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Generalized Ito systems of four coupled nonlinear evaluation equations are proposed. New classes
of exact invariant solutions by using Lie group analysis are obtained. Moreover, we investigate
the existence of a one-parameter group of contact transformations for a generalized Ito system.
Consequently, we study the relationship between one-parameter group of a contact transformation
and a one-parameter Lie point transformation for a generalized Ito system.

1. Introduction

A systematic investigation of continuous transformation groups was carried out by Lie
(1882–1899). His original goal was the creation of a theory of integration for ordinary
differential equations analogous to the Abelian theory for the solution of algebraic equations.
He investigates the fundamental concept of the invariance group admitted by a given system
of differential equations. Today, the mathematical approach whose object is the construction
and analysis of the full invariance group admitted by a system of differential equations is
called group analysis of differential equations. These groups now usually called Lie groups
and the associated Lie algebras have important real-world applications.

For the past two decades, the Lie groupmethod has been applied to solve a wide range
of problems and to explore many physically interesting solutions of nonlinear phenomena.
Recently, several extensions and modifications of the classical Lie algorithm have been pro-
posed in order to arrive at new solutions of partial differential equations (PDE). Lie symmetry
analysis is one of the most powerful methods to get particular solutions of differential
equations. It is based on the study of their invariance with respect to one-parameter Lie group
of point transformations whose infinitesimal operators are generated by vector fields. Once
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the Lie groups that leave the differential equations invariant are known, we can construct an
exact solution called a group invariant solution which is invariant under the transformation.

In this work, we first find symmetry groups and obtain reduced forms and then seek
some similarity solutions to the reduced forms of the following Ito coupled system. The
application of one-parameter group reduces the number of independent variables, and
consequently a generalized Ito system is reduced to set of ordinary differential equations
(ODEs) which are solved analytically.

Now we take into consideration a generalized Ito system of four coupled nonlinear
evolution equations which was introduced recently by Tam et al., [1] and Karasu-Kalkanli
et al. [2]:

ut = vx,

vt = 2vxxx − 6(uv)x − 6
(
wp

)
x,

wt = wxxx + 3uwx,

pt = pxxx + 3upx.

(1.1)

Which is the generalization of the well-known integrable Ito system [3]:

ut = vx,

vt = − 2vxxx − 6(uv)x.
(1.2)

Now, we investigate the existence of a one-parameter group of contact transformations for
a generalized Ito system (1.1) to obtain the Lie point transformations generators and use
symmetry groups to find the same Lie point transformation generators which are obtained
from contact transformations.

2. The Existence of Contact Transformations for
a Generalized Ito System

Evolution equations model a wide variety of phenomena in the physical, biological, and
economic sciences. Lie group theory provides a useful tool for the solution partial differential
equations. Many books have been written on this aspect [4]. For Lie group theory to be useful
for the solution of evolution-type partial differential equations, the Lie point transformation
generators need to be determined [4]. Once the Lie point transformation generators have
been determined, they can be used to obtain special solutions of the differential equations
under consideration. A reduction in the number of variables and transformations to other
simpler equations which may be easier to solve are also possible. The Lie theory has provided
insight into many physical phenomena, which may otherwise not have been possible.
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2.1. Preliminaries

We only summarize relevant aspects for the case of two independent variables (time, t, and
one space variable, x). The reader is referred to [5]. The set of transformations in (t, x, u)
space, namely,

t = t(t, x, u, a),

x = x(t, x, u, a),

u = u(t, x, u, a),

(2.1)

where a is a real parameter, is a one-parameter group of Lie point transformations if it satisfies
the group properties. The generator of the group of transformations (2.1) is given by

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
. (2.2)

The set of transformations in (t, x, u, ut, ux) space, namely,

t = t(t, x, u, ut, ux, a),

x = x(t, x, u, ut, ux, a),

u = u(t, x, u, ut, ux, a),

ut = ut(t, x, u, ut, ux, a),

ux = ux(t, x, u, ut, ux, a),

(2.3)

where a is a real parameter, is a one-parameter group of contact transformations if it satisfies
the group properties and ut = (∂u/∂t), ux = (∂u/∂x) hold.

The generator of a group of contact transformations is

Y = ξ1(t, x, u, ut, ux)
∂

∂t
+ ξ2(t, x, u, ut, ux)

∂

∂x
+ η(t, x, u, ut, ux)

∂

∂u

+ ξ1(t, x, u, ut, ux)
∂

∂ut
+ ξ2(t, x, u, ut, ux)

∂

∂ux
.

(2.4)

The Lie characteristic function is defined by

W = η − utξ1 − ux ξ2, (2.5)

where the functions ξ1, ξ2, and η can be given in terms of W as

ξ1 = −Wut, ξ2 = −Wux, η = W − utWt − uxWx, (2.6)
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and the formulae for ξi can easily be written in terms of W as

ξ1 = Wt + utWu, ξ2 = Wt + uxWu. (2.7)

Higher-order prolongations can be calculated from the prolongation formula:

ξi1i2···is = Di1 · · ·DisWuj (W)uji1i2···is , (2.8)

where Di is the operator of total differentiation given by

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uij
+ · · · . (2.9)

If W is linear in the first derivatives ut and ux, then the contact transformation
generator (2.4) reduces to an extended Lie point transformation generator (2.2).

2.2. Application Contact Transformations for the Generalized Ito System

In this section, we determine contact transformations for the generalized Ito system (1.1),
where

F1 = vx, (2.10)

F2 = 2vxxx − 6(uv)x − 6
(
wp

)
x, (2.11)

F3 = wxxx + 3uwx, (2.12)

F4 = pxxx + 3upx. (2.13)

Lie point transformation generators were given by [4]. To determine contact transfor-
mations of (1.1), we solve the determining equations:

X̃(ut − vx)|(2.10)−(2.13) = 0, (2.14)

X̃(vt − (−2vxxx − 6(υ�)x − 6(ωπ)x))|(2.10)−(2.13) = 0, (2.15)

X̃(wt − (wxxx + 3υwx))|(2.10)−(2.13) = 0, (2.16)

X̃
(
pt −

(
pxxx + 3υpx

))|(2.10)−(2.13) = 0, (2.17)

where X̃ is the prolongation of the operator (2.4) in terms of W .
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Consequently, we find that

ϕt
1 − ϕx

2 = 0,

ϕt
2 −

(
−2ϕxxx

2 − 6η1vx + uϕx
2 + η2ux + vϕx

1

)
− 6

(
η3px +wϕx

4 + η4wx + pϕx
3

)
= 0,

ϕt
3 −

(
ϕxxx
3 + 3

(
η1wx + uϕx

3

))
= 0,

ϕt
4 −

(
ϕxxx
4 + 3

(
η1px + uϕx

4

))
= 0,

(2.18)

where ϕt
1, ϕ

t
2, ϕ

t
3, ϕ

t
4, ϕ

x
1 , ϕ

x
2 , ϕ

x
3 , ϕ

x
4 , ϕ

xxx
2 , ϕxxx

3 , and ϕxxx
4 can be determined from the following

relation

ϕi1i2i3···is
v = Di1Di2Di3 · · ·Dis(W

v) −Wv
uv
j
uv
ji1i2i3···is , (2.19)

where v = 1, 2, 3, 4 and u1, u2, u3, u4 are u, v, w, p, respectively.
By substituting ϕt

1, ϕ
t
2, ϕ

t
3, ϕ

t
4, ϕ

x
1 , ϕ

x
2 , ϕ

x
3 , ϕ

x
4 , ϕ

xxx
2 , ϕxxx

3 , and ϕxxx
4 into (2.18) and after

some calculations, we obtain the Lie characteristic functions in the following form:

W1 = ut

(
k3 − 3

4
k4t

)
+ ux

(
k1 − 1

4
k4x

)
+
1
2
k4u,

W2 = vt

(
k3 − 3

4
k4t

)
+ vx

(
k1 − 1

4
k4x

)
+ k4v,

W3 = wt

(
k3 − 3

4
k4t

)
+wx

(
k1 − 1

4
k4x

)
+ k2w,

W4 = pt

(
k3 − 3

4
k4t

)
+ px

(
k1 − 1

4
k4x

)
+
(
−k2 + 3

2
k4

)
p,

(2.20)

where k1, k2, k3, and k4 are arbitrary constants. Then the Ito systems have the following infi-
nitesimal:

ξ1 =
(
k3 − 3

4
k4t

)
, ξ2 =

(
k1 − 1

4
k4x

)
,

η1 =
1
2
k4u, η2 = k4v,

η3 = k2w, η4 =
(
−k2 + 3

2
k4

)
p.

(2.21)

2.3. Lie Groups Analysis

Many authors applied Lie group analysis to find exact solutions, for example, in [6] the
authors used Lie symmetry analysis and the method of dynamical systems for the extended
mKdV equation to obtain exact solutions, in [7] the authors applied Lie symmetry analysis
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and Painleve analysis for the new (2+1)-dimensional KdV equation, and in [8] the authors
have some analytical solutions for groundwater flow and transport equation via using Lie
group analysis. Various symmetry reduction is obtained and reduce the system of partial
differential equations to the system of ordinary differential equations which we can obtain
the complete solutions of the system of ordinary differential equations. In this section, by
requiring the invariance of the equations in (1.1) under the one-parameter group of Lie
transformation, we obtain a system of partial differential equations which allows us not only
to find the generator of the group but also to use the invariant surface condition and arrive at
the reduced equation in all the considered cases. Now requiring the invariance of (1.1) with
respect to the one-parameter Lie group of infinitesimal transformations, we investigate the
similarity solution for the generalized Ito system.

Let us consider a one-parameter Lie group of infinitesimal transformations [9–11] of
the form:

x −→ X = x + εξ1
(
t, x, u, v,w, p

)
+O

(
ε2
)
,

t −→ T = t + εξ2
(
t, x, u, v,w, p

)
+O

(
ε2
)
,

u −→ U = u + εη1(t, x, u, v,w, p
)
+O

(
ε2
)
,

v −→ V = v + εη2(t, x, u, v,w, p
)
+O

(
ε2
)
,

w −→ W = w + εη3(t, x, u, v,w, p
)
+O

(
ε2
)
,

p −→ P = p + εη4(t, x, u, v,w, p
)
+O

(
ε2
)
. ε � 1.

(2.22)

The functions ξ1, ξ2, η1, η2, η3, and η4 are the infinitesimal of transformations for the
variables t, x, u, v, w, and p, respectively. In order to obtain these infinitesimal functions we
have to construct a third-extended vector field X̃ that is defined by

X̃ = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η1 ∂

∂u
+

∂

∂ut
+ η1 ∂

∂v
+ η2 ∂

∂u
+ η3 ∂

∂p

+ η4 ∂

∂ρ
+ ϕx

1
∂

∂ux
+ ϕt

1
∂

∂ut
+ ϕx

2
∂

∂vx
+ ϕt

2
∂

∂vt
+ · · ·

(2.23)

and the symmetry vector field X given by (2.2). The equations in (1.1) can be written in the
form:

H1 = (ut − vx),

H2 = (vt − (−2vxxx − 6(υ�)x − 6(ωπ)x)),

H3 = (wt − (wxxx + 3υwx)),

H4 =
(
pt −

(
pxxx + 3υpx

))
.

(2.24)
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The invariance of (2.24) under the infinitesimal transformations (2.23) needs applying
the extended operator to the system of PDEs (2.24), and we have

X̃H1 = ϕt
1 − ϕx

2 = 0,

X̃H2=ϕt
2−

[
−2ϕxxx

2 − 6
(
η1�ξ + υϕx

2 + η2υξ +�ϕx
1

)
−6

(
η3πξ+ϕx

4ω+η4ωξ+ϕx
3π

)]
= 0,

X̃H3 = ϕt
3 −

(
ϕxxx
3 + 3

(
η1wx + ϕx

3u
))

= 0,

X̃H4 = ϕt
4 −

(
ϕxxx
4 + 3

(
η1px + ϕx

4u
))

= 0,

(2.25)

under H1 = 0, H2 = 0, H3 = 0, and H4 = 0. By using symbolic software Math Lie and
equating the different coefficients of the various monomials in the first-, second- and third-
order partial derivatives of u, v, w, and p into (2.25) and after some calculation, we obtain
the following system of partial differential equations for ξ1, ξ2, η1, η2, η3, and η4 [12–15]:

− 3η1 + 3uξ2 − 3uξ1t + ξ2xxx − 3η3
xxw = 0,

− 3η1 + 3uξ2 − 3uξ1t + ξ2xxx − 3η4
xxp = 0,

3η1 − 3uξ2 + 3uξ1t − ξ2xxx + 3η2
xxv = 0,

η4
t − 3uη4

x − η4
xxx = 0, η3

t − 3uη3
x − η3

xxx = 0,

6vη1
x + η2

t + 6uη2
x + 6pη3

x + 6wη4
x + 2η2

xxx = 0,

− ξ2 + η3
xw = 0, −ξ2 + η4

xp = 0,

− ξ2 + η2
xv = 0,

η3 −wξ2 +wξ1t −wξ1t −wη2
v + pη3

p +wη4
p = 0,

η2 − vξ2x + vξ1t + vη1
u − vη2

v = 0,

η4 − pξ2x + pξ1t − pη2
v + pη3

w +wη4
w = 0,

3ξ2x − 3ξ1t = 0, ξ2x − 3ξ1t − η1
u − η2

v = 0,

η1
t − η2

x = 0, η1
v = η1

w = η1
p = 0,

η2
p = η2

w = η2
vv = η2

u = 0, η3
u = η3

v = η3
xp = η3

pp = η3
ww = η3

wp = 0,

η4
u = η4

v = η4
xw = η4

pp = η4
ww = η4

xw = 0,

ξ2p = ξ2w = ξ2v = ξ2t = ξ2 = 0, ξ1p = ξ1w = ξ1v = ξ1u = ξ1x = 0.

(2.26)
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Table 1

X1 X2 X3 X4

X1 0 0 0 −X4/4
X2 0 0 0 0
X3 0 0 0 −3X3/4
X4 X4/4 0 3X3/4 0

Now, we solve this system of linear partial differential (2.26) for the infinitesimal ξ1,
ξ2, η1, η2, η3, and η4 and we obtain

ξ1 =
(
k3 − 3

4
k4t

)
, ξ2 =

(
k1 − 1

4
k4x

)
,

η1 =
1
2
k4u, η2 = k4v,

η3 = k2w, η4 =
(
−k2 + 3

2
k4

)
p,

(2.27)

where k1, k2, k3 and k4 are arbitrary constants. The above equations are the same as (2.21).
We obtain from (2.21) that the Lie point transformation generators are

X1 =
∂

∂x
,

X2 = w
∂

∂w
− p

∂

∂p
,

X3 =
∂

∂t
,

X4 = −x
4

∂

∂x
− 3t

4
∂

∂t
+
u

2
∂

∂u
+ v

∂

∂v
+
3p
2

∂

∂p
.

(2.28)

The corresponding Lie algebra of infinitesimal symmetries of (1.1) is spanned by
the infinitesimal generators X1, X2, X3, and X4. Thus, corresponding commutator table of
{Xi; (i = 1, 2, 3, 4)} can be constructed Table 1.

It is easy to check that {X1, X2,X3,X4} are closed under the Lie bracket. Thus, a basis
for the Lie algebra is {X1,X2,X3,X4}, which is a 4-dimensional Lie group algebra.

2.4. Reduction to Ordinary Differential Equations (ODEs)

Theoretically, all of the similarity variables associated with Lie symmetries (2.23) can be
derived by solving the following characteristic equation:

dt

ξ1
=

dx

ξ2
=

du

η1
=

dv

η2
=

dw

η3
=

dp

η4
. (2.29)
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Consequently we get the following:

dt

(k3 − (3/4)k4t)
=

dx

(k1 − (1/4)k4x)
=

du

(1/2)k4u
=

dv

k4v
=

dw

k2w
=

dp

(−k2 + (3/4)k4)p
, (2.30)

from

dt

(k3 − (3/4)k4t)
=

dx

(k1 − (1/4)k4x)
. (2.31)

Solving (2.31), we obtain the similarity variable is

Z =
(4k1 − k4x)

(4k3 − 3k4t)
1/3

. (2.32)

From (2.30), we get

dt

(k3 − (3/4)k4t)
=

du

(1/2)k4u
,

dt

(k3 − (3/4)k4t)
=

dv

k4v

dt

(k3 − (3/4)k4t)
=

dw

k2w
,

dt

(k3 − (3/4)k4t)
=

dp

(−k2 + (3/4)k4)p
.

(2.33)

By solving (2.33), we obtain the similarity solutions take the form:

u(t, x) =
(
k3 − 3

4
k4t

)−2/3
F1(Z),

v(t, x) =
(
k3 − 3

4
k4t

)−4/3
F2(Z),

w(t, x) =
(
k3 − 3

4
k4t

)(−4k2/3k4)
F3(Z),

p(t, x) =
(
k3 − 3

4
k4t

)((−4k2/3k4)−2)
F4(Z),

(2.34)

where Z = (4k1 − k4x)/(4k3 − 3k4t)
1/3 and F1(Z), F2(Z), F3(Z), and F4(Z) are arbitrary

functions.
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Substituting (2.34) into the equations in (1.1), we finally obtain the system of nonlinear
ordinary differential equations for F1(Z), F2(Z), F3(Z), and F4(Z) takes the form:

F ′
2(Z) + 2F ′

1(Z) + 2F1(Z) = 0,

2k2
4F

′′′
2 (Z) + 6(F1F2)′ + 6(F3F4)′ − ZF ′

2 − 4F2 = 0,

k3
4F

′′′
3 (Z) + 3k4F1F

′
3 + k4ZF ′

3 − 4k2F2 = 0,

k3
4F

′′′
4 (Z) + 3k4F1F

′
4 + k4ZF ′

4 + 2(−2k2 + 3k4)F4 = 0. (2.35)

Solving a system of an ordinary differential equations (2.4), we have four cases of
solutions for F1(Z), F2(Z), F3(Z), and F4(Z).

Case 1.

F1(Z) = −Z, F2(Z) =
3
2
Z2,

F3(Z) = A1Z, F4(Z) = B1Z
2,

(2.36)

where k4 = 2k2, A1 and B1 are arbitrary constants with A1B1 = 2.

Case 2.

F1(Z) = −Z, F2(Z) =
3
2
Z2,

F3(Z) = A2Z
2, F4(Z) = B2Z,

(2.37)

where k4 = k2, A2 and B2 are arbitrary constants with A2B2 = 2.

Case 3.

F1(Z) = −Z, F2(Z) =
3
2
Z2,

F3(Z) =
2
d
Z3 − 8k2

2

9d
, F4(Z) = d,

(2.38)

where K4 = (2/3)K2 and d is arbitrary constant.

Case 4.

F1(Z) =
1
3
Z, F2(Z) = −1

2
Z2,

F3(Z) = cZ, F4(Z) = 0,
(2.39)

where, K4 = 2K2 and C is arbitrary constant.
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Substituting from (2.36)–(2.39) into (2.34) we obtain the solutions for the generalized
Ito system (1.1) in the following

Family 1.

u(t, x) = −Z
(
k3 − 3

4
k4t

)−2/3
, v(t, x) =

3
2
Z2

(
k3 − 3

4
k4t

)−4/3
,

w(t, x) = A1Z

(
k3 − 3

4
k4t

)(−4k2/3k4)
, p(t, x) = B1Z

2
(
k3 − 3

4
k4t

)((−4k2/3k4)−2)
,

(2.40)

where k4 = 2k2, A1 and B1 are arbitrary constants with A1B1 = 2.

Family 2.

u(t, x) = −Z
(
k3 − 3

4
k4t

)−2/3
, v(t, x) =

3
2
Z2

(
k3 − 3

4
k4t

)−4/3
,

w(t, x) = A2Z
2
(
k3 − 3

4
k4t

)(−4k2/3k4)
, p(t, x) = B2Z

(
k3 − 3

4
k4t

)((−4k2/3k4)−2)
,

(2.41)

where k4 = k2, A2 and B2 are arbitrary constants with A2B2 = 2.

Family 3.

u(t, x) = −Z
(
k3 − 3

4
k4t

)−2/3
, v(t, x) =

3
2
Z2

(
k3 − 3

4
k4t

)−4/3
,

w(t, x) =

(
2
d
Z3 − 8k2

2

9d

)(
k3 − 3

4
k4t

)(−4k2/3k4)
, p(t, x) = d

(
k3 − 3

4
k4t

)((−4k2/3k4)−2)
,

(2.42)

where k4 = (2/3)k2 and d is arbitrary constant.

Family 4.

u(t, x) =
1
2
Z

(
k3 − 3

4
k4t

)−2/3
, v(t, x) = −1

2
Z2

(
k3 − 3

4
k4t

)−4/3
,

w(t, x) = cZ

(
k3 − 3

4
k4t

)(−4k2/3k4)
, p(t, x) = 0,

(2.43)

where k4 = 2k2 and c is arbitrary constant and Z = ((4k1 − k4x)/(4k3 − 3k4t)
1/3).
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3. Conclusion

In this paper, we proved the existence of a one-parameter group of contact transformations
for a generalized Ito system (1.1). Moreover, we obtained the relation between the Lie point
transformations generators and contact transformations for a generalized Ito system. Also,
we used the symmetry groups to find the same Lie point transformation generators which
are obtained from contact transformations.

Finally, applying one-parameter group, we explored several new solutions for the Ito
system through the Lie symmetry analysis which have not been reported in the literature for
this model.
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