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We provide a complex transform that maps the complex fractional differential equation into a sys-
tem of fractional differential equations. The homogeneous and nonhomogeneous cases for equiv-
alence equations are discussed and also nonequivalence equations are studied. Moreover, the
existence and uniqueness of solutions are established and applications are illustrated.

1. Introduction

Transform is a significant method to solve mathematical problems. Various practical trans-
forms for solving various problems were materialized in open literature, such as the Laplace
transform [1], the Fourier transform [2], the traveling wave transform [3], the Bäcklund
transformation [4], the integral transform [5], the fractional integral transforms [6], the
fractional complex transform [7, 8], and Mellin transform [9].

Fractional models have been studied by many researchers to sufficiently describe
the operation of variety of computational, physical, and biological processes and systems.
Accordingly, considerable attention has been paid to the solution of fractional differential
equations, integral equations, and fractional partial differential equations of physical phe-
nomena. Most of these fractional differential equations have analytic solutions, approxima-
tion, and numerical techniques [10–12]. Numerical and analytical methods have included
finite difference method such as Adomian decomposition method, variational iteration
method, homotopy perturbation method, and homotopy analysis method [13–16].

One of the most frequently used tools in the theory of fractional calculus is furnished
by the Riemann-Liouville operators. It possesses advantages of fast convergence, higher
stability, and higher accuracy to derive different types of numerical algorithms. In this paper,
we will deal with scalar linear time-fractional differential equations. The time is taken in
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sense of the Riemann-Liouville fractional operators. Also, This type of differential equations
arises in many interesting applications. For example the fractional Fokker-Planck differential
equation which can be derived from the master equation [17], the fractional diffusion
equations [18–23], and the generalized Chapman-Kolmogorov equation [24].

Here, we shall use the complex transform to reduce this fractional differential
equation to a system of fractional order (homogeneous and nonhomogeneous) keeping
the equivalency properties. Furthermore, we shall study the existence and uniqueness of
solutions for the linear and nonlinear cases of these systems. Applications are imposed.

2. Fractional Calculus

The idea of the fractional calculus (i.e., calculus of integrals and derivatives of any arbitrary
real or complex order) was planted over 300 years ago. Abel in 1823 investigated the
generalized tautochrone problem and for the first time applied fractional calculus techniques
in a physical problem. Later Liouville applied fractional calculus to problems in potential
theory. Since that time the fractional calculus has haggard the attention of many researchers
in all area of sciences (see [25–27]).

This section concerns with some preliminaries and notations regarding the fractional
calculus.

Definition 2.1. The fractional (arbitrary) order integral of the function f of order α > 0 is
defined by

Iαaf(t) =
∫ t

a

(t − τ)α−1

Γ(α)
f(τ)dτ. (2.1)

When = 0, we write Iαaf(t) = f(t) ∗ φα(t), where (∗) denoted the convolution product (see
[16]), φα(t) = tα−1/Γ(α), t > 0, φα(t) = 0, t ≤ 0 and φα → δ(t) as α → 0 where δ(t) is the delta
function.

Definition 2.2. The fractional (arbitrary) order derivative of the function f of order 0 ≤ α < 1
is defined by

Dα
af(t) =

d

dt

∫ t

a

(t − τ)−α

Γ(1 − α)
f(τ)dτ

d

dt
I1−αa f(t). (2.2)

Remark 2.3. From Definitions 2.1 and 2.2, a = 0, we have

Dαtμ =
Γ
(
μ + 1

)
Γ
(
μ − α + 1

) tμ−α, μ > −1; 0 < α < 1,

Iαtμ =
Γ
(
μ + 1

)
Γ
(
μ + α + 1

) tμ+α, μ > −1; α > 0.

(2.3)
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The Leibniz rule is

Dα
a

[
f(t)g(t)

]
=

∞∑
k=0

(
α
k

)
Dα−k

a f(t)Dk
ag(t) =

∞∑
k=0

(
α
k

)
Dα−k

a g(t)Dk
af(t), (2.4)

where

(
α
k

)
=

Γ(α + 1)
Γ(k + 1)Γ(α + 1 − k)

. (2.5)

In this paper we deal with the following fractional differential equation:

Dαu(t, z) = a(t, z)uzz + b(t, z)uz + c(t, z)u, (2.6)

where a/= 0, b, c, u are complex valued functions, analytic in the domain D := J × U; J =
[0, T], T ∈ (0,∞), and U := {z ∈ C, |z| ≤ 1}.

Definition 2.4. The Caputo fractional derivative of order μ > 0 is defined, for a smooth
function f(t), by

cDμf(t) :=
1

Γ
(
n − μ

)
∫ t

0

f (n)(ζ)

(t − ζ)μ−n+1
dζ, (2.7)

where n = [μ] + 1 (the notation [μ] stands for the largest integer not greater than μ).
Note that there is a relationship between Riemann-Liouville differential operator and

the Caputo operator

D
μ
af(t) =

1
Γ
(
1 − μ

) f(a)
(t − a)μ

+ cD
μ
af(t), (2.8)

and they are equivalent in a physical problem (i.e., a problem which specifies the initial
conditions) [28].

Equation (2.6) involves well known time fractional diffusion equations. Several
researchers have studied fractional dynamic equations generalizing the diffusion or wave
equations in terms of R-L or Caputo time fractional derivatives, and their fundamental
solutions have been represented in terms of the Mittag-Leffler (M-L) functions and their gen-
eralizations. The mathematical study of fractional diffusion equations began with the work
of Kochubeı̆ [29, 30]. Later this study followed by the work of Metzler and Klafter [31] and
Zaslavsky [32]. Recently, Mainardi et al. obtained the time fractional diffusion equation from
the standard diffusion equation [33, 34]. By using the Fourier-Laplace transform method, it
was shown in [35] that the fundamental solution of the fractional diffusion equation with
a generalized Riemann-Liouville time fractional derivative defined in the infinite domain
can be expressed via Foxs H-function, when a(t, z) = K, where K is a constant. Moreover,
by employing the concept of majorant functions, it was proved in [36] the existence and
uniqueness of holomorphic solutions to nonlinear fractional diffusion problems. Finally, by
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applying the fractional variational iteration method, it was provided in [37] the numerical
solutions of time-fractional reaction-diffusion equation with modified Riemann-Liouville
derivative.

3. Complex Transforms

In this section, we shall illustrate two types of complex transform. The first type is equiva-
lence transforms for the homogeneous and nonhomogeneous equations. The second is non
equivalence transform.

3.1. Equivalence Transforms

Assume the complex transform

u(t, z) = σ(z)u(t, z), (3.1)

where σ /= 0 is a complex valued function of complex variable z ∈ U; therefor, we have

σ(z) := σ1(z) + iσ2(z), u(t, z) = v(t, z) + iw(t, z),

a(t, z) = a1(t, z) + ia2(t, z), b(t, z) = b1(t, z) + ib2(t, z),

c(t, z) = c1(t, z) + ic2(t, z), u(t, z) = v(t, z) + iw(t, z).

(3.2)

Substituting (3.1) in (2.6) yields

Dαu(t, z) = a(t, z)uzz + b(t, z)uz + c(t, z)u, (3.3)

where

a = a, b = b + 2a
σz

σ
, c = c + a

σzz

σ
+ b

σz

σ
. (3.4)

Thus under the map (3.1), (2.6) remains homogeneous with new coefficients. Our aim is to
translate (3.3) into a system of fractional order using the relations in (3.2). Again substituting
(3.2) in (2.6) implies the following system:

Dαv = a1vzz − a2wzz + b1vz − b2wz + c1v − c2w,

Dαw = a1wzz + a2vzz + b1wz + b2vz + c1w + c2v.
(3.5)

Since u = v+ iw = (σ1(z)+ iσ2(z))(v(t, z)+ iw(t, z)) = σ1v−σ2w+ i(σ1w+σ2v), then we obtain
the relations

v = σ1v − σ2w,

w = σ2v + σ1w.
(3.6)
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Consequently we have

vz = σ1vz + σ1zv − σ2wz − σ2zw,

vzz = σ1vzz + 2σ1zvz + σ1zzv − σ2wzz − 2σ2zwz − σ2zzw,

wz = σ2vz + σ2zv + σ1wz + σ1zw,

vzz = σ2vzz + 2σ2zvz + σ2zzv + σ1wzz + 2σ1zwz + σ1zzw.

(3.7)

By the linearity of the fractional differential operator Dα, we impose that

Dαv = σ1D
αv − σ2D

αw,

Dαw = σ2D
αv + σ1D

αw.
(3.8)

By injecting (3.7) and (3.8) in (3.5) we receive the following system:

Dαv = a1vzz − a2wzz + b1vz − b2wz + c1v − c2w,

Dαw = a1wzz + a2vzz + b1wz + b2vz + c1w + c2v,
(3.9)

where

a1 = a1, a2 = a2,

b1 = b1 +
2σ1z(a1σ1 + a2σ2) + 2σ2z(a1σ2 − a2σ1)

σ2
1 + σ2

2

,

b2 = b2 − 2σ1z(a1σ2 − a2σ1) + 2σ2z(a2σ2 − a1σ1)
σ2
1 + σ2

2

,

c1 = c1 +
σ1zz(a1σ1 + a2σ2) + σ2zz(a1σ2 − a2σ1) + σ1z(b1σ1 + b2σ2) + σ2z(b1σ2 − b2σ1)

σ2
1 + σ2

2

,

c2 = c2 − σ1zz(a1σ2 − a2σ1) + σ2zz(a1σ1 − a2σ2) + σ1z(b1σ2 − b2σ1) − σ2z(b1σ1 + b2σ2)
σ2
1 + σ2

2

.

(3.10)

Hence we conclude the following result.

Theorem 3.1. Let a/= 0, b, c, u be complex valued functions, analytic in the domain D = J ×U, and
let σ /= 0 be complex valued function in U. Then the fractional coupled system (3.5) is equivalent to
the transformed fractional coupled system (3.9) if and only if (3.10) holds.
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Corollary 3.2. Let

a2 = 0,

b2 =
2σ1za1σ2 − 2σ2za1σ1

σ2
1 + σ2

2

,

c2 =
σ1zza1σ2 + σ2zza1σ1 + σ1z(b1σ2 − b2σ1) − σ2z(b1σ1 + b2σ2)

σ2
1 + σ2

2

.

(3.11)

Then the fractional coupled system (3.5) is equivalent to the transformed fractional uncoupled system

Dαv = a1vzz + b1vz + c1v,

Dαw = a1wzz + b1wz + c1w,
(3.12)

where a1, b1, and c1 are defined in (3.10).
Now we proceed to consider the nonhomogeneous equation

Dαu(t, z) = a(t, z)uzz + b(t, z)uz + c(t, z)u + f(t, z), (3.13)

where a/= 0, b, c, u, and f are complex valued functions, analytic in the domain D such that f =
f1 + if2.

Assume the complex transform

u(t, z) = ρ(t, z)u(t, z), (3.14)

where ρ /= 0 is a complex valued function of complex variable z ∈ U, with

ρ(t, z) := ρ1(t, z) + iρ2(t, z). (3.15)

Substituting (3.14) in (3.13) and using the Leibniz rule imply

Dαu(t, z) = a(t, z)uzz + b(t, z)uz + c(t, z)u + f(t, z), (3.16)

where

a = a, b = b + 2a
ρz
ρ
, c = c + a

ρzz
ρ

+ b
ρz
ρ
, f =

f

ρ
− αρt

ρ
I1−αu. (3.17)

Obviously, (3.16) remains nonhomogeneous with new coefficients. Our goal is to reduce (3.16) to a
system of fractional order using the relations (3.2) and (3.15). A calculation yields the following
system:

Dαv = a1vzz − a2wzz + b1vz − b2wz + c1v − c2w + f1,

Dαw = a1wzz + a2vzz + b1wz + b2vz + c1w + c2v + f2.
(3.18)
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Since

v = ρ1v − ρ2w,

w = ρ2v + ρ1w,
(3.19)

then by taking the fractional derivative of the variables v and w in (3.19), we obtain

Dαv = ρ1D
αv − ρ2D

αw + h1,

Dαw = ρ2D
αv + ρ1D

αw + h2,
(3.20)

where

h1 = ρ1tI
1−αv − ρ2tI

1−αw,

h2 = ρ2tI
1−αv + ρ1tI

1−αw.
(3.21)

Consequently, we impose the following system:

Dαv = a1vzz − a2wzz + b1vz − b2wz + c1v − c2w + f1,

Dαw = a1wzz + a2vzz + b1wz + b2vz + c1w + c2v + f2,
(3.22)

where

a1 = a1, a2 = a2,

b1 = b1 +
2ρ1z

(
a1ρ1 + a2ρ2

)
+ 2ρ2z

(
a1ρ2 − a2ρ1

)
ρ21 + ρ22

,

b2 = b2 −
2ρ1z

(
a1ρ2 − a2ρ1

)
+ 2ρ2z

(
a2ρ2 − a1ρ1

)
ρ21 + ρ22

,

c1 = c1 +
ρ1zz
(
a1ρ1 + a2ρ2

)
+ ρ2zz

(
a1ρ2 − a2ρ1

)
+ ρ1z

(
b1ρ1 + b2ρ2

)
+ ρ2z

(
b1ρ2 − b2ρ1

)
ρ21 + ρ22

,

c2 = c2 −
ρ1zz
(
a1ρ2 − a2ρ1

)
+ ρ2zz

(
a1ρ1 − a2ρ2

)
+ ρ1z

(
b1ρ2 − b2ρ1

) − ρ2z
(
b1ρ1 + b2ρ2

)
ρ21 + ρ22

,

f1 =
ρ1
(
f1 − h1

)
+ ρ2
(
f2 − h2

)
ρ21 + ρ22

,

f2 =
ρ2
(
f1 − h1

)
+ ρ1
(
f2 − h2

)
ρ21 + ρ22

.

(3.23)

Hence we conclude the following result.
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Theorem 3.3. Let a/= 0, b, c, u, f and ρ be complex valued functions, analytic in the domain D =
J × U. Then the fractional coupled system (3.18) is equivalent to the transformed fractional coupled
system (3.22) if and only if (3.23) holds.

Corollary 3.4. Let

a2 = 0,

b2 =
2ρ1za1ρ2 − 2ρ2za1ρ1

ρ21 + ρ22
,

c2 =
ρ1zza1ρ2 + ρ2zza1ρ1 + ρ1z

(
b1ρ2 − b2ρ1

) − ρ2z
(
b1ρ1 + b2ρ2

)
ρ21 + ρ22

.

(3.24)

Then the fractional coupled system (3.18) is equivalent to the transformed fractional uncoupled system

Dαv = a1vzz + b1vz + c1v + f1,

Dαw = a1wzz + b1wz + c1w + f2,
(3.25)

where a1, b1, and c1 are defined in (3.23).

3.2. Nonequivalence Transforms

Here, we shall show that the transform (3.14) reduces (2.6) into nonhomogeneous equation.
And Hence we obtain nonhomogeneous system. Substituting (3.14) in (2.6), we have

Dαu(t, z) = a(t, z)uzz + b(t, z)uz + c(t, z)u + g(t, z), (3.26)

where

a = a, b = b + 2a
ρz
ρ
, c = c + a

ρzz
ρ

+ b
ρz
ρ
, g(t, z) =

αρt
ρ

I1−αu := g1(t, z) + ig2(t, z).

(3.27)

A computation implies the following system:

Dαv = a1vzz − a2wzz + b1vz − b2wz + c1v − c2w + g1,

Dαw = a1wzz + a2vzz + b1wz + b2vz + c1w + c2v + g2.
(3.28)

Now in view of (3.19)–(3.21), we have the system

Dαv = a1vzz − a2wzz + b1vz − b2wz + c1v − c2w + g1,

Dαw = a1wzz + a2vzz + b1wz + b2vz + c1w + c2v + g2,
(3.29)
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where

a1 = a1, a2 = a2,

b1 = b1 +
2ρ1z

(
a1ρ1 + a2ρ2

)
+ 2ρ2z

(
a1ρ2 − a2ρ1

)
ρ21 + ρ22

,

b2 = b2 −
2ρ1z

(
a1ρ2 − a2ρ1

)
+ 2ρ2z

(
a2ρ2 − a1ρ1

)
ρ21 + ρ22

,

c1 = c1 +
ρ1zz
(
a1ρ1 + a2ρ2

)
+ ρ2zz

(
a1ρ2 − a2ρ1

)
+ ρ1z

(
b1ρ1 + b2ρ2

)
+ ρ2z

(
b1ρ2 − b2ρ1

)
ρ21 + ρ22

,

c2 = c2 −
ρ1zz
(
a1ρ2 − a2ρ1

)
+ ρ2zz

(
a1ρ1 − a2ρ2

)
+ ρ1z

(
b1ρ2 − b2ρ1

) − ρ2z
(
b1ρ1 + b2ρ2

)
ρ21 + ρ22

,

g1 =
ρ1
(
g1 − h1

)
+ ρ2
(
g2 − h2

)
ρ21 + ρ22

,

g2 =
ρ2
(
g1 − h1

)
+ ρ1
(
g2 − h2

)
ρ21 + ρ22

.

(3.30)

Thus we receive the following result.

Theorem 3.5. Let a/= 0, b, c, u, and ρ be complex valued functions, analytic in the domainD = J×U.
Then the fractional coupled system (3.28) is equivalent to the transformed fractional coupled system
(3.29) if and only if (3.30) holds.

Corollary 3.6. Let

a2 = 0,

b2 =
2ρ1za1ρ2 − 2ρ2za1ρ1

ρ21 + ρ22
,

c2 =
ρ1zza1ρ2 + ρ2zza1ρ1 + ρ1z

(
b1ρ2 − b2ρ1

) − ρ2z
(
b1ρ1 + b2ρ2

)
ρ21 + ρ22

.

(3.31)

Then the fractional coupled system (3.28) is equivalent to the transformed fractional uncoupled system

Dαv = a1vzz + b1vz + c1v + g1,

Dαw = a1wzz + b1wz + c1w + g2,
(3.32)

where a1, b1, and c1 are defined in (3.30).
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4. Existence and Uniqueness

In this section we shall discuss the existence and uniqueness of solution for the linear and
nonlinear systems. For this purpose, we need the following concept.

Definition 4.1 (see [38]). A vector-valued function X(t, x) is said to satisfy a Lipschitz
condition in a region R in (t, x)-space if, for some constant L (called the Lipschitz constant),
we have

∥∥X(t, x) −X
(
t, y
)∥∥ ≤ L

∥∥x − y
∥∥, (4.1)

whenever (t, x), (t, y) ∈ R.
A convex domain D means that for any two points x and y in D, (1 − t)x + ty ∈ D for

0 ≤ t ≤ 1.

Lemma 4.2 (see [38]). If X(t, x) has continuous partial derivatives on a bounded closed convex
domain D, then it satisfies a Lipschitz condition.

Theorem 4.3. Assume that all the functions in the system (3.9) are analytic in the domain D. Then
the system (3.9)-(3.10) has a unique solution in D.

Proof. System (3.9) can be assumed as in a matrix form

(
Dαv
Dαw

)
=

(
a1 −a2 b1 −b2 c1 −c2
a2 a1 b2 b1 c2 c1

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vzz

wzz

vz

wz

v
w

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

:= AZ,

(4.2)

where Z = (Z1(t, z), . . . , Z6(t, z))
T . Since the domain D = J × U is bounded closed convex

and all the functions Zi, i = 1, . . . , 6 are analytic in D then in view of Lemma 4.2, Z satisfies
a Lipschitz condition. Hence by the Banach fixed point theorem, (4.2) has a unique solution
and has a unique solution as well as system (3.9). This completes the proof.

Theorem 4.4. Let the functions in the system (3.22) be analytic in the domain D. Moreover let f be
a Lipschitz function. Then the system (3.22)-(3.23) has a unique solution in D.
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Proof. System (3.22) can be written in a matrix form

(
Dαv
Dαw

)
=

(
a1 −a2 b1 −b2 c1 −c2
a2 a1 b2 b1 c2 c1

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vzz

wzz

vz

wz

v
w

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎝f1

f2

⎞
⎠

:= AZ + F.

(4.3)

Hence Lemma 4.2 and Banach fixed point theorem imply the uniqueness of (4.3) and
consequently (3.22). This completes the proof.

5. Applications

In this section, we shall illustrate some examples.

Example 5.1. Consider the equation

Dαu(t, z) = Az2uzz + Bzuz + Cu, (5.1)

where A/= 0, B and C are real constants, and the complex transform

u(t, z) = z2u(t, z) := (σ1 + iσ2)(v + iw). (5.2)

Equation (5.1) reduces to the homogeneous type

Dαu(t, z) = Az2uzz + Bzuz + Cu, (5.3)

where

A = A, B = (4A + B), C = 2A + 2B + C. (5.4)

Hence (5.3) can be translated to the uncoupled system

Dαv = Aσ1vzz + B

(
±
√

r + σ1

2

)
vz + Cv,

Dαw = Aσ2wzz + B

(
±
√

r − σ1

2

)
wz + Cw,

(5.5)
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where r =
√
σ2
1 + σ2

2 . Furthermore, it can be represented as coupled system

Dαv = Aσ1vzz −Aσ2wzz + B

(
±
√

r + σ1

2

)
vz − B

(
±
√

r − σ1

2

)
wz + Cv − Cw,

Dαw = Aσ1wzz +Aσ2vzz + B

(
±
√

r + σ1

2

)
wz + B

(
±
√

r − σ1

2

)
vz + Cw + Cv.

(5.6)

Example 5.2. Consider the equation

Dαu(t, z) = Atz2uzz + Btzuz + Ctu + eit, t ∈ [a, 1], a /= 0, (5.7)

where A/= 0, B and C are real constants, and the complex transform

u(t, z) = tz2u(t, z) := t
(
ρ1 + iρ2

)
(v + iw). (5.8)

Thus (5.7) becomes

Dαu(t, z) = Atz2uzz + Btzuz + Ctu + f, (5.9)

where

A = A, B = (4A + B), C = 2A + 2B + C,

f = eit − αI1−αu
t

:=
(
cos t − φ1

)
+ i
(
sin t − φ2

)
:= f1 + if2.

(5.10)

Hence (5.7) can be formulated to the uncoupled system

Dαv = Aρ1vzz + Bt

(
±
√

r + ρ1
2

)
vz + Ctv + f1,

Dαw = Aρ2wzz + Bt

(
±
√

r − ρ1
2

)
wz + Ctw + f2,

(5.11)

where r =
√
ρ21 + ρ22. Furthermore, it can be represented as coupled system

Dαv = Aρ1vzz −Aρ2wzz + Bt

(
±
√

r − ρ1
2

)
vz − Bt

(
±
√

r − ρ1
2

)
wz + Ctv − Ctw + f1,

Dαw = Aρ1wzz +Aρ2vzz + Bt

(
±
√

r + ρ1
2

)
wz + Bt

(
±
√

r − ρ1
2

)
vz + Ctw + Ctv + f2.

(5.12)
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Next example is a time fractional diffusion equation, which describes the reconstruc-
tion of a source. Recently, for real case, this equation is studied by Wei and Zhang [39].

Example 5.3. Consider the fractional diffusion equation

Dαu(t, z) = uzz + f(z)p(t), (5.13)

where u(t, z) is the solute concentration, p(t) is the source term, and t ∈ (0, T), z ∈ U.
Equation (5.13) is a special case of (3.13) with a(t, z) = 1, b(t, z) = c(t, z) = 0; thus it can
be reduced to the coupled system

Dαv = vzz − b1vz − b2wz + c1v − c2w + f1,

Dαw = wzz + b1wz + b2vz + c1w + c2v + f2,
(5.14)

where f = (fp(t)/ρ) − (αρt/ρ)I
1−αu := f1 + if2,

a1 = 1, a2 = 0, b1 =
2ρ1z

(
a1ρ1

)
+ 2ρ2z

(
a1ρ2

)
ρ21 + ρ22

,

b2 = −2ρ1z
(
a1ρ2

)
+ 2ρ2z

(−a1ρ1
)

ρ21 + ρ22
, c1 =

ρ1zz
(
a1ρ1

)
+ ρ2zz

(
a1ρ2

)
ρ21 + ρ22

,

c2 = −ρ1zz
(
a1ρ2

)
+ ρ2zz

(
a1ρ1

)
ρ21 + ρ22

, f1 =
ρ1
(
f1 − h1

)
+ ρ2
(
f2 − h2

)
ρ21 + ρ22

,

f2 =
ρ2
(
f1 − h1

)
+ ρ1
(
f2 − h2

)
ρ21 + ρ22

.

(5.15)

6. Conclusion

We suggested two types of complex transforms for systems of fractional differential equa-
tions.We concluded that the complex fractional differential equations can be transformed into
coupled and uncoupled system of homogeneous and nonhomogeneous types. Moreover,
the existence and uniqueness of these systems are studied by using the Banach fixed point
theorem. Some examples are illustrated.
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