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We study the algebraic properties of Toeplitz operators on the Dirichlet space of the unit ball Bn.
We characterize pluriharmonic symbol for which the corresponding Toeplitz operator is normal or
isometric. We also obtain descriptions of conjugate holomorphic symbols of commuting Toeplitz
operators. Finally, the commuting problem of Toeplitz operators whose symbols are of the form
zpzqφ(|z|2) is studied.

1. Introduction

For any integer n ≥ 1, let Bn = {z ∈ C
n : |z| < 1} denote the open unit ball of C

n and dm
denote the normalized Lebesgue measure on Bn. The Sobolev space w1,2 is defined to be the
completion of smooth functions on Bn which satisfy
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The inner product 〈·, ·〉 on w1,2 is defined by
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∫
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dm, ∀f, g ∈ w1,2. (1.2)
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The Dirichlet space D of Bn is the closed subspace consisting of all holomorphic functions
in w1,2. It is easily verified that each point evaluation is a bounded linear functional on D.
Hence, for each z ∈ Bn, there exists a unique reproducing kernel Kz(w) ∈ D such that

f(z) =
〈

f(w), Kz(w)
〉

, ∀f ∈ D. (1.3)

Actually, it can be calculated that Kz(w) = 1 +
∑

α∈Z+n(((|α| + n − 1)!/|α|n!α!)wαzα), where
α = (α1, . . . , αn) is a multi-index, αi ∈ Z

+, |α| =∑n
i=1 αi and z

α = zα11 · · · zαnn . For multi-indexes α
and β, the notation α � β means that

αi ≥ βi, i = 1, . . . , n (1.4)

and α 	 β means that α � β and α/= β.
Let P be the orthogonal projection fromw1,2 ontoD. By the explicit formula forKz(w),

we have

Pψ(z) =
〈

Pψ,Kz

〉

=
〈

ψ,Kz

〉

=
∫

Bn

ψdm

∫

Bn

Kzdm +
n∑

i=1

∫

Bn

∂ψ

∂wi

∂Kz

∂wi
dm(w), ∀ψ ∈ w1,2.

(1.5)

Let Ω = {ϕ ∈ w1,2 : ϕ, ∂ϕ/∂zi, ∂ϕ/∂zi ∈ L∞(Bn)}. Given ϕ ∈ Ω, the Toeplitz operator Tϕ with
symbol ϕ is the linear operator on D defined by

Tϕf = P
(

ϕf
)

, ∀f ∈ D. (1.6)

It is easy to verify that the Toeplitz operator Tϕ : D → D is always bounded, whenever ϕ ∈ Ω.
The algebric properties of Toeplitz operators on the classical Hardy spaces and

Bergman spaces have been well studied, for example, as in [1–5].
On the Hardy space of the unit circle, a well-known theorem of Brown and Halmos

[1] has shown that two Toeplitz operators with bounded symbols commute if and only
if one of the followings holds: (i) both symbols are holomorphic; (ii) both symbols are
antiholomorphic; (iii) a nontrivial linear combination of the symbols is constant.

On the Bergman space, the commuting problem is more complicated. Axler and
C̆uc̆ković [2] proved that Brown-Halmos Theorem also holds for Toeplitze operators with
bounded harmonic symbols. However, the corresponding problem for Toeplitz operator with
general symbol remains open.

In recent years, more and more attention has been paid to the Toeplitz operators on
Dirichlet spaces. The algebric properties of the Toeplitz operators on the classical Dirichlet
spaces of the unit disc have been investigated intensively in [6–13]. Cao considered Fredholm
properties of Toeplitz operators with C1(D) symbols in [6]. Lee showed in [8] that Brown-
Halmos’s result with harmonic symbols remains vaild on the Dirichlet space of the unit disc.
In [12], Duistermaat and Lee gave the following characterizations of the harmonic symbols
for which the associated Toeplitz operators are commuting, self-adjoint, or isometric: (1) for
a harmonic symbol u ∈ Ω′ = {u ∈ C1(D) : u, ∂u/∂z, ∂u/∂z ∈ L∞(D, dA)}, Tu is self-adjoint if
and only if u is a real constant function; (2) for a harmonic symbol u ∈ Ω′, Tu is an isometry
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if and only if u is a constant function of modulus 1; (3) for two harmonic symbols u, v ∈
Ω′, Tu and Tv commute if and only if either u and v are holomorphic or a nontrivial linear
combination of u and v is constant onD. In [13], the corresponding problems have been inves-
tigated on the polydisc Dirichlet spaces and similar results have been obtained.

Motivated by the work of [12, 13], we study the corresponding problems on the
Dirichlet spaces of Bn. In Section 2, we give the characterizations of the pluriharmonic symbol
for which the associated Toeplitz operator is self-adjoint or an isometry. In Section 3, we
discuss when two Toeplitz operators with conjugate holomorphic symbols commute. At last,
we concern with the commuting Toeplitz operators with symbols zpzqφ(|z|2).

2. Characterization of Normality and Isometry

In this section, we will give the condition under which Toeplitz operators with pluriharmonic
symbols are self-adjoint or isometric on D. Before doing this, we first exhibit some properties
of Toeplitz operators on D.

Lemma 2.1. Let f =
∑

β∈Z+n fβz
β ∈ Ω be holomorphic. Then the following statements hold:

(1) Tf1 = f(0);

(2) T ∗
f
1 = f(0);

(3) T ∗
f
1 =
∫

Bn
fKzdm = f(0) +

∑

|β|>0((fβ/|β|(n + |β|))zβ).

Proof. By the definition of the Toeplitz operators and the properties of the reproducing kernel,
we obtain that

Tf1 = 〈Tf1, Kz〉 =
〈

P
(

f
)

, Kz

〉
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〈

f(0), Kz

〉

= f(0),

T ∗
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〉
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1, fKz

〉
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∫
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fKzdm = f(0),

T ∗
f
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〈
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f
1, Kz

〉

=
〈

1, fKz

〉

=
∫
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fKzdm

=
∫
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∑
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fβw
β
∑

α∈Z+n

(|α| + n − 1)!
|α|n!α! zαwαdm
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∑
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)
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∣
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!
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zβ · n!β!
(
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∣
∣β
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)

!

= f(0) +
∑

|β|>0

fβ
∣
∣β
∣
∣
(

n +
∣
∣β
∣
∣
)zβ.

(2.1)
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Lemma 2.2. Let u = f + g ∈ Ω, where f and g are holomorphic. If Tu is normal, then
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2

dm, (2.2)

where G = T ∗
g
(1).

Proof. By assumption, we have T ∗
f+gTf+g = Tf+gT ∗

f+g . In particular,

〈

T ∗
f+gTf+g1, 1

〉

=
〈

Tf+gT
∗
f+g1, 1

〉

. (2.3)

That is,

〈

Tf+g1, Tf+g1
〉

=
〈

T ∗
f+g1, T

∗
f+g1
〉

. (2.4)

It follows from Lemma 2.1 that

〈

f + g(0), f + g(0)
〉

=
〈

f(0) +G, f(0) +G
〉

. (2.5)

Hence,
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On the other hand, by the reproducing property and Lemma 2.1, we have

G(0) = T ∗
g1(0) =

〈

T ∗
g1, K0

〉

=
〈

T ∗
g1, 1
〉

= g(0). (2.7)

Then,
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2

dm. (2.8)

This completes the proof.

The next lemma shows there is only trivial normal Toeplitz operator with holomorphic
(or antiholomorphic) symbols.

Lemma 2.3. Let f =
∑

β∈Z+n fβz
β ∈ Ω be holomorphic. Then the following statements are equivalent:

(1) Tf is normal;

(2) Tf is normal;
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(3) Tf+f is normal;

(4) f is a constant function on Bn.

Proof. (1) ⇒ (4) By Lemma 2.2 (with g = 0), we have that
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This along with the fact that

n∑

i=1

∫

Bn

∣
∣
∣
∣

∂f

∂zi

∣
∣
∣
∣

2

dm =
∥
∥f − f(0)∥∥2 =

∑

|β|>0

∣
∣fβ
∣
∣
2
∥
∥
∥zβ
∥
∥
∥

2
(2.10)

proves that fβ = 0, for |β| > 0. This shows that f is a constant.
(2) ⇒ (4) Since Tf is normal, it follows from Lemma 2.2 that
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which implies that G is a constant function for G is holomorphic.
On the other hand, Lemma 2.1 ensures that

G = T ∗
f
1 = f(0) +

∑

|β|>0
fβ

∣
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∣
∣
(
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∣
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)zβ. (2.12)

It follows that fβ = 0, for all |β| > 0. Hence f is a constant, as desired.
(3) ⇒ (4) Suppose Tf+f is normal. Using Lemma 2.2,
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where G = T ∗
f
(1). We conclude that fβ = 0, for |β| > 0, since by direct computation and

Lemma 2.1
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Hence f is a constant.
The converse implications are clear. The proof is complete.
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Since ‖Tf1‖ ≥ ‖T ∗
f
1‖ for hyponormal Toeplitz operator Tf , using Lemma 2.1, Tf is

hyponormal if and only if f is a constant. Consequently, normality of Tf can be replaced by
hyponormality in Lemma 2.3.

On the Hardy space and the Bergman space, we always have T ∗
u = Tu. So it is easy to

see that Tu is self-adjoint (i.e., Tu = T ∗
u) if and only if u is a real-valued function. However, on

the Dirichlet space of disc and polydisc, the situations are different because T ∗
u is not equal

to Tu in both cases. In the following, we will study the adjoint of Toeplitz operators with
pluriharmonic symbols on the Dirichlet space of Bn.

Theorem 2.4. Let u = f + g ∈ Ω, where f and g are holomorphic. Then T ∗
u = Tu if and only if u is a

constant function.

Proof. First, assume that u =
∑

β∈Z+n aβz
β is holomorphic. Since T ∗

u = Tu, for each multi-index
α = (α1, α2, . . . , αn), we have

T ∗
uz

α = Tuzα, ∀|α| > 0. (2.15)

Moreover,

〈T ∗
uz

α, 1〉 = 〈Tuzα, 1〉. (2.16)

In fact, for |α| > 0,

〈T ∗
uz

α, 1〉 = 〈zα, Tu1〉 = 〈zα, u〉 = aα‖zα‖2 = aα · |α|n!α!
(n + |α| − 1)!

. (2.17)

On the other hand,

〈Tuzα, 1〉 = 〈uzα, 1〉 =
∫

Bn

uzαdm =
∫

Bn

aα|zα|2dm = aα · n!α!
(n + |α|)! . (2.18)

Note that

|α|n!α!
(n + |α| − 1)!

− n!α!
(n + |α|)! > 0, (2.19)

we conclude that, aα = 0, for |α| > 0.
Second, assume that u = f + g is the general pluriharmonic symbol and T ∗

u = Tu. In
particular, we have

(

T ∗
f + T

∗
g

)

1 = Tf1 + Tg1. (2.20)

By Lemma 2.1, we get that

f(0) +
∫

Bn

gKzdm = f(0) + g. (2.21)
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Since

∫

Bn

gKzdm = g(0) +
∑

|β|>0

gβ
∣
∣β
∣
∣
(

n +
∣
∣β
∣
∣
)zβ, (2.22)

where g =
∑

β∈Z+n gβz
β, it follows that

∑

|β|>0

gβ
∣
∣β
∣
∣
(

n +
∣
∣β
∣
∣
)zβ =

∑

|β|>0
gβz

β. (2.23)

Equivalently,

∑

|β|>0

(

1 − 1
∣
∣β
∣
∣
(

n +
∣
∣β
∣
∣
)

)

gβz
β = 0. (2.24)

This implies that gβ = 0, for |β| > 0. So u = f + g(0) is holomorphic. The desired result follows
immediately from the previous holomorphic case.

The converse implication is clear. The proof is complete.

We now characterize pluriharmonic symbols inducing self-adjoint Toeplitz operators.

Theorem 2.5. Let u = f + g ∈ Ω, where f, g are holomorphic. Then Tu = T ∗
u if and only if u is a real

constant function.

Proof. The “if” part is clear. Suppose f =
∑

β∈Z+n fβz
β and g =

∑

β∈Z+n gβz
β. It follows from

Lemma 2.1 that

Tu1 = Tf+g1 = f + g(0) = f(0) + g(0) +
∑

|β|>0
fβz

β,

T ∗
u1 = T ∗

f+g1 = T ∗
f1 + T

∗
g1 = f(0) + g(0) +

∑

|β|>0

gβ
∣
∣β
∣
∣
(

n +
∣
∣β
∣
∣
)zβ.

(2.25)

Since Tu1 = T ∗
u1, by comparing the coefficients of the above two equations, we have that

gβ
∣
∣β
∣
∣
(

n +
∣
∣β
∣
∣
) = fβ,

∣
∣β
∣
∣ > 0, (2.26)

f(0) + g(0) = f(0) + g(0). (2.27)



8 Abstract and Applied Analysis

Let wi = wei , where ei = (0, 0, . . . , 0, 1
︸ ︷︷ ︸

i

, 0, . . . , 0). Then we have

〈

gwi,Kz(w)
〉

=
∫

Bn

gwidm +
n∑

j=1

∫

Bn

∂
(

gwi

)

∂wj

∂Kz(w)
∂wj

dm

=
∫

Bn

∑

β∈Z+n

gβwβwidm +
∫

Bn

g
∂Kz(w)
∂wi

dm

= gei ·
∫

Bn

|wei |2dm +
∫

Bn

∑

β∈Z+n

gβwβ ·
∑

α�ei

(|α| + n − 1)!
|α|n!α! αiwα−eizαdm

=
gei
n + 1

+ g(0) · zei .

(2.28)

This shows that

(

Tf+gwi

)

(z) =
(

Tfwi

)

(z) +
(

Tgwi

)

(z) =
∑

β∈Z+n

fβz
β+ei +

gei
n + 1

+ g(0) · zei . (2.29)

On the other hand, if h =
∑

β∈Z+n hβw
β is holomorphic, then

∫

Bn

∂h

∂wi
dm =

∫

Bn

∑

β�ei
hββiw

β−eidm = hei . (2.30)

Therefore,

∫

Bn

∂
(

fKz(w)
)

∂wi
dm = fei + f(0) · zei . (2.31)

A direct computation shows that

∫

Bn

g · ∂Kz(w)
∂wi

dm =
∫

Bn

∑

α∈Z+n

gαwα ·
∑

α�ei

(∣
∣β
∣
∣ + n − 1

)

!
∣
∣β
∣
∣n!β!

βiw
β−eizβdm

=
∑

α∈Z+n

gα
(|α + ei| + n − 1)!
|α + ei|n!(α + ei)!

(αi + 1)zα+ei ·
∫

Bn

|wα|2dm

=
∑

α∈Z+n

gα
zα+ei

|α| + 1
.

(2.32)
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Hence,

(

T ∗
f+gwi

)

(z) =
〈

T ∗
f+gwi,Kz(w)

〉

=
〈

wi,
(

f + g
)

Kz(w)
〉

=
∫

Bn

∂
((

f + g
)

Kz(w)
)

∂wi
dm

=
∫

Bn

[

∂
(

fKz(w)
)

∂wi
+ g · ∂Kz(w)

∂wi

]

dm

= fei + f(0) · zei +
∑

α∈Z+n

gα
zα+ei

|α| + 1
.

(2.33)

Comparing the expressions of (Tf+gwi)(z) and (T ∗
f+gwi)(z), we obtain

gβ
∣
∣β
∣
∣ + 1

= fβ, ∀∣∣β∣∣ > 0. (2.34)

It follows from (2.26) and (2.34) that

fβ = gβ = 0, for
∣
∣β
∣
∣ > 0, n > 1, (2.35)

which, according to (2.27), implies that u = f(0) + g(0) is a real constant function. This
complete the proof of the theorem.

Note that for Theorem 2.5 the assumption “u = f +g ∈ Ω, where f , g are holomorphic”
can not be removed. For example, let u = 1− |z|2, that is u = 1− (z21 + z

2
2 + · · ·+ z2n), then by the

below Theorem 4.5 Tu = T ∗
u = 0. However, u is not a constant function.

Corollary 2.6. Let u = f + g ∈ Ω, where f and g are holomorphic. Then Tu is a projection operator
if and only if u = 1 or u = 0.

Proof. The “if” part is clear. If Tu is a projection, then Tu = T ∗
u. Theorem 2.5 implies that u = c

where c is a real. Since Tu = T2
u , we see that c2 = c. This proves u = 1 or u = 0.

Next, we will characterize pluriharmonic symbols for which the corresponding Toepli-
tz operator is an isometry.

Theorem 2.7. Let u = f + g ∈ Ω, where f and g are holomorphic. Then the following statements are
equivalent:

(1) Tu is unitary;

(2) Tu is isometric;

(3) u is a constant function of modulus 1.
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Proof. That (1) implies (2) follows from the fact that unitary operator is isometric.
To prove that (2) implies (3), we denote f =

∑

β∈Z+n fβz
β and g =

∑

β∈Z+n gβz
β. Recalling

the proof of Theorem 2.5, we have that

Tf+g1 = f(0) + g(0) +
∑

|β|>0
fβz

β,

Tf+gwi(z) =
∑

β∈Z+n

fβz
β+ei +

gei
n + 1

+ g(0) · zei ,

T ∗
f+g1 = f(0) + g(0) +

∑

|β|>0

gβ
∣
∣β
∣
∣
(

n +
∣
∣β
∣
∣
)zβ,

(

T ∗
f+gwi

)

(z) = fei + f(0) · zei +
∑

β∈Z+n

gβ
zβ+ei
∣
∣β
∣
∣ + 1

.

(2.36)

Calculating the norms of the above items, it follows that

∥
∥Tf+g1

∥
∥
2 =
∣
∣
∣f(0) + g(0)

∣
∣
∣

2
+
∑

|β|>0

∣
∣fβ
∣
∣
2
∥
∥
∥zβ
∥
∥
∥

2
, (2.37)

∥
∥Tf+gwi(z)

∥
∥
2 =
∑

|β|>0

∣
∣fβ
∣
∣
2
∥
∥
∥zβ+ei

∥
∥
∥

2
+
∣
∣
∣
∣

gei
n + 1

∣
∣
∣
∣

2

+
∣
∣
∣f(0) + g(0)

∣
∣
∣

2
, (2.38)

∥
∥
∥T ∗

f+g1
∥
∥
∥

2
=
∣
∣
∣f(0) + g(0)

∣
∣
∣

2
+
∑

|β|>0

∣
∣
∣
∣
∣

gβ
∣
∣β
∣
∣
(

n +
∣
∣β
∣
∣
)

∣
∣
∣
∣
∣

2
∥
∥
∥zβ
∥
∥
∥

2
, (2.39)

∥
∥
∥(T ∗

f+gwi)(z)
∥
∥
∥

2
=
∣
∣
∣fei

∣
∣
∣

2
+
∣
∣
∣f(0) + g(0)

∣
∣
∣

2
+
∑

|β|>0

∣
∣
∣
∣
∣

gβ
∣
∣β
∣
∣ + 1

∣
∣
∣
∣
∣

2
∥
∥
∥zβ+ei

∥
∥
∥

2
. (2.40)

By the assumption, (2.37), (2.38), (2.39), and (2.40) are all equal to 1 since Tu as well as T ∗
u is

an isometry.

Note that ‖zβ‖2/[|β|(n + |β|)]2 < ‖zβ+ei‖2/(1 + |β|)2, for |β| > 0 and n > 1. Comparing
(2.39) and (2.40), we obtain that |f(0) + g(0)| = 1 and gβ = 0, for |β| > 0 and n > 1. Then (2.37)
implies that

fβ = 0, for
∣
∣β
∣
∣ > 0, n > 1. (2.41)

Therefore, u = f(0) + g(0) and |u| = |f(0) + g(0)| = 1.

Finally, if u = c is a constant function, by Theorem 2.4, we have T ∗
u = Tu. The desired

implication (3) ⇒ (1) follows from the fact that T ∗
uTu = TuTu = M|u|2 = 1 and TuT

∗
u = TuTu =

M|u|2 = 1.
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3. Commuting Toeplitz Operators with
Conjugate Holomorphic Symbols

In this section, we will study the commuting problems of Toeplitz operators with conjugate
holomorphic symbols. By the definition of Tφ, if φ ∈ Ω is holomorphic, then Tφ = Mφ.
Therefore, for two holomorphic symbols f , g ∈ Ω, Tf , and Tg commute. It is natural to ask
when Tf and Tg commute, The following theorem shows that Tf commutes with Tg only in
the trival case. In this section, we may always assume f =

∑

β∈Z+n fβz
β and g =

∑

β∈Z+n gβz
β.

Theorem 3.1. Let f ∈ Ω and g ∈ Ω be holomorphic. Then TgTf = TfTg if and only if for α, β, γ 	 0,

∑

γ+β=α

gγfβ

(∣
∣γ
∣
∣ − ∣∣β∣∣)

(

n +
∣
∣β
∣
∣
)(

n +
∣
∣γ
∣
∣
) = 0. (3.1)

Proof. Suppose reproducing kernel Kz(w) = 1 +
∑

|α|>0(((|α| + n − 1)!/|α|n!α!)wαzα) = 1 +
∑

|α|>0 cαw
αzα. Without loss of generality, we may assume f(0) = g(0) = 0.

Note that for α 	 β 	 0,

P
(

zβzα
)

= d
(

α, α − β)zα−β, (3.2)

where d(α, α − β) = (α!/(n + |α| − 1)!)/((α − β)!/(n + |α − β| − 1)!). It follows that

Tgz
α = P

(

gwα) = gα‖zα‖22 +
∑

γ≺α
gγd
(

α, α − γ)zα−γ . (3.3)

Therefore, we have

Tf
[

Tgz
α] = gα‖zα‖22Tf(1) +

∑

γ≺α
gγd
(

α, α − γ)
(

Tfz
α−γ
)

= gαf(0)‖zα‖22 +
∑

γ≺α
gγfα−γd

(

α, α − γ)∥∥zα−γ∥∥22

+
∑

γ≺α

∑

β≺α−γ
gγfβd

(

α, α − γ)d(α − γ, α − γ − β)zα−γ−β

=
∑

γ+β=α

gγfβ
n!α!

(

n +
∣
∣β
∣
∣
)

(n + |α| − 1)!
+
∑

γ+β≺α
gγfβd

(

α, α − γ − β)zα−γ−β.

(3.4)

Similarly, we have that

Tg
[

Tfz
α
]

=
∑

γ+β=α

fγgβ
n!α!

(

n +
∣
∣β
∣
∣
)

(n + |α| − 1)!
+
∑

γ+β≺α
fγgβd

(

α, α − γ − β)zα−γ−β

=
∑

γ+β=α

gγfβ
n!α!

(

n +
∣
∣γ
∣
∣
)

(n + |α| − 1)!
+
∑

γ+β≺α
gγfβd

(

α, α − γ − β)zα−γ−β.
(3.5)
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Observe that (3.4) and (3.5) have the same coefficients of zα−γ−β, it follows that

Tf
[

Tgz
α] = Tg

[

Tfz
α
]

(3.6)

if and only if

∑

γ+β=α

gγfβ

(∣
∣γ
∣
∣ − ∣∣β∣∣)

(

n +
∣
∣β
∣
∣
)(

n +
∣
∣γ
∣
∣
) · n!α!

(n + |α| − 1)!
= 0. (3.7)

Since n!α!/(n + |α| − 1)! > 0, the desired result is obtained.

Corollary 3.2. If fβ = gβ = 0 for |β|/= k0, where k0 is a positive integer, then TfTg = TgTf .

Proof. Since each item gγfβ(|γ | − |β|) equals to 0, (3.1) is satisfied. Thus the desired result
follows by Theorem 3.1.

For example, Tz(1,1)Tz(2,0) = Tz(2,0)Tz(1,1) since |(1, 1)| = |(2, 0)| = 2. On the Dirichlet space
of the unit disc or polydisc, Dusitermaat, Lee, Geng, and Zhou prove that for holomorphic
functions f and g, TgTf = TfTg if and only if f , g, and 1 are dependent, see [12, 13]. However,
this is not true on the unit ball Dirichlet space by Corollary 3.2. Indeed, the condition that f ,
g, and 1 are linearly dependent is sufficient but not necessary for the commuting of Tf and
Tg .

Next, we will discuss when Toeplitz operator with holomorphic symbol and Toeplitz
operator with conjugate holomorphic symbol will commute.

Theorem 3.3. Let f ∈ Ω and g ∈ Ω be holomorphic. Then TgTf = TfTg if and only if f or g is a
constant function.

Proof. The “if” part implication is obvious. Now suppose TgTf = TfTg . For each multi-index
α, we have

Tf
[

Tgz
α] = f · Tgzα

=
∑

β�0
fβz

β ·
[

gα‖zα‖2 +
∑

γ≺α
gγd
(

α, α − γ)zα−γ
]

= gα‖zα‖2 · f(0) + gα‖zα‖2
∑

β	0
fβz

β +
∑

γ≺α

∑

β�0
gγfβd

(

α, α − γ)zα−γ+β,

(3.8)

Tg
[

Tfz
α] = Tg

(

fzα
)

=
∑

ξ=β+α

gξfβ
∥
∥
∥wξ
∥
∥
∥

2
+
∑

ξ≺α+β

∑

β�0
gξfβd

(

α + β, α + β − ξ)zα+β−ξ. (3.9)

Assume that f is not a constant function. Hence there exists β0 	 0 such that fβ0 /= 0.
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For (3.8), let β = β0 and γ = α 	 0, the coefficient of zβ0 is

gαfβ0
n!α!

(n + |α|)! . (3.10)

On the other hand, if we let β = β0 and ξ = α 	 0 in (3.9), then the coefficient of zβ0 is

gαfβ0d
(

α + β0, β0
)

. (3.11)

Since

n!α!
(n + |α|)! /=d

(

α + β0, β0
)

(3.12)

and fβ0 /= 0, we deduce that

gα = 0, for |α| > 0, (3.13)

which implies that g is a constant function. The proof is complete.

4. Commuting Toeplitz Operators with Symbols zpzqφ(|z|2)
Zhou and Dong [14] discussed the commuting and zero product problems of Toeplitz
operators on the Bergman space of the unit ball in C

n whose symbols are of the form ξkφ
where φ is a radial function. In [15], they generalized the case of the radial symbols to that
of the separately quasi-homogeneous symbols. In [16], Grudsky et al. considered weighted
Bergman spaces on the unit ball in C

n. In terms of the Wick symbol of a Toeplitz operator,
the complete information about the operator with radial symbols was given. Vasilevski [17]
studied the Toeplitz operators with the quasi-radial quasi-homogeneous symbol. For the case
of Dirichlet spaces, Chen et al. [18, 19] studied the quasi-radial Toeplitz operaors on the
disk. However, little work has been done in the unit ball case. The commuting problem
on it is subtle and no general answer is known. Dong and Zhou [15] have shown that
any function f in L2(Bn, dm) has the decomposition f(z) =

∑

k∈Z
ξkfk(r), where fk(r) is

separately radial. In this section, the commuting and zero product problems of Toeplitz
operators Tzpzqφ(|z|2), p, q � 0 will be concerned, which may be helpful to the further study of
the commuting Toeplitz operators with general symbols.We denoteΣ = {φ : φ, φ′ ∈ L1([0, 1])}
and Σ′ = {φ is absolutely continuous on [0,1): φ, φ′ ∈ L1([0, 1))}. In the remaining part of this
paper, we will always assume φ ∈ Σ. A direct calculation gives the following lemma.

Lemma 4.1. Let p � 0 and φ(|z|2) ∈ Σ be radial functions. Then

Tzpφ(|z|2)z
α =

⎧

⎪
⎨

⎪
⎩

(

n +
∣
∣p + α

∣
∣ − 1
)

φ̂
(

n +
∣
∣p + α

∣
∣ − 1
)

zp+α, p + α 	 0,

n

∫1

0
φ(r)rn−1dr, p = α = 0,

(4.1)

where φ̂(z) =
∫1
0 r

z−1[φ +
∫1
r φ

′(t)dt]dr.
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Proof. To simiplify the statement, we denote reproducing kernel Kz(w) by
∑

|γ |≥0 cγw
γzγ .

Notice that (∂/∂wi)(wp+αφ(|w|2)) = (pi+αi)φwp+α−ei+wp+αφ′wi. For p+α 	 0, with integration
in polar coordinates we have

Tzpφ(|z|2)z
α =
〈

wp+αφ,Kz(w)
〉

=
n∑

i=1

∫

Bn

∂

∂wi

(

wp+αφ
)∂(Kz(w))

∂wi
dm

=

[
n∑

i=1

∫

Bn

(

pi + αi
)2
cp+αφ

∣
∣wp+α−ei∣∣2dm

+
∫

Bn

(

pi + αi
)

cp+αφ
′|wp+α|2dm

]

zp+α

=

[

(

n +
∣
∣p + α

∣
∣ − 1
)
∫1

0
tn+|p+α|−2φ(t)dt +

∫1

0
tn+|p+α|−1φ′dt

]

zp+α.

(4.2)

Since
∫1
0 t

n+|p+α|−1φ′dt = (n + |p + α| − 1)
∫1
0 t

n+|p+α|−2[
∫1
t φ

′dr]dt with integration by part, the
desired result is obvious.

For p = α = 0, it is easy to see that

Tzpφ(|z|2)z
α =
〈

φ,Kz(w)
〉

=
∫

Bn

φdm = n
∫1

0
φ(r)rn−1dr. (4.3)

The proof is complete.

We now characterize the commuting Toeplitz operators whose symbols are of the form
zpφ(|z|2), where p 	 0.

Theorem 4.2. Let p, q 	 0, φ, ψ ∈ Σ. Tzpφ(|z|2)Tzqψ(|z|2) = Tzqψ(|z|2)Tzpφ(|z|2) if and only if (n+ |q+α| −
1)ψ̂(n + |q + α| − 1)φ̂(n + |p + q + α| − 1) = (n + |p + α| − 1)φ̂(n + |p + α| − 1)ψ̂(n + |p + q + α| − 1)
holds for any multi-index α � 0.

Proof. For any multi-index α � 0, by Lemma 4.1, it follows that

Tzpφ(|z|2)Tzqψ(|z|2)z
α

=
(

n +
∣
∣q + α

∣
∣ − 1
)

ψ̂
(

n +
∣
∣q + α

∣
∣ − 1
)(

n +
∣
∣p + q + α

∣
∣ − 1
)

φ̂
(

n +
∣
∣p + q + α

∣
∣ − 1
)

zp+q+α,

Tzqψ(|z|2)Tzpφ(|z|2)z
α

=
(

n +
∣
∣p + α

∣
∣ − 1
)

φ̂
(

n +
∣
∣p + α

∣
∣ − 1
)(

n +
∣
∣p + q + α

∣
∣ − 1
)

ψ̂
(

n +
∣
∣p + q + α

∣
∣ − 1
)

zp+q+α.

(4.4)

Since (n + |p + q + α| − 1) > 0, the result is followed.
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A particular case of the above theorem is φ = ψ. In this case

Tzpφ(|z|2)Tzqφ(|z|2) = Tzqφ(|z|2)Tzpφ(|z|2) (4.5)

if and only if

[(

n +
∣
∣q + α

∣
∣ − 1
)

φ̂
(

n +
∣
∣q + α

∣
∣ − 1
) − (n +

∣
∣p + α

∣
∣ − 1
)

φ̂
(

n +
∣
∣p + α

∣
∣ − 1
)]

· φ̂(n +
∣
∣p + q + α

∣
∣ − 1
)

= 0.
(4.6)

Thus we immediately have the following result.

Corollary 4.3. Let p, q 	 0, φ ∈ Σ. If |p| = |q|, then Tzpφ(|z|2)Tzqφ(|z|2) = Tzqφ(|z|2)Tzpφ(|z|2).

If φ is absolutely continuous on [0,1), integrating by parts, one has mφ̂(m) =
limr→ 1−φ(r) = φ(1−), for any positive integer m. Thus, using Lemma 4.1 one can get the
following lemma which will be often used in the sequel.

Lemma 4.4. Let p � 0, φ ∈ Σ′, one has

Tzpφ(|z|2)z
α =

⎧

⎪
⎨

⎪
⎩

φ(1−)zp+α, p + α 	 0;

n

∫1

0
φ(r)rn−1dr, p = α = 0.

(4.7)

By Lemma 4.4, a regular argument shows the results below.

Theorem 4.5. Let pi 	 0 and φi ∈ Σ′. Then the followings hold.

(1) Tzp1φ1Tzp2φ2 = Tzp2φ2Tzp1φ1 = Tzp1+p2φ1φ2 .

(2) Tzp1φ1 × · · · × Tzpk φk = 0 if and only if φ1(1−) × · · · × φk(1−) = 0.

(3) Let pi /= pj for i /= j, Tzp1φ1 + · · · + Tzpk φk = 0 if and only if each φi(1−) = 0, 1 ≤ i ≤ k.

Before discussing the commutivity of Toeplitz operator with symbols zqφ(|z|2), one
needs the following lemma which can be obtained by direct computation.

Lemma 4.6. Let multi-index q � 0 and φ ∈ Σ. Then

Tzqφ(|z|2)z
α =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

d
(

α, α − q)(n + |α| − 1)φ̂(n + |α| − 1)zα−q, α 	 q;
n!q!

(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1φ(r)dr, α = q;

0, α�� q,

(4.8)

where d(α, α− q) = (α!/(n+ |α| − 1)!)/((α− q)!/(n+ |α− q| − 1)!) and α�� q means that there exists
i0 such that αi0 < qi0 .
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Proof. For α 	 q, We get that

Tzqφ(|z|2)z
α =
〈

wαwqφ,Kz(w)
〉

=
n∑

i=1

∫

Bn

∂

∂wi

(

wαwqφ
)∂(Kz(w))

∂wi
dm

=
n∑

i=1

∫

Bn

(

αiw
α−eiφ +wαwiφ

′)wq ·
∑

r

crriwr−eizrdm

=

[
n∑

i=1

∫

Bn

αiφ
∣
∣wα−ei∣∣2cα−q

(

αi − qi
)

+ |wα|2φ′cα−q
(

αi − qi
)

dm

]

zα−q

= cα−qzα−q
∣
∣α − q∣∣n!α!
(n + |α| − 1)!

[

(n + |α| − 1)
∫1

0
tn+|q+α|−2φdt +

∫1

0
tn+|q+α|−1φ′dt

]

= d
(

α, α − q)(n + |α| − 1)φ̂(n + |α| − 1)zα−q.

(4.9)

For α = q, we have

Tzqφ(|z|2)z
α =
〈

wαwqφ,Kz(w)
〉

=
∫

Bn

|zq|2φ
(

|w|2
)

dm

=
n!q!

(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
tn+|q|−1φ(t)dt.

(4.10)

If there exists 1 ≤ i ≤ n such that αi < qi, then

Tzqφ(|z|2)z
α =
〈

wαwqφ,Kz(w)
〉

= 0. (4.11)

Thus the proof is complete.

Note that if φ ∈ Σ′, then (n + |α| − 1)φ̂(n + |α| − 1) = φ(1−). It follows that

Tzqφ(|z|2)z
α = d

(

α, α − q)φ(1−)zα−q, for α 	 q. (4.12)

The following theorem gives some properties of the Toeplitz operator with symbols
zpφ(|z|2).

Theorem 4.7. Let p, q, pi 	 0, pi /= pj for i /= j and φ, ψ, φi ∈ Σ′. Then the following assertions hold.

(1) Tzpφ(|z|2)Tzqψ(|z|2) = Tzqψ(|z|2)Tzpφ(|z|2) if and only if ψ(1−)
∫1
0 r

n+|p|−1φ(r)dr =

φ(1−)
∫1
0 r

n+|q|−1ψ(r)dr.

(2) Tzp1φ1 × · · · × Tzpk φk = 0 if and only if one of the following holds:

(i) φ1(1−) = 0 and
∫1
0 r

n+|p1|−1φ1(r)dr = 0;
(ii) There exists i0 where 2 ≤ i0 ≤ k such that φi0(1

−) = 0.
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(3) Tzp1φ1 + · · · + Tzpk φk = 0 if and only if φi(1−) = 0 and
∫1
0 r

n+|pi|−1φi(r)dr = 0 for each i,
1 ≤ i ≤ k.

Proof. Assertions (2) and (3) are the direct consequence of Lemma 4.6. We only need to prove
assertion (1). By Lemma 4.6, for h 	 p + q, since φ, ψ ∈ Σ′ we have

Tzpφ(|z|2)Tzqψ(|z|2)
(

zh
)

= d
(

h, h − q)d(h − q, h − q − p)φ(1−)ψ(1−)zh−q−p

= d
(

h, h − q − p)φ(1−)ψ(1−)zh−q−p,

Tzqψ(|z|2)Tzpφ(|z|2)
(

zh
)

= d
(

h, h − p)d(h − p, h − q − p)φ(1−)ψ(1−)zh−q−p

= d
(

h, h − q − p)φ(1−)ψ(1−)zh−q−p.

(4.13)

It is obvious that

Tzpφ(|z|2)Tzqψ(|z|2)
(

zh
)

= Tzqψ(|z|2)Tzpφ(|z|2)
(

zh
)

(4.14)

holds for h 	 p + q.
For h = p + q, we obtain

Tzpφ(|z|2)Tzqψ(|z|2)
(

zh
)

= d
(

p + q, p
)

ψ
(

1−
) n!p!
(

n +
∣
∣p
∣
∣ − 1
)

!

∫1

0
rn+|p|−1φ(r)dr

=
n!
(

p + q
)

!
(

n +
∣
∣p + q

∣
∣ − 1
)

!
ψ
(

1−
)
∫1

0
rn+|p|−1φ(r)dr,

Tzqψ(|z|2)Tzpφ(|z|2)
(

zh
)

= d
(

p + q, q
)

φ
(

1−
) n!q!
(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)dr

=
n!
(

p + q
)

!
(

n +
∣
∣p + q

∣
∣ − 1
)

!
φ
(

1−
)
∫1

0
rn+|q|−1ψ(r)dr.

(4.15)

Since n!(p + q)!/(n + |p + q| − 1)! > 0, then the desired result is obvious.

In the assertion (1) of Theorem 4.7, if φ = ψ = 1, then we get

ψ
(

1−
)
∫1

0
rn+|p|−1φ(r)dr =

1
n +
∣
∣p
∣
∣
, φ

(

1−
)
∫1

0
rn+|q|−1ψ(r)dr =

1
n +
∣
∣q
∣
∣
. (4.16)

Therefore, it is easy to get the following corollary.

Corollary 4.8. Let p, q 	 0. Then TzpTzq = TzqTzp if and only if |p| = |q|.

It is well known that TφTψ = Th on the Hardy space if and only if either φ or ψ is
holomorphic. However, Lemma 4.6 and Theorem 4.7 implies that a similar result does not
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hold on the Dirichlet space of the unit ball. Indeed, by the computation in Lemma 4.6 and
Theorem 4.7, it is easy to verify that for any p, q 	 0, TzpTzqzp+q /= Tzp+qzp+q.

Theorem 4.9. Let p, q 	 0 and φ, ψ ∈ Σ′. Then Tzpφ(|z|2)Tzqψ(|z|2) = Tzqψ(|z|2)Tzpφ(|z|2) if and only if

φ(1−) = 0 or ψ(1−) = 0 and
∫1
0 r

n+|q|−1ψ(r)dr = 0.

Proof. For each multi-index h � 0, by Lemmas 4.4 and 4.6, we have that

Tzpφ(|z|2)Tzqψ(|z|2)z
h =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

d
(

h, h − q)ψ(1−)φ(1−)zh+p−q, h 	 q
n!q!

(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)drφ

(

1−
)

zp, h = q

0, others,

Tzqψ(|z|2)Tzpφ(|z|2)z
h =

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎩

d
(

h + p, h + p − q)ψ(1−)φ(1−)zh+p−q, p + h 	 q
n!q!

(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1φ(r)drφ

(

1−
)

, p + h = q

0, others.

(4.17)

Consequently, for h 	 q, we conclude

d
(

h, h − q)ψ(1−)φ(1−)zh+p−q = d(h + p, h + p − q)ψ(1−)φ(1−)zh+p−q. (4.18)

Since p, q 	 0, it is clear that d(h, h− q) can not always equal to d(h+ p, h+ p − q) for all h 	 q.
Thus, we get

ψ
(

1−
)

φ
(

1−
)

= 0. (4.19)

On the other hand, for h = q, we have

n!q!
(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)drφ

(

1−
)

= d
(

h + p, h + p − q)ψ(1−)φ(1−). (4.20)

Combining (4.19) and (4.20), we obtain the desired result.

Notice the assertion (3) of Theorem 4.5 and the assertion (3) of Theorem 4.7,
Theorem 4.9 above shows that Tzpφ(|z|2)Tzqψ(|z|2) = Tzqψ(|z|2)Tzpφ(|z|2) if and only if Tzpφ(|z|2) = 0
or Tzqψ(|z|2) = 0 holds. That is, Tzpφ(|z|2) commutes with Tzqψ(|z|2) only in the trival case.

Finally, we will discuss when Toepitze operaor Tφ(|z|2) commute with Tzpzqψ(|z|2).

Theorem 4.10. Let p, q 	 0 and φ, ψ ∈ Σ′. Then the following assertions hold.

(1) If p 	 q, Tφ(|z|2)Tzpzqψ(|z|2) = Tzpzqψ(|z|2)Tφ(|z|2) if and only if ψ(1−) = 0 or φ(1−) =

n
∫1
0 r

n−1φ(r)dr.

(2) If q 	 p, Tφ(|z|2)Tzpzqψ(|z|2) = Tzpzqψ(|z|2)Tφ(|z|2) if and only if
∫1
0 r

n+|q|−1ψ(r)dr = 0 or

n
∫1
0 r

n−1φ(r)dr = φ(1−).

(3) If p�� q and q�� p or p = q, Tφ(|z|2)Tzpzqψ(|z|2) = Tzpzqψ(|z|2)Tφ(|z|2).
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Proof. For each multi-index h � 0, by Lemmas 4.4 and 4.6 we have

Tφ(|z|2)Tzpzqψ(|z|2)z
h =

⎧

⎪
⎨

⎪
⎩

d
(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q, h + p 	 q
n!q!

(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)dr · n

∫1

0
rn−1φ(r)dr, h + p = q,

Tzpzqψ(|z|2)Tφ(|z|2)z
h =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q, h 	 0, h + p 	 q
φ(1−)

n!q!
(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)dr, h 	 0, h + p = q

0, h 	 0, h + p�� q
n

∫1

0
rn−1φ(r)drd

(

p, p − q)ψ(1−)zh+p−q, h = 0, p 	 q

n

∫1

0
rn−1φ(r)dr

n!q!
(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)dr, h = 0, p = q

0, h = 0, p�� q.
(4.21)

Case 1. Suppose p 	 q. We have

Tφ(|z|2)Tzpzqψ(|z|2)z
h = d

(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q,

Tzpzqψ(|z|2)Tφ(|z|2)z
h =

⎧

⎪⎨

⎪⎩

d
(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q, h 	 0

n

∫1

0
rn−1φ(r)drd

(

p, p − q)ψ(1−)zh+p−q, h = 0.

(4.22)

Tzpzqψ(|z|2) commutes with Tφ(|z|2) if and only if

d
(

p, p − q)ψ(1−)φ(1−) = d(p, p − q)ψ(1−)n
∫1

0
rn−1φ(r)dr, (4.23)

which is equivalent to ψ(1−) = 0 or φ(1−) = n
∫1
0 r

n−1φ(r)dr.

Case 2. Suppose q 	 p. Note that h + p 	 q if and only if h 	 q − p. We have

Tφ(|z|2)Tzpzqψ(|z|2)z
h =

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎩

d
(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q, h 	 q − p
n!q!

(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)dr · n

∫1

0
rn−1φ(r)dr, h = q − p

0, h�� q − p,

Tzpzqψ(|z|2)Tφ(|z|2)z
h =

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎩

d
(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q, h 	 q − p
φ(1−)

n!q!
(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)dr, h = q − p

0, h�� q − p.

(4.24)
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It follows that Tzpzqψ(|z|2) commutes with Tφ(|z|2) if and only if

∫1

0
rn+|q|−1ψ(r)dr · n

∫1

0
rn−1φ(r)dr =

∫1

0
rn+|q|−1ψ(r)drφ

(

1−
)

, (4.25)

which is equivalent to
∫1
0 r

n+|q|−1ψ(r)dr = 0 or n
∫1
0 r

n−1φ(r)dr = φ(1−).

Case 3. Suppose p�� q and q�� p. Let h′ = {hi}, where hi = max{qi − pi, 0} for 1 ≤ i ≤ n. Then for
h � 0, h + p 	 q if and only if h 	 h′. Thus,

Tφ(|z|2)Tzpzqψ(|z|2)z
h =

{

d
(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q, h � h′
0, h��h′,

Tzpzqψ(|z|2)Tφ(|z|2)z
h =

{

d
(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q, h � h′
0, h��h′.

(4.26)

It is obvious that Tzpzqψ(|z|2) commutes with Tφ(|z|2).

Case 4. Suppose p = q. We have

Tφ(|z|2)Tzpzqψ(|z|2)z
h =

⎧

⎪
⎨

⎪
⎩

d
(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q, h 	 0
n!q!

(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)dr · n

∫1

0
rn−1φ(r)dr, h = 0,

Tzpzqψ(|z|2)Tφ(|z|2)z
h =

⎧

⎪
⎨

⎪
⎩

d
(

p + h, p + h − q)ψ(1−)φ(1−)zh+p−q, h 	 0

n

∫1

0
rn−1φ(r)dr

n!q!
(

n +
∣
∣q
∣
∣ − 1
)

!

∫1

0
rn+|q|−1ψ(r)dr, h = 0.

(4.27)

It is easy to see that Tzpzqψ(|z|2) commutes with Tφ(|z|2). This completes the proof.

Corollary 4.11. Let p ⊥ q and φ, ψ ∈ Σ′. Then Tφ(|z|2)Tzpzqψ(|z|2) = Tzpzqψ(|z|2)Tφ(|z|2).

Proof. Note that p ⊥ q implies p�� q and q�� p. The desired result is immediately followed by
Theorem 4.10.
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