3), we note that Bn(x) is an Appell sequence for g(t) = (et − 1)/t.
Let us take the derivative with respect to t on both sides of (2.2). Then, we have

∞∑
k=1

Bk(x)
k!

ktk−1 =
xg(t)ext − extg ′(t)

g(t)2

=
∞∑
k=0

{
x

xk

g(t)
− xk

g(t)
g ′(t)
g(t)

}
tk

k!
.

(2.4)

Thus, by (2.4), we get

Bk+1(x) = x
xk

g(t)
− xk

g(t)
g ′(t)
g(t)

=
(
x − g ′(t)

g(t)

)
Bk(x), (2.5)
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where k ≥ 0.

∫
Zp

e(x+y+1)tdμ
(
y
) −

∫
Zp

e(x+y)tdμ
(
y
)
= text. (2.6)

Thus, by (2.6), we get

∫
Zp

(
x + y + 1

)n
dμ

(
y
) −

∫
Zp

(
x + y

)n
μ
(
y
)
= nxn−1, (n ≥ 0). (2.7)

From (1.25) and (2.7), we have

Bn(x + 1) − Bn(x) = nxn−1, (n ≥ 0). (2.8)

By (2.5), we see that

g(t)Bk+1(x) = g(t)xBk(x) − g ′(t)Bk(x), (2.9)

Thus, by (2.9), we have

(
et − 1

)
Bk+1(x) =

(
et − 1

)
xBk(x) −

(
et − g(t)

)
Bk(x), (k ≥ 0), (2.10)

and we can derive the following equation.
From (2.3) and (2.10),

Bk+1(x + 1) − Bk+1(x) = (x + 1)Bk(x + 1) − xBk(x) − Bk(x + 1) + xk, (k ≥ 0). (2.11)

By (2.8) and (2.11), we see that

Bk+1(x + 1) = Bk+1(x) + (k + 1)xk. (2.12)

Therefore, by (2.5), we obtain the following theorem.

Theorem 2.1. For k ∈ Z+, one has

Bk+1(x) =
(
x − g ′(t)

g(t)

)
Bk, (2.13)

where g ′(t) = dg(t)/dt.

Corollary 2.2. For ≥ 0, one has

Bk+1(x + 1) = Bk+1(x) + (k + 1)xk. (2.14)
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Let us consider the linear functional f(t) that satisfies

〈
f(t) | p(x)〉 =

∫
Zp

p(u)dμ(u), (2.15)

for all polynomials p(x). It can be determined from (1.9) that

f(t) =
∞∑
k=0

〈
f(t) | xk

〉
k!

tk =
∞∑
k=0

∫
Zp

ukdμ(u)
tk

k!

=
∫
Zp

eutdμ(u).

(2.16)

By (1.24) and (2.16), we get

f(t) =
∫
Zp

eutdμ(u) =
t

et − 1
. (2.17)

Therefore, by (2.17), we obtain the following theorem.

Theorem 2.3. For p(x) ∈ P, one has

〈∫
Zp

eutdμ(u) | p(x)
〉

=
∫
Zp

p(u)dμ(u). (2.18)

That is

〈
t

et − 1
| p(x)

〉
=
∫
Zp

p(u)dμ(u). (2.19)

In particular, one has

Bn =

〈∫
Zp

eutdμ(u) | xn

〉
. (2.20)

From (1.24), one has

∑
n=0

∫
Zp

(
x + y

)n
dμ

(
y
) tn
n!

=
∫
Zp

e(x+y)tdμ
(
y
)

=
∞∑
n=0

∫
Zp

eytdμ
(
y
)
xn t

n

n!
.

(2.21)
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By (1.25) and (2.21), we get

Bn(x) =
∫
Zp

(
x + y

)n
dμ

(
y
)
=
∫
Zp

eytdμ
(
y
)
xn, (2.22)

where n ≥ 0.
Therefore, by (2.22), we obtain the following theorem.

Theorem 2.4. For p(x) ∈ P, we have

∫
Zp

p
(
x + y

)
dμ

(
y
)
=
∫
Zp

eytdμ
(
y
)
p(x)

=
t

et − 1
p(x).

(2.23)

In particular, one obtains

Bn(x) =
∫
Zp

(
x + y

)n
dμ

(
y
)
=
∫
Zp

eytdμ
(
y
)
xn

=
t

et − 1
xn.

(2.24)

The higher order Bernoulli polynomials B(r)
n (x) are defined by

∫
Zp

· · ·
∫
Zp

e(x1+x2+···+xr+x)tdμ(x1) · · ·dμ(xr) =
(

t

et − 1

)r

ext

=
∞∑
n=0

B
(r)
n (x)

tn

n!
.

(2.25)

In the special case, x = 0, B(r)
n (0) = B

(r)
n are called the nth Bernoulli numbers of order r (∈ N).

From (2.25), we note that

∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr)ndμ(x1) · · ·dμ(xr)

=
∑

i1+···+ir=n

(
n

i1, . . . , ir

)∫
Zp

xi1
1 dμ(x1)

∫
Zp

xi2
2 dμ(x2) · · ·

∫
Zp

xir
r dμ(xr)

=
∑

i1+···+ir=n

(
n

i1, . . . , ir

)
Bi1 · · ·Bir = B

(r)
n .

(2.26)
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By (2.25) and (2.26), we get

B
(r)
n (x) =

n∑
l=0

(
n
l

)
B
(r)
n−lx

l. (2.27)

From (2.26) and (2.27), we note that B
(r)
n (x) is a monic polynomial of degree n with

coefficients in Q. For r ∈ N, let us assume that

g(r)(t) =

(∫
Zp

· · ·
∫
Zp

e(x1+···+xr)tdμ(x1) · · ·dμ(xr)

)−1
=
(
et − 1

t

)r

. (2.28)

By (2.28), we easily see that g(r)(t) is an invertible series. From (2.25) and (2.28), we have

ext

g(r)(t)
=
∫
Zp

· · ·
∫
Zp

e(x1+···+xr+x)tdμ(x1) · · ·dμ(xr)

=
∞∑
n=0

B
(r)
n (x)

tn

n!
,

tB
(r)
n (x) = nB

(r)
n−1(x).

(2.29)

From (2.29), we note that B(r)
n is an Appell sequence for g(r)(t). Therefore, by (2.29), we obtain

the following theorem.

Theorem 2.5. For p(x) ∈ P and r ∈ N, one has

∫
Zp

· · ·
∫
Zp

p(x1 + · · · + xr + x)dμ(x1) · · ·dμ(xr) =
(

t

et − 1

)r

p(x). (2.30)

In particular, the Bernoulli polynomials of order r are given by

B
(r)
n (x) =

(
t

et − 1

)r

xn =
∫
Zp

· · ·
∫
Zp

e(x1+···+xr)tdμ(x1) · · ·dμ(xr)xn. (2.31)

That is

B
(r)
n (x) ∼

((
et − 1

t

)r

, t

)
. (2.32)

Let us consider the linear functional f (r)(t) that satisfies

〈
f (r)(t) | p(x)

〉
=
∫
Zp

· · ·
∫
Zp

p(x1 + · · · + xr)dμ(x1) · · ·dμ(xr), (2.33)
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for all polynomials p(x). It can be determined from (1.9) that

f (r)(t) =
∞∑
k=0

〈
f (r)(t) | xk

〉
k!

tk

=
∞∑
k=0

∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr)kdμ(x1) · · ·dμ(xr)
tk

k!

=
∫
Zp

· · ·
∫
Zp

e(x1+···+xr)tdμ(x1) · · ·dμ(xr)

=
(

t

et − 1

)r

.

(2.34)

Therefore, by (2.34), we obtain the following theorem.

Theorem 2.6. For p(x) ∈ P, one has
〈∫

Zp

· · ·
∫
Zp

e(x1+···+xr)tdμ(x1) · · ·dμ(xr) | p(x)
〉

=
∫
Zp

· · ·
∫
Zp

p(x1 + · · · + xr)dμ(x1) · · ·dμ(xr).

(2.35)

That is 〈(
t

et − 1

)r

| p(x)
〉

=
∫
Zp

· · ·
∫
Zp

p(x1 + · · · + xr)dμ(x1) · · ·dμ(xr). (2.36)

In particular, one gets

B
(r)
n =

〈∫
Zp

· · ·
∫
Zp

e(x1+···+xr)tdμ(x1) · · ·dμ(xr) | xn

〉
. (2.37)

Remark 2.7. From (1.11), we note that
〈∫

Zp

· · ·
∫
Zp

e(x1+···+xr)tdμ(x1) · · ·dμ(xr) | xn

〉

=
∑

n=i1+···+ir

(
n

i1, . . . , ir

)〈∫
Zp

ex1tdμ(x1) | xi1

〉
· · ·

〈∫
Zp

exr tdμ(xr) | xir

〉
.

(2.38)

By Theorems 2.3 and 2.6 and (2.38), we get

B
(r)
n =

∑
n=i1+···+ir

(
n

i1, . . . , ir

)
Bi1 · · ·Bir . (2.39)

Let sn(x) be the Sheffer sequence for (g(t), f(t)).
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Then the Sheffer identity is given by

sn
(
x + y

)
=

n∑
k=0

(
n
k

)
pk
(
y
)
sn−k(x), (2.40)

see [7, 8], where pk(y) = g(t)sk(y). From Theorem 2.5 and (2.40), we have

B
(r)
n

(
x + y

)
=

n∑
k=0

(
n
k

)
B
(r)
n−k(x)x

k. (2.41)
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