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Correspondence should be addressed to Rabia Aktaş, raktas@science.ankara.edu.tr
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We give a Kantorovich variant of a generalization of Szasz operators defined by means of
the Brenke-type polynomials and obtain convergence properties of these operators by using
Korovkin’s theorem.We also present the order of convergencewith the help of a classical approach,
the second modulus of continuity, and Peetre’s K-functional. Furthermore, an example of Kan-
torovich type of the operators including Gould-Hopper polynomials is presented and Voronov-
skaya-type result is given for these operators including Gould-Hopper polynomials.

1. Introduction

The Szasz operators (also called Szasz-Mirakyan operators) which are defined by [1]

Sn

(
f ;x
)
:= e−nx

∞∑

k=0

(nx)k

k!
f

(
k

n

)
, (1.1)

where n ∈ N, x ≥ 0, and f ∈ C[0,∞) have an important role in the approximation theory, and
their approximation properties have been investigated by many researchers.

In [2], Jakimovski and Leviatan proposed a generalization of Szasz operators bymeans
of the Appell polynomials pk(x)which have the generating functions of the form:

g(t)etx =
∞∑

k=0

pk(x)tk, (1.2)
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where g(z) =
∑∞

k=0 akz
k(a0 /= 0) is an analytic function in the disc |z| < R, (R > 1) and g(1)/= 0.

Under the assumption that pk(x) ≥ 0 for x ∈ [0,∞), Jakimovski and Leviatan [2], defined the
following linear positive operators:

Pn

(
f ;x
)
:=

e−nx

g(1)

∞∑

k=0

pk(nx)f
(
k

n

)
. (1.3)

After that, Ismail [3] defined another generalization of Szasz operators involving the
operators (1.1) and (1.3) by means of Sheffer polynomials. Let A(z) =

∑∞
k=0 akz

k(a0 /= 0) and
H(z) =

∑∞
k=1 hkz

k(h1 /= 0) be analytic functions in the disc |z| < R, (R > 1). Here, ak and hk

are real. The Sheffer polynomials pk(x) are generated by

A(t)exH(t) =
∞∑

k=0

pk(x)tk. (1.4)

With the help of these polynomials, Ismail constructed the following linear positive operators:

Tn
(
f ;x
)
:=

e−nxH(1)

A(1)

∞∑

k=0

pk(nx)f
(
k

n

)
, n ∈ N (1.5)

under the assumptions

(i) for x ∈ [0,∞), pk(x) ≥ 0,

(ii) A(1)/= 0 and H ′(1) = 1.

Later, Varma et al. [4] defined another generalization of Szasz operators by means of
the Brenke-type polynomials. Suppose that

A(t) =
∞∑

r=0

art
r , a0 /= 0, B(t) =

∞∑

r=0

brt
r , br /= 0 (r ≥ 0) (1.6)

are analytic functions. The Brenke-type polynomials [5] have generating functions of the form

A(t)B(xt) =
∞∑

k=0

pk(x)tk (1.7)

from which the explicit form of pk(x) is as follows:

pk(x) =
k∑

r=0

ak−rbrxr , k = 0, 1, 2, . . . . (1.8)
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Under the assumptions

(i) A(1)/= 0,
ak−rbr
A(1)

≥ 0, 0 ≤ r ≤ k, k = 0, 1, 2, . . . ,

(ii) B : [0,∞) −→ (0,∞),

(iii) (1.6) and (1.7) converge for |t| < R, (R > 1),

(1.9)

Varma et al. introduced the linear positive operators Ln(f ;x) via

Ln

(
f ;x
)
:=

1
A(1)B(nx)

∞∑

k=0

pk(nx)f
(
k

n

)
, (1.10)

where x ≥ 0 and n ∈ N.
The aim of this paper is to present a Kantorovich type of the operators given by (1.10)

and to give their some approximation properties. We consider the Kantorovich version of the
operators (1.10) under the assumptions (1.9) as follows:

Kn

(
f ;x
)
:=

n

A(1)B(nx)

∞∑

k=0

pk(nx)
∫ (k+1)/n

k/n

f(t)dt, (1.11)

where n ∈ N, x ≥ 0, and f ∈ C[0,∞). It is easy to see that Kn defined by (1.11) is linear and
positive.

In the case of B(t) = et andA(t) = 1, with the help of (1.7), it follows that pk(x) = xk/k!,
so the operators (1.11) reduce to the Szasz-Mirakyan-Kantorovich operators defined by [6]

Kn

(
f ;x
)
:= ne−nx

∞∑

k=0

(nx)k

k!

∫ (k+1)/n

k/n

f(t)dt. (1.12)

Various approximation properties of the Szasz-Mirakyan-Kantorovich operators and their
iterates may be found in [7–13].

The case of B(t) = et gives the Kantorovich version of the operators (1.3).
The structure of the paper is as follows. In Section 2, the convergence of the operators

(1.11) is given by means of Korovkin’s theorem. The order of approximation is obtained with
the help of a classical approach, the second modulus of continuity, and Peetre’sK-functional
in Section 3. Finally, as an example, we present a Kantorovich type of the operators including
Gould-Hopper polynomials and thenwe give a Voronovskaya-type theorem for the operators
including Gould-Hopper polynomials.

2. Approximation Properties of Kn Operators

In this section, we give our main theorem with the help of Korovkin theorem. We begin with
the following lemma which is necessary to prove the main result.
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Lemma 2.1. For all x ∈ [0,∞), the operators Kn defined by (1.11) verify

Kn(1;x) = 1, (2.1)

Kn(s;x) =
B′(nx)
B(nx)

x +
2A′(1) +A(1)

2nA(1)
, (2.2)

Kn

(
s2;x

)
=

B′′(nx)
B(nx)

x2 +
2B′(nx)[A′(1) +A(1)]

nA(1)B(nx)
x +

1
n2A(1)

{
A′′(1) + 2A′(1) +

A(1)
3

}
.

(2.3)

Proof. Using the generating function of the Brenke-typepolynomials given by (1.7), we can
write

∞∑

k=0

pk(nx) = A(1)B(nx),

∞∑

k=0

kpk(nx) = A′(1)B(nx) + nxA(1)B′(nx),

∞∑

k=0

k2pk(nx) = n2x2A(1)B′′(nx) + nxB′(nx)
{
2A′(1) +A(1)

}
+ B(nx)

{
A′′(1) +A′(1)

}
.

(2.4)

From these equalities, the assertions of the lemma are obtained.

Lemma 2.2. For x ∈ [0,∞), one has

Kn

(
(s − x)2;x

)
=
{
B′′(nx) − 2B′(nx) + B(nx)

B(nx)

}
x2

+
{
2A′(1)[B′(nx) − B(nx)] +A(1)[2B′(nx) − B(nx)]

nA(1)B(nx)

}
x

+
1

n2A(1)

{
A′′(1) + 2A′(1) +

A(1)
3

}
.

(2.5)

Proof. From the linearity of Kn, we get

Kn

(
(s − x)2;x

)
= Kn

(
s2;x

)
− 2xKn(s;x) + x2Kn(1;x). (2.6)

Next, we apply Lemma 2.1.

Theorem 2.3. Let

E :=
{
f : x ∈ [0,∞),

f(x)
1 + x2

is convergent as x −→ ∞
}
, (2.7)

lim
y→∞

B′(y
)

B
(
y
) = 1, lim

y→∞
B′′(y

)

B
(
y
) = 1. (2.8)
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If f ∈ C[0,∞) ∩ E, then

lim
n→∞

Kn

(
f ;x
)
= f(x), (2.9)

and the operators Kn converge uniformly in each compact subset of [0,∞).

Proof. Using Lemma 2.1 and taking into account the equality (2.8) we get

lim
n→∞

Kn

(
si;x
)
= xi, i = 0, 1, 2. (2.10)

The above convergence is satisfied uniformly in each compact subset of [0,∞). We can then
apply the universal Korovkin-type property (vi) of Theorem 4.1.4 in [14] to obtain the desired
result.

3. The Order of Approximation

In this section, we deal with the rates of convergence of theKn(f) to f by means of a classical
approach, the second modulus of continuity, and Peetre’s K-functional.

Let f ∈ C̃[0,∞). If δ > 0, the modulus of continuity of f is defined by

w
(
f ; δ
)
:= sup

x,y∈[0,∞)
|x−y|≤δ

∣∣f(x) − f
(
y
)∣∣,

(3.1)

where C̃[0,∞) denotes the space of uniformly continuous functions on [0,∞). It is also well
known that, for any δ > 0 and each x ∈ [0,∞),

∣∣f(x) − f
(
y
)∣∣ ≤ w

(
f ; δ
)
(∣∣x − y

∣∣

δ
+ 1

)

. (3.2)

The next result gives the rate of convergence of the sequence Kn(f) to f by means of
the modulus of continuity.

Theorem 3.1. Let f ∈ C̃[0,∞) ∩ E. The Kn operators satisfy the following inequality:

∣∣Kn

(
f ;x
) − f(x)

∣∣ ≤ 2w
(
f ;
√
λn(x)

)
, (3.3)
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where

λ := λn(x) = Kn

(
(s − x)2;x

)
=
{
B′′(nx) − 2B′(nx) + B(nx)

B(nx)

}
x2

+
{
2A′(1)[B′(nx) − B(nx)] +A(1)[2B′(nx) − B(nx)]

nA(1)B(nx)

}
x

+
1

n2A(1)

{
A′′(1) + 2A′(1) +

A(1)
3

}
.

(3.4)

Proof. Using (2.1), (3.2), and the linearity property of Kn operators, we can write

∣∣Kn

(
f ;x
) − f(x)

∣∣ ≤ n

A(1)B(nx)

∞∑

k=0

Pk(nx)
∫ (k+1)/n

k/n

∣∣f(s) − f(x)
∣∣ds

≤ n

A(1)B(nx)

∞∑

k=0

Pk(nx)
∫ (k+1)/n

k/n

( |s − x|
δ

+ 1
)
w
(
f ; δ
)
ds

≤
{

1 +
n

A(1)B(nx)δ

∞∑

k=0

Pk(nx)
∫ (k+1)/n

k/n

|s − x|ds
}

w
(
f ; δ
)
.

(3.5)

By using the Cauchy-Schwarz inequality for integration, we get

∫ (k+1)/n

k/n

|s − x|ds ≤ 1√
n

(∫ (k+1)/n

k/n

|s − x|2ds
)1/2

(3.6)

which holds that

∞∑

k=0

Pk(nx)
∫ (k+1)/n

k/n

|s − x|ds ≤ 1√
n

∞∑

k=0

Pk(nx)

(∫ (k+1)/n

k/n

|s − x|2ds
)1/2

. (3.7)

By applying the Cauchy-Schwarz inequality for summation on the right-hand side of (3.7),
we have

∞∑

k=0

Pk(nx)
∫ (k+1)/n

k/n

|s − x|ds ≤
√
A(1)B(nx)√

n

(
A(1)B(nx)

n
Kn

(
(s − x)2;x

))1/2

=
A(1)B(nx)

n

(
Kn

(
(s − x)2;x

))1/2

=
A(1)B(nx)

n
(λn(x))

1/2,

(3.8)
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where λn(x) is given by (3.4). If we use this in (3.5), we obtain

∣
∣Kn

(
f ;x
) − f(x)

∣
∣ ≤
{
1 +

1
δ

√
λn(x)

}
w
(
f ; δ
)
. (3.9)

On choosing δ =
√
λn(x), we arrive at the desired result.

Recall that the second modulus of continuity of f ∈ CB[0,∞) is defined by

w2
(
f ; δ
)
:= sup

0<t≤δ

∥
∥f(· + 2t) − 2f(· + t) + f(·)∥∥CB

, (3.10)

where CB[0,∞) is the class of real valued functions defined on [0,∞)which are bounded and
uniformly continuous with the norm ‖f‖CB

= supx∈[0,∞)|f(x)|.
Peetre’s K-functional of the function f ∈ CB[0,∞) is defined by

K
(
f ; δ
)
:= inf

g∈C2
B[0,∞)

{∥∥f − g
∥∥
CB

+ δ
∥∥g
∥∥
C2

B

}
, (3.11)

where

C2
B[0,∞) :=

{
g ∈ CB[0,∞) : g ′, g ′′ ∈ CB[0,∞)

}
, (3.12)

and the norm ‖g‖C2
B
:= ‖g‖CB

+‖g ′‖CB
+‖g ′′‖CB

(see [15]). It is clear that the following inequal-
ity:

K
(
f ; δ
) ≤ M

{
w2

(
f ;
√
δ
)
+min(1, δ)

∥∥f
∥∥
CB

}
, (3.13)

holds for all δ > 0. The constant M is independent of f and δ.

Theorem 3.2. Let f ∈ C2
B[0,∞). The following

∣∣Kn

(
f ;x
) − f(x)

∣∣ ≤ ζ
∥∥f
∥∥
C2

B
(3.14)

holds, where

ζ := ζn(x)

=
{
B′′(nx) − 2B′(nx) + B(nx)

2B(nx)

}
x2

+
{
2A′(1)[B′(nx) − B(nx)] +A(1)[2(n + 1)B′(nx) − (2n + 1)B(nx)]

2nA(1)B(nx)

}
x

+
1

2n2A(1)

{
A′′(1) + 2A′(1) +

A(1)
3

}
+
2A′(1) +A(1)

2nA(1)
.

(3.15)
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Proof. From the Taylor expansion of f , the linearity of the operators Kn and (2.1), we have

Kn

(
f ;x
) − f(x) = f ′(x)Kn(s − x;x) +

1
2
f ′′(η

)
Kn

(
(s − x)2;x

)
, η ∈ (x, s). (3.16)

Since

Kn(s − x;x) =
{
B′(nx) − B(nx)

B(nx)

}
x +

2A′(1) +A(1)
2nA(1)

≥ 0 (3.17)

for s ≥ x, by considering Lemmas 2.1 and 2.2 in (3.16), we can write that

∣∣Kn

(
f ;x
) − f(x)

∣∣ ≤
{(

B′(nx) − B(nx)
B(nx)

)
x +

2A′(1) +A(1)
2nA(1)

}∥∥f ′∥∥
CB

+
1
2

[{
B′′(nx) − 2B′(nx) + B(nx)

B(nx)

}
x2

+
{
2A′(1)[B′(nx) − B(nx)] +A(1)[2B′(nx) − B(nx)]

nA(1)B(nx)

}
x

+
1

n2A(1)

{
A′′(1) + 2A′(1) +

A(1)
3

}]∥∥f ′′∥∥
CB

≤
[{

B′′(nx) − 2B′(nx) + B(nx)
2B(nx)

}
x2

+
{
2A′(1)[B′(nx) − B(nx)] +A(1)[2(n + 1)B′(nx) − (2n + 1)B(nx)]

2nA(1)B(nx)

}
x

+
1

2n2A(1)

{
A′′(1) + 2A′(1) +

A(1)
3

}
+
2A′(1) +A(1)

2nA(1)

]∥∥f
∥∥
C2

B

(3.18)

which completes the proof.

Theorem 3.3. Let f ∈ CB[0,∞). Then

∣∣Kn

(
f ;x
) − f(x)

∣∣ ≤ 2M
{
w2

(
f ;
√
δ
)
+min(1, δ)

∥∥f
∥∥
CB

}
, (3.19)

where

δ := δn(x) =
1
2
ζn(x) (3.20)

and M > 0 is a constant which is independent of the functions f and δ. Also, ζn(x) is the same as in
Theorem 3.2.
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Proof. Suppose that g ∈ C2
B[0,∞). From Theorem 3.2, we can write

∣
∣Kn

(
f ;x
) − f(x)

∣
∣ ≤ ∣∣Kn

(
f − g;x

)∣∣ +
∣
∣Kn

(
g;x
) − g(x)

∣
∣ +
∣
∣g(x) − f(x)

∣
∣

≤ 2
∥
∥f − g

∥
∥
CB

+ ζ
∥
∥g
∥
∥
C2

B

= 2
[∥
∥f − g

∥
∥
CB

+ δ
∥
∥g
∥
∥
C2

B

]
.

(3.21)

The left-hand side of inequality (3.21) does not depend on the function g ∈ C2
B[0,∞), so

∣
∣Kn

(
f ;x
) − f(x)

∣
∣ ≤ 2K

(
f ; δ
)
, (3.22)

where K(f ; δ) is Peetre’s K-functional defined by (3.11). By the relation between Peetre’s K-
functional and the second modulus of smoothness given by (3.13), inequality (3.21) becomes

∣∣Kn

(
f ;x
) − f(x)

∣∣ ≤ 2M
{
w2

(
f ;
√
δ
)
+min(1, δ)

∥∥f
∥∥
CB

}
(3.23)

whence we have the result.

Remark 3.4. Note that when n → ∞, then λn, ζn, and δn tend to zero in Theorems 3.1–3.3
under the assumption (2.8).

4. Special Cases and Further Properties

Gould-Hopper polynomials gd+1
k

(x, h) [16], which are d-orthogonal polynomial sets of
Hermite type [17], are generated by

eht
d+1

exp(xt) =
∞∑

k=0

gd+1k (x, h)
tk

k!
(4.1)

from which it follows that

gd+1k (x, h) =
[k/(d+1)]∑

m=0

k!
m!(k − (d + 1)m)!

hmxk−(d+1)m, (4.2)

where, as usual, [·] denotes the integer part.
In [4], the authors showed that the Gould-Hopper polynomials are Brenke-type poly-

nomials with A(t) = eht
d+1

and B(t) = et, and the restrictions (1.9) and condition (2.8) for the
operators given by (1.10) are satisfied under the assumption h ≥ 0. These operators including
the Gould-Hopper polynomials are as follows:

L∗
n

(
f ;x
)
:= e−nx−h

∞∑

k=0

gd+1
k (nx, h)

k!
f

(
k

n

)
, (4.3)

where x ∈ [0,∞).
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The special case A(t) = eht
d+1

and B(t) = et of (1.11) gives the following Kantorovich
version of Kn(f ;x) including the Gould-Hopper polynomials:

K∗
n

(
f ;x
)
:= ne−nx−h

∞∑

k=0

gd+1
k (nx, h)

k!

∫ (k+1)/n

k/n

f(t)dt (4.4)

under the assumption h ≥ 0.

Remark 4.1. For h = 0, we find gd+1k (nx, 0) = (nx)k and the operators given by (4.4) reduce to
the Szasz-Mirakyan-Kantorovich operators given by (1.12).

Now, we give a Voronovskaya-type theorem for the operators (4.4). In order to prove
this theorem, we need the following lemmas.

Lemma 4.2. For the operators K∗
n, one has

K∗
n(1;x) = 1,

K∗
n(s;x) = x +

h(d + 1)
n

+
1
2n

,

K∗
n

(
s2;x

)
= x2 +

2
n
(h(d + 1) + 1)x

+
1
n2

[
h(d + 1){h(d + 1) + d + 2} + 1

3

]
,

K∗
n

(
s3;x

)
= x3 +

3x2

n

{
h(d + 1) +

3
2

}
+

x

n2

{
3h2(d + 1)2 + 3h(d + 1)(d + 3) +

7
2

}

+
1
n3

{
h2(h + 3)(d + 1)3 + h(d + 1)3 +

3
2
h(h + 1)(d + 1)2 + h(d + 1) +

1
4

}
,

K∗
n

(
s4;x

)
= x4 +

4x3

n
{h(d + 1) + 2} + 3x2

n2

{
2h(h + 1)(d + 1)2 + 6h(d + 1) + 5

}

+
x

n3

{
12h2(d + 1)2(d + 2) + 4h3(d + 1)3 + 2h(d + 1)

(
2d2 + 10d + 15

)
+ 6
}

+
1
n4

{
h3(h + 6)(d + 1)4 + 8h(1 + 3h)(d + 1)3 − 9h(h + 1)(d + 1)2

+ 7h(d + 1) + 2h3(d + 1)3 + 4d(d − 1)(d + 1)2h2

+3h2d2(d + 1)2 + (d − 2)(d − 1)d(d + 1)h +
1
5

}
.

(4.5)

Proof. From the generating function (4.1) for the Gould-Hopper polynomials, one can easily
find the above equalities.
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Lemma 4.3. For x ∈ [0,∞), one has

K∗
n

(
(s − x)2;x

)
=

x

n
+

1
n2

[
h(d + 1){h(d + 1) + d + 2} + 1

3

]

K∗
n

(
(s − x)4;x

)
=

3x2

n2
+

x

n3

{
6h(h + 2)(d + 1)2 + 2h(d + 1)(−3d + 2) + 5

}

+
1
n4

{
h3(h + 6)(d + 1)4 + 2h

(
h2 + 12h + 4

)
(d + 1)3

+ 7h(d + 1) − 9h(h + 1)(d + 1)2 + 4d(d − 1)(d + 1)2h2

+3h2d2(d + 1)2 + (d − 2)(d − 1)d(d + 1)h +
1
5

}
.

(4.6)

Proof. It is enough to use Lemma 4.2 to obtain above equalities.

Theorem 4.4. Let f ∈ C2[0, a]. Then one has

lim
n→∞

n
[
K∗

n

(
f ;x
) − f(x)

]
= f ′(x)

{
h(d + 1) +

1
2

}
+
xf ′′(x)

2!
. (4.7)

Proof. By Taylor’s theorem, we get

f(s) = f(x) + (s − x)f ′(x) +
(s − x)2

2!
f ′′(x) + (s − x)2η(s;x), (4.8)

where η(s;x) ∈ C[0, a] and lims→xη(s;x) = 0. If we apply the operator K∗
n to the both sides

of (4.8), we obtain

K∗
n

(
f ;x
)
= f(x) + f ′(x)K∗

n(s − x;x)

+
f ′′(x)
2!

K∗
n

(
(s − x)2;x

)
+K∗

n

(
(s − x)2η(s;x);x

)
.

(4.9)

In view of Lemmas 4.2 and 4.3, the equality (4.9) can be written in the form

n
[
K∗

n

(
f ;x
) − f(x)

]
= n

{
h(d + 1)

n
+

1
2n

}
f ′(x)

+ n

{
x

n
+

1
n2

[
h(d + 1){h(d + 1) + d + 2} + 1

3

]}
f ′′(x)
2!

+ nK∗
n

(
(s − x)2η(s;x);x

)
,

(4.10)
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where

K∗
n

(
(s − x)2η(s;x);x

)
= ne−nx−h

∞∑

k=0

gd+1k (nx, h)
k!

∫ (k+1)/n

k/n

(s − x)2η(s;x)ds. (4.11)

Applying Cauchy-Schwarz inequality, we get

nK∗
n

(
(s − x)2η(s;x);x

)

≤ n2e−nx−h
∞∑

k=0

gd+1
k (nx, h)

k!

(∫ (k+1)/n

k/n

(s − x)4ds

)1/2(∫ (k+1)/n

k/n

η2(s;x)ds

)1/2

.

(4.12)

If we use Cauchy-Schwarz inequality again on the right-hand side of the inequality above,
then we conclude that

nK∗
n

(
(s − x)2η(s;x);x

)
≤
(

n3e−nx−h
∞∑

k=0

gd+1k (nx, h)
k!

∫ (k+1)/n

k/n

(s − x)4ds

)1/2

·
(

ne−nx−h
∞∑

k=0

gd+1
k (nx, h)

k!

∫ (k+1)/n

k/n

η2(s;x)ds

)1/2

=
√

n2K∗
n

(
(s − x)4;x

)√
K∗

n

(
η2(s;x);x

)
.

(4.13)

In view of Lemma 4.3,

lim
n→∞

n2K∗
n

(
(s − x)4;x

)
= 3x2 (4.14)

holds. On the other hand, since η(s;x) ∈ C[0, a] and lims→xη(s;x) = 0, then it follows from
Theorem 2.3 that

lim
n→∞

K∗
n

(
η2(s;x);x

)
= η2(x;x) = 0. (4.15)

Considering (4.13), (4.14), and (4.15), we immediately see that

lim
n→∞

nK∗
n

(
(s − x)2η(s;x);x

)
= 0. (4.16)

Then, taking limit as n → ∞ in (4.10) and using (4.16), we have

lim
n→∞

n
[
K∗

n

(
f ;x
) − f(x)

]
= f ′(x)

{
h(d + 1) +

1
2

}
+
xf ′′(x)

2!
(4.17)

which completes the proof.
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Remark 4.5. Getting h = 0 in Theorem 4.4 gives a Voronovskaya-type result for the Szasz-
Mirakyan-Kantorovich operators given by (1.12).
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