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The reproducing kernel method (RKM) and the Adomian decomposition method (ADM) are
applied to solve nth-order nonlinear weakly singular Volterra integrodifferential equations. The
numerical solutions of this class of equations have been a difficult topic to analyze. The aim of this
paper is to use Taylor’s approximation and then transform the given nth-order nonlinear Volterra
integrodifferential equation into an ordinary nonlinear differential equation. Using the RKM and
ADM to solve ordinary nonlinear differential equation is an accurate and efficient method. Some
examples indicate that this method is an efficient method to solve nth-order nonlinear Volterra
integro-differential equations.

1. Introduction

In this paper, we consider the following nth-order nonlinear weakly singular Volterra integro-
differential equation of the following form [1–4]:

n∑

i=0

ai(x)u(i)(x) = f(x) +
∫x

a

K(t, x)um(t)dt, a � x � b, (1.1)

wherem > 1, f(x) is a given function, u(x) is the unknown function, andK(t, x) is the kernel
of the integro equation. We usually assume that the function u(x) and f(x) are continuous or
square integrable on [a, b].

Some problems of mathematical physics are described in terms of (1.1) which has
been studied by different methods including the spline collocation method [5], piecewise
polynomials [6], Haar wavelets [7], the homotopy perturbation method (HPM) [8, 9],
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thewavelet-Galerkinmethod [10], Taylor polynomials [11], the Taumethod [12], the sinc-col-
location method [13], the combined Laplace transform-Adomian decomposition method
[14], and the Adomian’s asymptotic decomposition method [15] to determine exact and
approximate solutions. But to our knowledge there is still no viable analytic approach for
solving weakly singular Volterra integro-differential equations. The present work is moti-
vated by the desire to obtain approximate solution to nth-order nonlinear weakly singular
Volterra integro-differential equation, where the integrand is weakly singular in the sense
that its integral is continuous at the singular point, that is, its kernel K(t, x) = 1/(x − t)α is
singular as t → x.

Reproducing kernel theory has important application in numerical analysis, differen-
tial equation, probability and statistics and so on [16, 17]. And the RKM has been applied suc-
cessfully to solving linear and nonlinear problems [18–20].

The rest of the paper is organized as follows. In the Section 2, transforming (1.1) into
an differential equation by Taylor’s approximation. In Section 3, the RKM is introduced.
Applying RKM and ADM to solving (1.1) is discussed in Section 4. The numerical examples
are presented in Section 5. Finally, a brief conclusion is stated in last section.

2. Taylor’s Approximation

Consider the following nth-order nonlinear weakly singular Volterra integro-different equa-
tion:

n∑

i=0

ai(x)u(i)(x) = f(x) +
∫x

a

F(u(t))
(x − t)α dt, a � x � b, 0 < α < 1. (2.1)

We have by setting

y(t) = F(u(t)), (2.2)

n∑

i=0

ai(x)u(i)(x) = f(x) +
∫x

a

y(t)
(x − t)α dt, a � x � b, 0 < α < 1. (2.3)

Rewriting (2.3) as

n∑

i=0

ai(x)u(i)(x) = f(x) +
∫x

a

y(t) − y(x) + y(x)
(x − t)α dt, (2.4)

where the solution under the integral has been replaced by y(t) − y(x) + y(x). Thus,

n∑

i=0

ai(x)u(i)(x) = f(x) + y(x)
∫x

a

1
(x − t)α dt +

∫x

a

y(t) − y(x)
(x − t)α dt. (2.5)
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So that

n∑

i=0

ai(x)u(i)(x) = f(x) + y(x)
(x − a)1−α

1 − α +
∫x

a

y(t) − y(x)
(x − t)α dt, (2.6)

or equivalently

n∑

i=0

ai(x)u(i)(x) = f(x) + y(x)
(x − a)1−α

1 − α −
∫x

a

(x − t)1−α y(t) − y(x)
t − x dt. (2.7)

We use the following Taylor’s approximation of degree n of y(t) about t = x:

y(t) ≈ y(x) + (t − x)y′(x) +
(t − x)2

2!
y′′(x) + · · · + (t − x)n

n!
y(n)(x). (2.8)

Thus,

y(t) − y(x) ≈ (t − x)y′(x) +
(t − x)2

2!
y′′(x) + · · · + (t − x)n

n!
y(n)(x). (2.9)

Substituting the approximate relation (2.9) into the right hand side of (2.7) yields

n∑

i=0

ai(x)u(i)(x) = f(x) +
n∑

i=0
(−1)i (x − a)i+1−α

i!(i + 1 − α)y
(i)(x). (2.10)

Therefore, (2.1) can be approximated by the nth-order nonlinear differential equation (2.10).

3. Analysis of Reproducing Kernel Hilbert Space

Definition 3.1 (reproducing kernel SpaceWn+1[a, b], see [17]).

Wn+1[a, b] =
{
u(x) | u(n)(x) is an absolutely continuous real value function in [a, b],

u(n+1)(x) ∈ L2[a, b], x ∈ [a, b]
}

(3.1)

and endowed it with the inner product and norm, respectively,

〈u(x), v(x)〉Wn+1
=

n∑

i=0

u(i)(a)v(i)(a) +
∫b

a

u(n+1)(x)v(n+1)(x)dx, ‖u‖Wn+1
= 〈u, u〉1/2.

(3.2)
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Theorem 3.2. The space Wn+1[a, b] is a reproducing kernel space. That is, there exists a function
Rx(y), for each fixed x ∈ [a, b], Rx(y) ∈Wn+1[a, b], and for any u(y) ∈Wn+1[a, b], satisfying

〈
u
(
y
)
, Rx

(
y
)〉

Wn+1
= u(x), (3.3)

the reproducing kernel Rx(y) can be denoted by

Rx

(
y
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n+2∑
i=1

ai(x)yi−1, y � x,

2n+2∑
i=1

bi(x)yi−1, y > x,

(3.4)

where ai(x), bi(x) (i = 1, 2, . . . , 2n + 2) are known coefficients.

Theorem 3.3. LetWn+1[a, b] be a reproducing kernel space and um(x), u(x) ∈Wn+1[a, b], m = 1, 2,
. . .. If um(x) converges to u(x) in the sense of ‖ · ‖Wn+1 , then u

(k)
m (x) converges to u(k)(x) (k = 0,

1, . . . , n) uniformly.

Property 1. IfWn+1[a, b] is a reproducing kernel space, the reproducing kernel function Rx(y)
inWn+1[a, b] is unique.

Definition 3.4 (reproducing kernel SpaceW1[a, b], see [17]).

W1[a, b] =
{
u(x) | u(x) is an absolutely continuous real value function in [a, b],

u′(x) ∈ L2[a, b], x ∈ [a, b]
} (3.5)

and endowed it with the inner product and norm, respectively,

〈u(x), v(x)〉W1
= u(a)v(a) +

∫b

a

u′(x)v′(x)dx, ‖u‖W1
= 〈u, u〉1/2. (3.6)

There exists a unique reproducing kernel function Q(x, y) ∈W1[a, b], andQ(x, y) can
be denoted by

Qx

(
y
)
=

{
1 + y, y � x,

1 + x, y > x.
(3.7)

The method of obtaining Qx(y), the coefficients of the reproducing kernel Rx(y), and
the proof of Theorems 3.1 and 3.2 are given in [17].
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4. Combined ADM and RKM

4.1. Representation of the Inverse Operator

Here, we propose a new differential operator, as follows:

Lu(x) =
n∑

i=0

ai(x)u(i)(x), (4.1)

letting

N(x, u(x)) =
n∑

i=0
(−1)i (x − a)i+1−α

i!(i + 1 − α)y
(i)(x), (4.2)

where y(x) = F(u(x)), then we convert (2.10) as follows:

Lu(x) = f(x) +N(x, u(x)), a � x � b. (4.3)

We now introduce how to determine the inverse operator L−1 of L. Obviously, L :
Wn+1[a, b] → W1[a, b] is a bounded linear operator.

We choose {xi}∞i=1 as any dense set in [a, b], and let ψx(y) = L∗Qx(y), where L∗ is the
conjugate operator of L and Qx(y) is given by (3.7). Furthermore, for simplicity, let ψi(x)
denote ψxi(x), namely,

ψi(x)
def= ψxi(x) = L∗Qxi(x). (4.4)

Now, several Lemmas are given.

Lemma 4.1. {ψi(x)}∞i=1 is the complete system ofWn+1[a, b].

Proof. For u(x) ∈Wn+1[a, b], let 〈u(x), ψi(x)〉 = 0 (i = 1, 2, . . .), that is,

〈u(x),L∗Qxi(x)〉 = (Lu)(xi) = 0. (4.5)

Note that {xi}∞i=1 is the dense set in [a, b], therefore (Lu)(x) = 0. It follows that u(x) = 0
from the existence of L−1.

Lemma 4.2. The following formula holds

ψi(x) =
(LηRx

(
η
))
(xi), (4.6)

where the subscript η of operator Lη indicates that the operator L applies to functions of η.
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Proof. Consider

ψi(x) =
〈
ψi(ξ), Rx(ξ)

〉
Wn+1[a,b]

= 〈(L∗Qxi)(ξ), Rx(ξ)〉Wn+1[a,b]

=
〈
Qxi(ξ),

(LηRx

(
η
))
(ξ)
〉
W1[a,b]

=
(LηRx

(
η
))
(xi).

(4.7)

This completes the proof.

The orthonormal system {ψi(x)}∞i=1 of Wn+1[a, b] can be derived from Gram-Schmidt
orthogonalization process of {ψi(x)}∞i=1,

ψi(x) =
i∑

k=1

βikψk(x),
(
βii > 0, i = 1, 2, . . .

)
, (4.8)

where βik are orthogonal coefficients.

Theorem 4.3. If the inverse operator L−1, exists and {xi}∞i=1 is dense on [0, 1], then the inverse opera-
tor L−1 can be determined as

u(x) = L−1(f(x) +N(x, u(x))
)
=

∞∑

i=1

Biψi(x), (4.9)

where Bi =
∑i

k=1 βik(f(xk) +N(xk, u(xk))).

Proof. From (4.9), it holds that

u(x) =
∞∑

i=1

〈
u(x), ψi(x)

〉
Wn+1

ψi(x)

=
∞∑

i=1

i∑

k=1

βik〈u(x),L∗Qxk(x)〉Wn+1
ψi(x)

=
∞∑

i=1

i∑

k=1

βik〈Lu(x), Qxk(x)〉W1
ψi(x)

=
∞∑

i=1

i∑

k=1

βik
〈
f(x) +N(x, u(x)), Qxk(x)

〉
W1
ψi(x)

=
∞∑

i=1

i∑

k=1

βik
(
f(xk) +N(xk, u(xk))

)
ψi(x).

(4.10)

The proof of the theorem is complete.

From Theorem 4.3, obviously, L−1 is determined.
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4.2. Decomposition Method

By applying L−1 to both sides of (4.3), we have

u(x) = L−1f(x) + L−1N(x, u(x)). (4.11)

The ADM introduces the solution u(x) and the nonlinear functionN(x, u) by infinite series

u(x) =
∞∑

i=0

ui(x), (4.12)

N(x, u(x)) =
∞∑

i=0

Ai(x), (4.13)

whereAn are Adomian polynomials for the nonlinear termN(x, u(x)) and can be found from
the following formula:

An =
1
n!

[
dn

dλn
f

( ∞∑

n=0

λiui

)]

λ0

, n � 0. (4.14)

Substituting (4.12) and (4.13) into (4.11) yields

∞∑

i=0

ui(x) = L−1f(x) + L−1
∞∑

i=0

Ai(x). (4.15)

According to the ADM, the components ui(x) can be determined as

u0(x) = L−1f(x),

ui+1(x) = L−1Ai(x), i � 0,
(4.16)

which gives

u0(x) =
∞∑

j=0

B0jψj(x),

ui+1(x) =
∞∑

j=0

B(i+1)jψj(x), i � 0,

(4.17)

where B0j =
∑j

k=1 βjkf(xk), Bij =
∑j

k=1 βjkAi−1(xk), i � 1.
From (4.17), we can determine the components ui(x), and hence the series solution of

u(x) in (4.12) can be immediately obtained.
We obtain approximate solution of the following equation:

Un(x) =
n∑

i=0

ui(x). (4.18)
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The following use some examples to demonstrate the effectiveness of the algorithm.

5. Numerical Examples

To illustrate the applicability and effectiveness of our method, we consider the following
examples. Symbolic and numerical computations performed by using Mathematica 5.0.

Example 5.1. Consider the following first-order nonlinear weakly singular Volterra integro-
differential equation:

u′(x) + p(x)u(x) = f(x) +
∫x

a

F(u(t))
(x − t)α dt, a � x � b, 0 < α < 1 (5.1)

with α = 1/2, a = 0, u(0) = 0 and u(x) = x(x − 1).

Let F(u(x)) = u2, p(x) = (16/315)x5/2(21 + 4x(4x − 9)) + 1, f(x) = x2 + x − 1.
On [0, 1] select 100 points and get the approximate solution U2(x) =

∑2
n=0 un(x), the

results are shown in Figure 1.

Example 5.2. Consider the following second-order nonlinear weakly singular Volterra integro-
differential equation:

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x) +
∫x

a

F(u(t))
(x − t)α dt, a � x � b, 0 < α < 1 (5.2)

with α = 1/3, a = 0, u(0) = u(1) = 0 and u(x) = x(x − 1).

Let F(u(x)) = u3, p(x) = x2 + 1, q(x) = (243/52360)x11/3(−119 + 9x(9x2 − 30x + 34)),
f(x) = 2x3 + x2 + 2x + 3.

On [0, 1] select 100 points and get the approximate solution U1(x) =
∑1

n=0 un(x), the
results are shown in Table 1.

Example 5.3. Consider the following third-order nonlinear weakly singular Volterra integro-
differential equation:

u′′′(x) + p(x)u′′(x) + q(x)u′(x) + r(x)u(x) = f(x) +
∫x

a

F(u(t))
(x − t)α dt, a � x � b, 0 < α < 1

(5.3)

with α = 1/2, a = 0, u(0) = u(1) = 0, u′(0) = 0 and u(x) = x2(x − 1).

Let F(u(x)) = u2, p(x) = x, q(x) = x − 1, r(x) = (256/45045)x9/2(143 + 20x(6x − 13)),
f(x) = 3x3 + x2 + 6.

On [0, 1] select 100 points and get the approximate solution U2(x) =
∑2

n=0 un(x), the
results are shown in Figure 2.

6. Conclusion

In this paper, we have reduced the solution of nonlinear weakly singular Volterra integro-
differential equations to the solution of ordinary nonlinear differential equations by removing
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Figure 1: The approximate valuesU2(x) in comparison with its exact values x(x − 1).
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Figure 2: The approximate valuesU2(x) in comparison with its exact values x2(x − 1).

Table 1: Comparison of the errors of u(x) andU1(x).

Node Exact solution Approximate solution Relative error

1/100 −0.00980296 −0.00980291 −5.55234E − 06

11/100 −0.0970493 −0.0970705 −2.18212E − 04

21/100 −0.16469 −0.164731 −2.50108E − 04

31/100 −0.212724 −0.212782 −2.70663E − 04

41/100 −0.241153 −0.241219 −2.72492E − 04

51/100 −0.249975 −0.250037 −2.44481E − 04

61/100 −0.239192 −0.239236 −1.84461E − 04

71/100 −0.208803 −0.208825 −1.04903E − 04

81/100 −0.158808 −0.158813 −2.96234E − 05

91/100 −0.0892069 −0.0892053 −1.80668E − 05

the singularity using an appropriate Taylor’s approximation. Thenwe have demonstrated the
solution of these ordinary nonlinear differential equations by RKM andADM. The ADM is an
accurate and efficient method to solve nonlinear weakly singular Volterra integro-differential
equations.
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