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In the recent paper “common fixed point theorems for commutating mappings in fuzzy metric
spaces,” the authors proved that a common fixed point theorem for commutating mappings in
G-complete fuzzy metric spaces and gave an example to illustrate the main result. In this note,
we point out that the above example is incorrect because it does not satisfy the condition of G-
completeness, and then two appropriate examples are given. In addition, we prove that the theo-
rem proposed by Zheng and Lian actually holds in anM-complete fuzzy metric space. Our results
improve and extend some existing results in the relevant literature.

1. Introduction

In [1], Zheng and Lian extended Jungck’s theorem in [2] to fuzzy metric spaces and obtained
the following fixed point theorem for commutative mappings in fuzzy metric spaces in the
sense of Kramosil and Michálek [3].

Theorem 1.1 (Zheng and Lian [1]). Let (X,M, ∗) be a complete fuzzy metric space and let f :
X → X be a continuous map and g : X → X a map. If

(i) g(X) ⊆ f(X),

(ii) g commutes with f ,

(iii) and M(g(x), g(y), t) ≥ M(f(x), f(y), ψ(t)) for all x, y ∈ X and t > 0, where ψ :
[0,+∞) → (0,+∞) is an increasing and left-continuous function with ψ(t) > t for all
t > 0.

Then f and g have a unique common fixed point.
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Remark 1.2. It can be seen from the proof of Theorem 1.1 that the fuzzy metric space (X,M, ∗)
is complete in the sense of G-completeness.

Furthermore, the authors constructed the following example to illustrate the above
theorem.

Example 1.3 (Zheng and Lian [1]). Let X = [0,+∞) be endowed with the usual metric
d(x, y) = |x − y|. For all x, y ∈ X and t ≥ 0, define

M
(
x, y, t

)
=

⎧
⎨

⎩

0, t = 0,

e−|x−y|/t, t > 0.
(1.1)

Set f(x) = A−1(ex−1) and g(x) = ln(1+Ax), ψ(t) = A−2t, whereA ∈ (0, 1) is a constant.

In the Example 1.3, the authors claimed that (X,M, ∗) is a complete fuzzy metric space
in the sense ofG-completeness (now known as aG-complete fuzzymetric space)with respect
to t-norm a ∗ b = ab, and then checked all the conditions of Theorem 1.1. Therefore, they
concluded that f and g have the unique common fixed point 0.

However, we note that Example 1.3 is incorrect for Theorem 1.1, because X = [0,+∞)
is not G-complete regarding the fuzzy metricM. For details, the reader can refer to [4–6].

In fact,G-completeness is a very strong kind of completeness. For instance, George and
Veeramani [4] found that even R is not G-complete with respect to the standard fuzzy metric
induced by Euclidean metric, and then proposed another kind of completeness (now known
as anM-complete fuzzy metric space) by modifying the definition of Cauchy sequence. For
these two types of completeness, it is easy to see that every G-complete fuzzy metric space is
M-complete. Therefore, the construction of fixed point theorems inM-complete fuzzy metric
spaces is more valuable and reasonable.

The main purpose of this note is to provide two appropriate examples for Theorem 1.1
and prove that this theorem does hold even if G-completeness of the fuzzy metric space is
replaced byM-completeness. Our results not only improve and generalize Theorem 1.1, but
also extend some main results of [2, 7].

2. Preliminaries

For completeness and clarity, in this section, some related concepts and conclusions are sum-
marized below. Let N denote the set of all positive integers.

Definition 2.1 (Schweizer and Sklar [8]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is
called a continuous triangular norm (shortly, continuous t-norm) if it satisfies the following
conditions:

(TN-1) ∗ is commutative and associative,

(TN-2) ∗ is continuous,
(TN-3) a ∗ 1 = a for every a ∈ [0, 1],

(TN-4) and a ∗ b ≤ c ∗ d whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].
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Definition 2.2 (Kramosil and Michálek [3]). The triple (X,M, ∗) is called a fuzzy metric space if
X is an arbitrary set, ∗ is a continuous t-norm, andM is a fuzzy set onX×X×[0,∞) satisfying
the following conditions: for all x, y, z ∈ X and s, t > 0,

(FM-1) M(x, y, 0) = 0,

(FM-2) M(x, y, t) = 1 if and only if x = y,

(FM-3) M(x, y, t) =M(y, x, t),

(FM-4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s),

(FM-5) andM(x, y, ·) : [0,+∞) → [0, 1] is left-continuous.

Remark 2.3. According to (FM-2) and (FM-4), it can easily be seen that M(x, y, ·) is non-
decreasing for all x, y ∈ X (see Lemma 4 in [9]).

Similar to the case in [1], in this note, we suppose that (X,M, ∗) is a fuzzy metric space
with the following additional condition:

(FM-6) limt→+∞M(x, y, t) = 1, for all x, y ∈ X.

Definition 2.4 (Grabiec [9], George and Veeramani [4]). Let (X,M, ∗) be a fuzzy metric space.
Then

(i) a sequence {xn} in X is said to be convergent to a point x ∈ X, denoted by
limn→∞xn = x, if limn→∞M(xn, x, t) = 1, for any t > 0;

(ii) a sequence {xn} in X is called a G-Cauchy sequence if and only if limn→∞M(xn+p,
xn, t) = 1 for any t > 0 and p > 0;

(iii) a sequence {xn} in X is called anM-Cauchy sequence if and only if for each ε ∈ (0, 1)
and t > 0, there exists n0 ∈ N such thatM(xm, xn, t) > 1 − ε, for anym,n ≥ n0;

(iv) a fuzzy metric space (X,M, ∗) is said to be G-complete (M-complete) if every G-
Cauchy sequence (M-Cauchy sequence) is convergent;

(v) a map f : X → X is said to be continuous at x0 ∈ X if {f(xn)} converges to f(x0)
for each {xn} converging to x0.

The authors have proved the following conclusion (see the proof of Theorem 2.2 in
[1]).

Lemma 2.5 (Zheng and Lian [1]). Let ψ : [0,+∞) → (0,+∞) be an increasing and left-con-
tinuous function with ψ(t) > t for all t > 0. Then

lim
n→+∞

ψn(t) = +∞, (2.1)

for any t > 0, where ψn(t) denotes the composition of ψ(t) with itself n times.

3. Two Appropriate Examples

In this section, we will construct two appropriate examples for Theorem 1.1.
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Example 3.1. Let X = {1/n : n ∈ N} ∪ {0} be equipped with the usual metric d(x, y) = |x − y|,
ψ(t) = k · t, for all t ∈ [0,+∞), where k ∈ (1, 4] is a constant. For all x, y ∈ X and t ≥ 0, define

M
(
x, y, t

)
=

⎧
⎪⎨

⎪⎩

0, t = 0,
t

t +
∣
∣x − y∣∣ , t > 0.

(3.1)

Clearly, (X,M, ∗) is a G-complete fuzzy metric space with regard to t-norm a ∗ b = ab.
Set f(x) = x/2 and g(x) = x/8 for all x ∈ X. It is obvious that g(X) ⊆ f(X). For any

x, y ∈ X and t > 0, we have

M
(
f(x), f

(
y
)
, ψ(t)

)
=

k · t
k · t + ∣

∣x − y∣∣/2

=
2k · t

2k · t + ∣∣x − y∣∣

≤ 8 · t
8 · t + ∣∣x − y∣∣ =M

(
g(x), g

(
y
)
, t
)
.

(3.2)

Thus, all the conditions of Theorem 1.1 are satisfied and f and g have a unique fixed
point, that is, x = 0.

Example 3.2. Let X be the subset of R
2 defined by

X = {A,B,C,D, E, F}, (3.3)

where A = (0, 0), B = (1, 0), C = (2, 0), D = (0, 2), E = (1, 1), and F = (2, 2). ψ(t) =
√
2t, for all

t ∈ [0,+∞). For all x, y ∈ X and t ≥ 0, define

M
(
x, y, t

)
=

⎧
⎨

⎩

0, t = 0,

e−d(x,y)/t, t > 0,
(3.4)

where d(x, y) denotes the Euclidean distance of R
2.

Clearly, (X,M, ∗) is also a G-complete fuzzy metric space with regard to t-norm a ∗b =
ab.

Let f : X → X and g : X → X be given by

f(A) = f(B) = D, f(C) = F, f(D) = A, f(E) = E, f(F) = B,

g(A) = g(B) = B, g(C) = g(D) = g(E) = g(F) = E.
(3.5)

Obviously, g(X) ⊆ f(X). Furthermore, it is easy to see that M(f(x), f(y), ψ(t)) ≤
M(g(x), g(y), t) for any x, y ∈ X and t > 0. Hence, all the conditions of Theorem 1.1 are
satisfied and x = E is the unique common fixed point of f and g.
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4. Main Results

Now, we will prove that Theorem 1.1 does hold even if G-completeness is replaced by M-
completeness.

Theorem 4.1. Let (X,M, ∗) be an M-complete fuzzy metric space and let f : X → X be a con-
tinuous map and g : X → X a map. If

(i) g(X) ⊆ f(X),

(ii) g commutes with f ,

(iii) and M(g(x), g(y), t) ≥ M(f(x), f(y), ψ(t)) for all x, y ∈ X and t > 0, where ψ :
[0,+∞) → (0,+∞) is an increasing and left-continuous function with ψ(t) > t for all
t > 0.

Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X. From (i), we can find x1 such that f(x1) = g(x0). By induction, we can find
a sequence {xn} ⊆ X such that f(xn) ⊆ g(xn−1). For any t > 0, we have

M
(
f(xn), f(xn+1), t

)
=M

(
g(xn−1), g(xn), t

)

≥M(
f(xn−1), f(xn), ψ(t)

)

≥ · · · ≥M(
f(x0), f(x1), ψn(t)

)
.

(4.1)

As limn→+∞ψn(t) = +∞, for any t > 0, it follows by (FM-6) that limn→+∞M(f(x0),
f(x1), ψn(t)) = 1. Hence, limn→+∞M(f(xn), f(xn+1), t) = 1, for any t > 0.

Next, we claim that {f(xn)} is an M-Cauchy sequence. Suppose that it is not. Then
there exist ε ∈ (0, 1) and two sequences {p(n)}, {q(n)} such that for every n ∈ N and t > 0,
and then we can obtain that

p(n) > q(n) ≥ n, M
(
f
(
xp(n)

)
, f

(
xq(n)

)
, t
) ≤ 1 − ε. (4.2)

Moreover, for every n ∈ N, we can choose the two smallest numbers p(n) and q(n)
such that

M
(
f
(
xp(n)−1

)
, f

(
xq(n)−1

)
, t
)
> 1 − ε. (4.3)

For every n ∈ N, we can obtain

1 − ε ≥M(
f
(
xp(n)

)
, f

(
xq(n)

)
, t
)

=M
(
g
(
xp(n)−1

)
, g

(
xq(n)−1

)
, t
)

≥M(
f
(
xp(n)−1

)
, f

(
xq(n)−1

)
, ψ(t)

)

≥M(
f
(
xp(n)−1

)
, f

(
xq(n)−1

)
, t
)
> 1 − ε.

(4.4)

Clearly, this leads to a contradiction.
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Here, we also consider another particular case. That is, for each t > 0, there exist ε ∈
(0, 1) and n0 ∈ N such that M(f(xm), f(xn), t) ≤ 1 − ε, for all m,n ≥ n0. Then, for any p ∈ N,
we know thatM(f(xn0+p+2), f(xn0+p+1), t) ≤ 1 − ε. Since

M
(
f
(
xn0+p+2

)
, f

(
xn0+p+1

)
, t
)
=M

(
g
(
xn0+p+1

)
, g

(
xn0+p

)
, t
)

≥M(
f
(
xn0+p+1

)
, f

(
xn0+p

)
, ψ(t)

)

≥M(
f
(
xn0+p+1

)
, f

(
xn0+p

)
, t
)
,

(4.5)

we can conclude that {M(f(xn0+p+2), f(xn0+p+1), t)} is a monotone and bounded sequence
with respect to p. Therefore, there exists γ ∈ [0, 1 − ε] such that limp→+∞M(f(xn0+p+2),
f(xn0+p+1), t) = γ . In addition, according to the foregoing inequality, we can obtain

M
(
f
(
xn0+p+2

)
, f

(
xn0+p+1

)
, t
) ≥M

(
f(xn0+1), f(xn0), ψ

p+1(t)
)
. (4.6)

By supposing that p → +∞, it follows that γ ≥ 1, which is also a contradiction.
Hence, {f(xn)} is an M-Cauchy sequence in the M-complete fuzzy metric space X.

Furthermore, we conclude that there exists a point y ∈ X such that limn→+∞f(xn) = y. So
limn→+∞g(xn) = limn→+∞f(xn+1) = y.

By (iii), it can be seen that the continuity of f implies that of g. Consequently, we
obtain that limn→+∞g(f(xn)) = g(y). According to the commutativity of f and g, we know
that limn→+∞f(g(xn)) = limn→+∞g(f(xn)) = g(y). Because of the uniqueness of limits, it
follows immediately that f(y) = g(y). So f(f(y)) = f(g(y)) = g(f(y)) = g(g(y)). Thus, we
have

M
(
g
(
y
)
, g

(
g
(
y
))
, t
) ≥M(

f
(
y
)
, f

(
g
(
y
))
, ψ(t)

)

=M
(
g
(
y
)
, g

(
g
(
y
))
, ψ(t)

)

≥ · · · ≥M(
g
(
y
)
, g

(
g
(
y
))
, ψn(t)

)
.

(4.7)

Letting n → +∞, we obtain that limn→+∞M(g(y), g(g(y)), ψn(t)) = 1, for any t > 0.
So M(g(y), g(g(y)), t) = 1. By (FM-2), we conclude that g(g(y)) = g(y). Hence, g(y) =
g(g(y)) = f(g(y)), that is, g(y) is a common fixed point of f and g.

Furthermore, we show that g(y) is the unique common fixed point of f and g. Assume
that x and z are two common fixed point of f and g, for any t > 0, we then obtain

M(x, z, t) =M
(
g(x), g(z), t

) ≥M(
f(x), f(z), ψ(t)

)

=M
(
x, z, ψ(t)

) ≥ · · · ≥M(
x, z, ψn(t)

)
.

(4.8)

As n → +∞, we have limn→+∞M(x, z, ψn(t)) = 1. Thus M(x, z, t) = 1 for any t > 0.
Furthermore, we can obtain x = z. This completes the proof.

Remark 4.2. It should be pointed out that the foregoing three examples are suitable for
Theorem 4.1.



Abstract and Applied Analysis 7

Corollary 4.3. Let (X,M, ∗) be an M-complete fuzzy metric space and let f : X → X be a con-
tinuous map and g : X → X a map. If

(i) g(X) ⊆ f(X),

(ii) g commutes with f ,

(iii) andM(g(x), g(y), kt) ≥M(f(x), f(y), t) for all x, y ∈ X and t > 0, where 0 < k < 1.

Then f and g have a unique common fixed point.

Remark 4.4. Corollary 4.3 is the immediate consequence of Theorem 4.1, which can be
regarded as an improvement of Theorem 2 in [7].
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