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We introduce an iterative process which converges strongly to a common point of set of solutions
of equilibrium problem and set of fixed points of finite family of relatively nonexpansive multi-
valued mappings in Banach spaces.

1. Introduction

Let E be a real Banach space with dual E∗. The function φ : E × E → R
+, defined by

φ
(
x, y
)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y
∥∥2, for x, y ∈ E, (1.1)

is studied by Alber [1] and Reich [2], where J is the normalized duality mapping from E to
2E

∗
defined by Jx := {f∗ ∈ E∗ : 〈x, f∗〉 = ||x||2 = ||f∗||2}, where 〈·, ·〉 denotes the generalized

duality pairing. It is well known that E is smooth if and only if J is single valued and if E is
uniformly smooth then J is uniformly continuous on bounded subsets of E. We note that in a
Hilbert space H, J is the identity operator.

Let C be a nonempty closed convex subset of a Hilbert space H. It is well known that
the metric projection of H onto C, PC : H → C, is nonexpansive. This fact actually chara-
cterizes Hilbert spaces and consequently, it is not available in more general Banach spaces. In
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this direction, Alber [1] introduced a generalized projection operatorΠC in a Banach space E
which is an analogue of metric projection in Hilbert spaces.

Let C be a nonempty closed and convex subset of a reflexive, strictly convex and
smooth Banach space E. The generalized projection mapping, introduced by Alber [1], is a
mapping ΠC : E → C, that assigns to an arbitrary point x ∈ E the minimum point of the
functional φ(y, x), that is, ΠCx = x, where x is the solution to the minimization problem

φ(x, x) = min
{
φ
(
y, x
)
, y ∈ C

}
. (1.2)

Let C be a nonempty closed convex subset of a Banach space E. Let T : C → C be a single-
valuedmapping. An element p ∈ C is called a fixed point of T if T(p) = p. The set of fixed points
of T is denoted by F(T). A point p in C is said to be an asymptotic fixed point of T (see [2]) if
C contains a sequence {xn} which converges weakly to p such that limn→∞||xn − Txn|| = 0.
The set of asymptotic fixed points of T will be denoted by F̂(T). T is said to be nonexpansive
if ||Tx − Ty|| ≤ ||x − y|| for each x, y ∈ C and is called relatively nonexpansive if (A1) F(T)/= ∅;
(A2) φ(p, Tx) ≤ φ(p, x) for x ∈ C and p ∈ F(T) and (A3) F(T) = F̂(T).

Let C be a nonempty closed convex subset of a Banach space E and let N(C) and
CB(C) denote the family of nonempty subsets and nonempty closed bounded subsets of C,
respectively. Let H be the Hausdorff metric on CB(C) defined by

H(A,B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}

, (1.3)

for all A,B ∈ CB(C), where d(a, B) = inf{||a − b|| : b ∈ B} is the distance from the point a to
the subset B.

Let T : C → CB(C) be a multivalued mapping. T is said to be a nonexpansive if
H(Tx, Ty) ≤ ||x − y||, for x, y ∈ C. An element p ∈ C is called a fixed point of T , if p ∈ F(T),
where F(T) := {p ∈ C : p ∈ T(p)}. A point p ∈ C called an asymptotic fixed point of T , if there
exists a sequence {xn} in C which converges weakly to p such that limn→∞d(xn, Txn) = 0. T
is said to be relatively nonexpansive if (B1) F(T)/= ∅; (B2) φ(p, u) ≤ φ(p, x) for x ∈ C, u ∈ Tx,
p ∈ F(T) and (B3) F(T) = F̂(T), where F̂(T) is the set of asymptotic fixed points of T .

We remark that the class of relatively nonexpansive single-valued mappings is con-
tained in a class of relatively nonexpansive multi-valued mappings. An example of relatively
nonexpansive multi-valued mapping by Homaeipour and Razani [3] is given below.

Example 1.1. Let I = [0, 1], X = Lp(I), 1 < p < ∞ and C = {f ∈ X : f(x) ≥ 0, for all x ∈ I}. Let
T : C → CB(C) be defined by

T
(
f
)
=

⎧
⎪⎨

⎪⎩

{
g ∈ C : f(x) − 3

4
≤ g(x) ≤ f(x) − 1

4
, ∀x ∈ I

}
, if f(x) > 1, x ∈ I,

{0}, otherwise.
(1.4)

It is shown in [3] that T is relatively nonexpansive multi-valued mapping which is not
nonexpansive.
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The study of fixed points for multi-valued nonexpansive mappings in relation to
Hausdorff metric was introduced by Markin [4] (see also [5]). Since then a lot of activity
in this area and fixed point theory for multi-valued nonexpansive mappings has been
developed which has some nontrivial applications in pure and applied sciences including
control theory, convex optimization, differential inclusion, and economics (see, e.g., [6] and
references therein). Later, Lim [7] established the existence of fixed points for multi-valued
nonexpansive mappings in uniformly convex Banach spaces.

It is well known that the normal Mann’s iterative [8] algorithm has only weak
convergence in an infinite-dimensional Hilbert space even for nonexpansive single-valued
mappings. Consequently, in order to obtain strong convergence, one has to modify the
normal Mann’s iteration algorithm, the so called hybrid projection iteration method is such
a modification. The hybrid projection iteration algorithm (HPIA)was introduced initially by
Haugazeau [9] in 1968. For 40 years, (HPIA) has received rapid developments. For details,
the readers are referred to papers [10–12] and the references therein.

In 2003, Nakajo and Takahashi [12] proposed the following modification of the Mann
iteration method for a nonexpansive single-valued mapping T in a Hilbert space H:

x0 ∈ C, chosen arbitrary,

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0), n ≥ 0,

(1.5)

where C is a closed convex subset of H, PC denotes the metric projection from H onto C.
They proved that if the sequence {αn} is bounded above from one then the sequence {xn}
generated by (1.5) converges strongly to PF(T)(x0).

In spaces more general than Hilbert spaces, Matsushita and Takahashi [11] proposed
the following hybrid iteration method with generalized projection for relatively nonexpan-
sive single-valued mapping T in a Banach space E:

x0 ∈ C, chosen arbitrary,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0), n ≥ 0.

(1.6)

They proved the following convergence theorem.

TheoremMT. Let E be a uniformly convex and uniformly smooth Banach space, letC be a nonempty
closed convex subset of E, let T be a relatively nonexpansive single-valued mapping from C into
itself, and let {αn} be a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞αn < 1.
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Suppose that {xn} is given by (1.6), where J is the duality mapping on E. If F(T) is nonempty, then
{xn} converges strongly toΠF(T)x0, whereΠF(T)(·) is the generalized projection from E onto F(T).

Let f : C × C → R be a bifunction, where R is the set of real numbers. The equilibrium
problem for f is

finding x∗ ∈ C such that f
(
x∗, y

) ≥ 0, ∀y ∈ C. (1.7)

The solution set of (1.7) is denoted by EP(f).
If f(x, y) = 〈Ax, y − x〉, where A : C → C is a monotone mapping, then the problem

(1.7) reduces to the system of variational inequality problem

find an element x∗ ∈ C such that
〈
Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.8)

That is, the problem (1.8) is a special case of (1.7). The set of solutions of inequality (1.8) is
denoted by V I(C,A).

For solving the equilibrium problem for a bifunction f : C × C → R, we assume that
f satisfies the following conditions:

(A1) f(x, x) = 0, for all x ∈ C,

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C,

(A3) for each x, y, z ∈ C, limt→ 0+f(tz + (1 − t)x, y) ≤ f(x, y),

(A4) for each x ∈ C, y → f(x, y) is convex and lower semicontinuous.

Recently, many authors studied the problem of finding a common element of the set
of fixed points of nonexpansive or relatively nonexpansive single-valued mapping and the
set of solutions of an equilibrium problems in the frame work of Hilbert spaces and Banach
spaces, respectively: see, for instance, [2, 13–21] and the references therein.

In [22], Kumam introduced the following iterative scheme in a Hilbert space:

x0 ∈ H,

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, un − yn

〉 ≥ 0, ∀y ∈ C,

wn = αnxn + (1 − αn)Tun,

Cn = {z ∈ H : ‖wn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn+1∩Qn(x0), n ≥ 0,

(1.9)

for finding a common element of the set of fixed point of nonexpansive single-valued
mapping T and set of solution of equilibrium problems.
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In the case that E is a Banach space, Takahashi and Zembayashi [16] introduced the
following iterative scheme which is called the shrinking projection method:

x0 ∈ C, chosen arbitrary,

yn = J−1(αnJxn + (1 − αn)JTxn),

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1(x0), n ≥ 0,

(1.10)

where J is the duality mapping on E, ΠC is the generalized projection from E onto C and
T is relatively nonexpansive single-valued mapping. They proved that the sequence {xn}
converges strongly to a common element of the set of fixed point of relatively nonexpansive
single-valued mapping and set of solution of equilibrium problem under appropriate
conditions.

We remark that the computation of xn+1 in (1.9) and (1.10) is not simple because of the
involvement of computation of Cn+1 from Cn for each n ≥ 0.

More recently, Homaeipour and Razani [3] studied the following iterative scheme
for a fixed point of relatively nonexpansive multi-valued mapping in uniformly convex and
uniformly smooth Banach space E:

x0 ∈ C, chosen arbitrary,

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)Jzn), zn ∈ Txn, n ≥ 0,

(1.11)

where {αn} ⊂ (0, 1) for all n ≥ 0 and lim infn→∞αn(1 − αn) > 0. They proved that if J is
weakly sequentially continuous then the sequence {xn} converges weakly to a fixed point of
T . Furthermore, it is shown that the scheme converges strongly to a fixed point of T if interior
of F(T) is nonempty.

But it is worth mentioning that the convergence of the scheme is either weak or it
requires that the interior of F(T) is nonempty.

In this paper, motivated by Kumam [22], Takahashi and Zembayashi [16], and
Homaeipour and Razani [3], we construct an iterative scheme which converges strongly to
a common point of set of solutions of equilibrium problem and set of fixed points of finite
family of relatively nonexpansivemulti-valuedmappings in Banach spaces. Our scheme does
not involve computation of Cn and Qn, for each n ≥ 0, and the requirement that the interior
of F is nonempty is dispensed with. Our theorems improve and unify most of the results that
have been proved for this important class of nonlinear operators.
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2. Preliminaries

Let E be a normed linear space with dimE ≥ 2. The modulus of smoothness of E is the function
ρE : [0,∞) → [0,∞) defined by

ρE(τ) := sup

{∥
∥x + y

∥
∥ +
∥
∥x − y

∥
∥

2
− 1 : ‖x‖ = 1;

∥
∥y
∥
∥ = τ

}

. (2.1)

The space E is said to be smooth if ρE(τ) > 0, for all τ > 0 and E is called uniformly smooth if
and only if limt→ 0+(ρE(t)/t) = 0.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ε) := inf
{
1 −
∥
∥∥∥
x + y

2

∥
∥∥∥ : ‖x‖ =

∥∥y
∥∥ = 1; ε =

∥∥x − y
∥∥
}
. (2.2)

E is called uniformly convex if and only if δE(ε) > 0, for every ε ∈ (0, 2].
In the sequel, we will need the following results.

Lemma 2.1 (see [1]). Let K be a nonempty closed and convex subset of a real reflexive, strictly
convex, and smooth Banach space E and let x ∈ E. Then for all y ∈ K,

φ
(
y,ΠKx

)
+ φ(ΠKx, x) ≤ φ

(
y, x
)
. (2.3)

We make use of the function V : E × E∗ → R, defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗, (2.4)

studied by Alber [1]. That is, V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗. We know the
following lemma.

Lemma 2.2 (see [1]). Let E be reflexive strictly convex and smooth Banach space with E∗ as its dual.
Then

V (x, x∗) + 2
〈
J−1x∗ − x, y∗

〉
≤ V
(
x, x∗ + y∗), (2.5)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.3 (see [1]). Let C be a convex subset of a real smooth Banach space E. Let x ∈ E. Then
x0 = ΠCx if and only if

〈z − x0, Jx − Jx0〉 ≤ 0, ∀z ∈ C. (2.6)
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Lemma 2.4 (see [23]). Let E be a uniformly convex Banach space and BR(0) be a closed ball of
E. Then, there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞) with
g(0) = 0 such that

‖α1x1 + α2x2 + · · · + αNxN‖2 ≤
N∑

i=1

αi‖xi‖2 − αiαjg
(∥∥xi − xj

∥
∥), (2.7)

for i, j ∈ {1, . . . ,N}, αi ∈ (0, 1) such that
∑N

i=1 αi = 1, and xi ∈ BR(0) := {x ∈ E : ||x|| ≤ R}, for
i = 1, 2, . . . ,N.

Lemma 2.5 (see [24]). Let E be a real smooth and uniformly convex Banach space and let {xn} and
{yn} be two sequences of E. If either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n → ∞, then
xn − yn → 0, as n → ∞.

Proposition 2.6 (see [3]). Let E be a strictly convex and smooth Banach space and C be a nonempty
closed convex subset of E. Let T : C → N(C) be a relatively nonexpansive multi-valued mapping.
Then F(T) is closed and convex.

Lemma 2.7 (see [16]). LetC be a nonempty, closed and convex subset of a uniformly smooth, strictly
convex and reflexive real Banach space E. Let f be a bifunction from C × C to R which satisfies
conditions (A1)–(A4). For r > 0 and x ∈ E, define the mapping Fr : E → C as follows:

Frx :=
{
z ∈ C : f

(
z, y
)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
. (2.8)

Then the following statements hold:

(1) Fr is single-valued,

(2) F(Fr) = EP(f),

(3) φ(q, Frx) + φ(Frx, x) ≤ φ(q, x), for q ∈ F(Fr),

(4) EP(f) is closed and convex.

Lemma 2.8 (see [25]). Let {an} be sequences of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N

such thatmk → ∞ and the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1, ak ≤ amk+1. (2.9)

In fact,mk = max{j ≤ k : aj < aj+1}.

Lemma 2.9 (see [26]). Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤
(
1 − βn

)
an + βnδn, n ≥ n0, for some n0 ∈ N, (2.10)

where {βn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions: limn→∞βn = 0,
∑∞

n=1 βn = ∞,
and lim supn→∞δn ≤ 0. Then, limn→∞an = 0.
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3. Main Result

Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive real
Banach space E with dual E∗. Let f : C × C → R be a bifunction. For the rest of this paper,
Frnx is a mapping defined as follows. For x ∈ E, let Frn :E → C be given by

Frnx :=
{
z ∈ C : f

(
z, y
)
+

1
rn

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, (3.1)

where {rn}n∈N
⊂ [c1,∞), for some c1 > 0.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly
convex real Banach space E. Let f : C×C → R, be a bifunction which satisfies conditions (A1)–(A4).
Let Ti : C → CB(C), for i = 1, 2, . . . ,N, be a finite family of relatively nonexpansive multi-valued
mappings. Assume that F := ∩N

i=1F(Ti) ∩ EP(f) is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

wn = Frnxn,

yn = ΠCJ
−1(αnJw + (1 − αn)Jwn),

xn+1 = J−1
(

βn,0Jwn +
N∑

i=1

βn,iJun,i

)

, un,i ∈ Tiyn, n ≥ 0,

(3.2)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn,i} ⊂ [a, b] ⊂ (0, 1), for i = 1, 2, . . . ,N,
satisfying βn,0 +βn,1 + · · ·+βn,N = 1, for each n ≥ 0. Then {xn} converges strongly to an element of F.

Proof. Since F is nonempty closed and convex, put x∗ := ΠFw. Now from (3.2), Lemma 2.7(3)
and property of φ, we get that

φ
(
x∗, yn

)
= φ
(
x∗,ΠCJ

−1(αnJw + (1 − αn)Jwn)
)

≤ φ
(
x∗, J−1(αnJw + (1 − αn)Jwn)

)

= ‖x∗‖2 − 2〈x∗, αnJw + (1 − αn)Jwn〉 + ‖αnJw + (1 − αn)Jwn‖2

≤ ‖x∗‖2 − 2αn〈x∗, Jw〉 − 2(1 − αn)〈x∗, Jwn〉

+ αn‖w‖2 + (1 − αn)‖wn‖2

≤ αnφ(x∗, w) + (1 − αn)φ(x∗, wn)

= αnφ(x∗, w) + (1 − αn)φ(x∗, Frnxn)

≤ αnφ(x∗, w) + (1 − αn)φ(x∗, xn).

(3.3)
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Now, from (3.2), Lemma 2.7(3), relatively nonexpansiveness of Ti, property of φ and (3.3),
we have that

φ(x∗, xn+1) = φ

(

x∗, J−1
(

βn,0Jwn +
N∑

i=1

βn,iJun,i

))

≤ βn,0φ(x∗, wn) +
N∑

i=1

βn,iφ(x∗, un,i)

= βn,0φ(x∗, Frnxn) +
N∑

i=1

βn,iφ(x∗, un,i)

≤ βn,0φ(x∗, xn) +
(
1 − βn,0

)
φ
(
x∗, yn

)

≤ βn,0φ(x∗, xn) +
(
1 − βn,0

)[
αnφ(x∗, w) + (1 − αn)φ(x∗, xn)

]

≤ δnφ(x∗, w) + (1 − δn)φ(x∗, xn),

(3.4)

where δn = (1 − βn,0)αn. Thus, by induction,

φ(x∗, xn+1) ≤ max
{
φ(x∗, x0), φ(x∗, w)

}
, ∀n ≥ 0, (3.5)

which implies that {xn} is bounded and hence {yn} and {wn} are bounded. Now let zn =
J−1(αnJw + (1 − αn)Jwn). Then we have that yn = ΠCzn. Using Lemma 2.2 and property of φ,
we obtain that

φ
(
x∗, yn

) ≤ φ(x∗, zn) = V (x∗, Jzn)

≤ V (x∗, Jzn − αn(Jw − Jx∗)) − 2〈zn − x∗,−αn(Jw − Jx∗)〉

= φ
(
x∗, J−1(αnJx

∗ + (1 − αn)Jwn) + 2αn〈zn − x∗, Jw − Jx∗〉
)

≤ αnφ(x∗, x∗) + (1 − αn)φ(x∗, wn) + 2αn〈zn − x∗, Jw − Jx∗〉

= (1 − αn)φ(x∗, wn) + 2αn〈zn − x∗, Jw − Jx∗〉

≤ (1 − αn)φ(x∗, xn) + 2αn〈zn − x∗, Jw − Jx∗〉.

(3.6)
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Furthermore, from (3.2), Lemma 2.4, relatively nonexpansiveness of Ti, for each i =
1, 2, . . . ,N, Lemma 2.7(3), and (3.6) we have that

φ(x∗, xn+1) = φ

(

x∗, J−1
(

βn,0Jwn +
N∑

i=1

βn,iJun,i

))

≤ βn,0φ(x∗, wn) +
N∑

i=1

βn,iφ(x∗, un,i)

− βn,0βn,ig(‖Jwn − Jun,i‖)

= βn,0φ(x∗, Frnxn) +
N∑

i=1

βn,iφ(x∗, un,i)

− βn,0βn,ig(‖Jwn − Jun,i‖)
≤ βn,0

(
φ(x∗, xn) − φ(xn,wn)

)
+
(
1 − βn,0

)
φ
(
x∗, yn

)

− βn,0βn,ig(‖Jwn − Jun,i‖) ≤ βn,0φ(x∗, xn) − βn,0φ(xn,wn) +
(
1 − βn,0

)

× [(1 − αn)φ(x∗, xn) + 2αn〈zn − x∗, Jw − Jx∗〉] − βn,0βn,ig(‖Jwn − Jun,i‖)
= (1 − δn)φ(x∗, xn) + 2δn〈zn − x∗, Jw − Jx∗〉

− βn,0φ(xn,wn) − βn,0βn,ig(‖Jwn − Jun,i‖),

(3.7)

and hence

φ(x∗, xn+1) ≤ (1 − δn)φ(x∗, xn) + 2δn〈zn − x∗, Jw − Jx∗〉, (3.8)

where δn := αn(1 − βn,0), for all n ∈ N. Note that δn satisfies limnδn = 0 and
∑∞

n=1 δn = ∞.

Now, we consider two cases.

Case 1. Suppose that there exists n0 ∈ N such that {φ(x∗, xn)} is nonincreasing for all n ≥ n0.
In this situation, {φ(x∗, xn)} is then convergent. Then from (3.7), we have that φ(xn,wn) → 0
and hence Lemma 2.5 implies that

xn −wn −→ 0, as n −→ ∞. (3.9)

Moreover, from (3.7), we have that βn,0βn,ig(||Jwn − Jun,i||) → 0, as n → ∞, which implies
by the property of g that Jwn − Jun,i → 0, as n → ∞, for each i ∈ {1, 2, . . . ,N}, and hence,
since J−1 uniformly continuous on bounded sets, we obtain that

wn − un,i −→ 0, as n −→ ∞. (3.10)
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Furthermore, by Lemma 2.1, property of φ and the fact that αn → 0, as n → ∞, imply that

φ
(
wn, yn

)
= φ(wn,ΠCzn) ≤ φ(wn, zn)

= φ
(
wn, J

−1(αnJw + (1 − αn)Jwn)
)

≤ αnφ(wn,w) + (1 − αn)φ(wn,wn) −→ 0, as n −→ ∞,

(3.11)

and hence

wn − yn −→ 0, wn − zn −→ 0, as n −→ ∞. (3.12)

Therefore, from (3.9), (3.10), and (3.12), we obtain that

xn − zn −→ 0, yn − xn −→ 0, as n −→ ∞, (3.13)

d
(
yn, Tiyn

) ≤ ∥∥yn − un,i

∥∥ ≤ ∥∥yn −wn

∥∥ + ‖wn − un,i‖ −→ 0, (3.14)

as n → ∞, for each i ∈ {1, 2, . . . ,N}.

Let {zni} be a subsequence of {zn} such that zni ⇀ z and lim supn→∞〈zn − x∗, Jw −
Jx∗〉 = limi→∞〈zni − x∗, Jw − Jx∗〉. Then, from (3.12), (3.13), and the uniform continuity of J ,
we get that

xni ,wni , yni ⇀ z, Jxn − Jwn −→ 0, as n −→ ∞. (3.15)

Now, we show that z ∈ EP(f). But, from the definition of wn and (A2) we note that

1
rni

〈
y −wni , Jwni − Jxni

〉 ≥ −f(wni , y
) ≥ f

(
y,wni

)
, ∀y ∈ C. (3.16)

Letting i → ∞, we have from (3.15) and (A4) that f(y, z) ≤ 0, for all y ∈ C. Now, for 0 < t ≤ 1
and y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we have yt ∈ C and hence f(yt, z) ≤ 0.
So, from the convexity of the equilibrium bifunction f(x, y) on the second variable y, we have

0 = f
(
yt, yt

) ≤ tf
(
yt, y

)
+ (1 − t)f

(
yt, z

) ≤ tf
(
yt, y

)
, (3.17)

and hence f(yt, y) ≥ 0. Now, letting t → 0 and condition (A3), we obtain that f(z, y) ≥ 0, for
all y ∈ C, and hence z ∈ EP(f).

Next, we show that z ∈ ∩N
i=1F(Ti). But, since each Ti satisfies condition (B3) we obtain

from (3.13) and (3.15) that z ∈ F(Ti), for each i = 1, 2, . . . ,N, and hence z ∈ ∩N
i=1F(Ti).

Thus, from the above discussions we obtain that z ∈ F := ∩N
i=1F(Ti) ∩ EP(f). Therefore,

by Lemma 2.3, we immediately obtain that lim supn→∞〈zn − x∗, Jw − Jx∗〉 = limi→∞〈zni −
x∗, Jw−Jx∗〉 = 〈z−x∗, Jw−Jx∗〉 ≤ 0. It follows from (3.8) and Lemma 2.9 that φ(x∗, xn) → 0,
as n → ∞. Consequently, xn → x∗ by Lemma 2.5.
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Case 2. Suppose that there exists a subsequence {ni} of {n} such that

φ(x∗, xni) < φ(x∗, xni+1) (3.18)

for all i ∈ N. Then, by Lemma 2.8, there exist a nondecreasing sequence {mk} ⊂ N such that
mk → ∞, φ(x∗, xmk) ≤ φ(x∗, xmk+1) and φ(x∗, xk) ≤ φ(x∗, xmk+1), for all k ∈ N. Now, from
(3.7) and the fact that δn → 0, we have

βmk,0φ(xmk ,wmk) + βmk,0βmk,ig(‖Jwmk − Jumk,i‖)
≤ (φ(x∗, xmk) − φ(x∗, xmk+1)

) − δmkφ(x
∗, xmk) + 2δmk〈zmk − x∗, Jw − Jx∗〉,

(3.19)

as k → ∞. Thus, using the same proof of Case 1, we obtain that xmk −wmk → 0 and wmk −
umk,i → 0, as k → ∞, for each i = 1, 2, . . . ,N and hence

lim sup
n→∞

〈zmk − x∗, Jw − Jx∗〉 ≤ 0. (3.20)

Then from (3.8), we have that

φ(x∗, xmk+1) ≤ (1 − δmk)φ(x
∗, xmk) + 2δmk〈zmk − x∗, Jw − Jx∗〉. (3.21)

Since φ(x∗, xmk) ≤ φ(x∗, xmk+1), (3.21) implies that

δmkφ(x
∗, xmk) ≤ φ(x∗, xmk) − φ(x∗, xmk+1) + 2δmk〈zmk − x∗, Jw − Jx∗〉

≤ 2δmk〈zmk − x∗, Jw − Jx∗〉.
(3.22)

In particular, since δmk > 0, we get

φ(x∗, xmk) ≤ 2〈zmk − x∗, Jw − Jx∗〉. (3.23)

Then, from (3.20), we obtain that φ(x∗, xmk) → 0, as k → ∞. This together with (3.21) gives
φ(x∗, xmk+1) → 0, as k → ∞. But φ(x∗, xk) ≤ φ(x∗, xmk+1) for all k ∈ N, thus we obtain that
xk → x∗. Therefore, from the above two cases, we can conclude that {xn} converges strongly
to x∗ and the proof is complete.

If in Theorem 3.1, we assume that f(x, y) = 〈Ax, y − x〉, for A continuous monotone
mapping, then we obtain the following corollary.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a uniformly smooth and
uniformly convex real Banach space E. Let A : C → E∗ be a continuous monotone mapping.
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Let Ti : C → CB(C), for i = 1, 2, . . . ,N, be a finite family of relatively nonexpansive multi-valued
mappings. Assume that F := ∩N

i=1F(Ti) ∩V I(C,A) is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

wn ∈ C such that
〈
Awn, y −wn

〉
+

1
rn

〈
y −wn, Jwn − Jxn

〉 ≥ 0, ∀y ∈ C,

yn = ΠCJ
−1(αnJw + (1 − αn)Jwn),

xn+1 = J−1
(

βn,0Jwn +
N∑

i=1

βn,iJun,i

)

, un,i ∈ Tiyn, n ≥ 0,

(3.24)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn,i} ⊂ [a, b] ⊂ (0, 1), for i = 1, 2, . . . ,N,
satisfying βn,0 +βn,1 + · · ·+βn,N = 1, for each n ≥ 0. Then {xn} converges strongly to an element of F.

Proof. Let f(x, y) = 〈Ax, y−x〉. SinceA is monotone and continuous, we get that a bifunction
f satisfies conditions (A1)–(A4). Thus, the conclusion follows from Theorem 3.1.

If in Theorem 3.1, we assume that N = 1, then we get the following theorem.

Corollary 3.3. Let C be a nonempty, closed, and convex subset of a uniformly smooth and uniformly
convex real Banach space E. Let f : C × C → R, be a bifunction which satisfies conditions (A1)–
(A4). Let T : C → CB(C) be a relatively nonexpansive multi-valued mapping. Assume that F :=
F(T) ∩ EP(f) is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

wn = Frnxn,

yn = ΠCJ
−1(αnJw + (1 − αn)Jwn),

xn+1 = J−1
(
βnJwn +

(
1 − βn

)
Jun

)
, un ∈ Tyn, n ≥ 0,

(3.25)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn} ⊂ [a, b] ⊂ (0, 1), for each n ≥ 0.
Then {xn} converges strongly to an element of F.

Proof. The proof follows from Theorem 3.1 withN = 1.

If in Theorem 3.1, we assume that f ≡ 0, we get the following corollary.

Corollary 3.4. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly
convex real Banach space E. Let Ti : C → CB(C), for i = 1, 2, . . . ,N, be a finite family of relatively
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nonexpansive multi-valued mappings. Assume that F := ∩N
i=1F(Ti) is nonempty. Let {xn} be a seq-

uence generated by

x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1 − αn)Jxn),

xn+1 = J−1
(

βn,0Jxn +
N∑

i=1

βn,iJun,i

)

, un,i ∈ Tiyn, n ≥ 0,

(3.26)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn,i} ⊂ [a, b] ⊂ (0, 1), for i = 1, 2, . . . ,N
satisfying βn,0 +βn,1 + · · ·+βn,N = 1, for each n ≥ 0. Then {xn} converges strongly to an element of F.

If in Theorem 3.1, we assume that each Ti, i = 1, 2, . . . ,N is single valued, we get the
following corollary.

Corollary 3.5. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly
convex real Banach space E. Let f : C × C → R, be a bifunction which satisfies conditions (A1)–
(A4). Let Ti : C → C, for i = 1, 2, . . . ,N, be a finite family of relatively nonexpansive single-valued
mappings. Assume that F := ∩N

i=1F(Ti) ∩ EP(f) is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

wn = Frnxn,

yn = ΠCJ
−1(αnJw + (1 − αn)Jwn),

xn+1 = J−1
(

βn,0Jwn +
N∑

i=1

βn,iJTiyn

)

, n ≥ 0,

(3.27)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn,i} ⊂ [a, b] ⊂ (0, 1), for i = 1, 2, . . . ,N,
satisfying βn,0 +βn,1 + · · ·+βn,N = 1, for each n ≥ 0. Then {xn} converges strongly to an element of F.

If E = H, a real Hilbert space, then E is uniformly convex and uniformly smooth real
Banach space. In this case, J = I, identity map on H and ΠC = PC, projection mapping from
H onto C. Thus, the following corollary holds.

Corollary 3.6. Let C be a nonempty, closed, and convex subset of a Hilbert spaceH. Let f : C×C →
R, be a bifunction which satisfies conditions (A1)–(A4). Let Ti : C → CB(C), for i = 1, 2, . . . ,N, be
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a finite family of relatively nonexpansive multi-valued mappings. Assume that F := ∩N
i=1F(Ti)∩EP(f)

is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

wn = Frnxn,

yn = PC(αnw + (1 − αn)wn),

xn+1 = βn,0wn +
N∑

i=1

βn,iun,i, un,i ∈ Tiyn, n ≥ 0,

(3.28)

where αn ∈ (0, 1) such that limn→∞αn = 0,
∑∞

n=1 αn = ∞, {βn,i} ⊂ [a, b] ⊂ (0, 1), for i = 1, 2, . . . ,N,
satisfying βn,0 +βn,1 + · · ·+βn,N = 1, for each n ≥ 0. Then {xn} converges strongly to an element of F.

Remark 3.7. (1) Theorem 3.1 improves and extends the corresponding results of Kumanm
[22] and Takahashi and Zembayashi [16] in the sense that either our scheme does not require
computation of Cn+1, for each n ≥ 1, or the space considered is more general.

(2) Theorem 3.1 improves the corresponding results of Homaeipour and Razani [3]
in the sense that our convergence is strong and the requirement that the interior of F is
nonempty is dispensed with.
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