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This paper gives the estimates of the zeros of orthogonal polynomials for Jacobi-exponential
weights.

1. Introduction and Results

This paper deals with the zeros of orthogonal polynomials for Jacobi-exponential weights.
Let w be a weight in I := (a, b), −∞ ≤ a < 0 < b ≤ ∞, for which the moment problem
possesses a unique solution. Denote by N the set of positive integers. Pn stands for the set of
polynomials of degree at most n.

Assume that W = e−Q where Q : I → [0,∞) is continuous. Also, let 0 < p < ∞,

a ≤ tr < tr−1 < · · · < t2 < t1 ≤ b,

pi >
−1
p
, i = 1, 2, . . . , r,

U(x) =
r∏

i=1

|x − ti|pi .

(1.1)

The letters c, C0, C1, . . . stand for positive constants independent of variables and
indices, unless otherwise indicated, and their values may be different at different occurrences,
even in subsequent formulas. Moreover, Cn ∼ Dn means that there are two constants c1 and
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c2 such that c1 ≤ Cn/Dn ≤ c2 for the relevant range of n. We write c = c(λ) or c /= c(λ) to
indicate dependence on or independence of a parameter λ.

Definition 1.1 (see [1, Definition 1.7, page 14]). Given c, t ≥ 0 and a nonnegative Borel measure
ν with compact support in C and total mass ≤ t, one says that

P(z) := c exp
(∫

ln|z − t|dν(t)
)

(1.2)

is an exponential of a potential of mass ≤ t. One denotes the set of all such P by Pt.

One notes that, for P ∈ Pn,

|P | ∈ Pt, t ≥ n. (1.3)

Definition 1.2 (see [1, page 19]). Letw be a weight in I. For 0 < p < ∞, generalized Christoffel
functions with respect to w for z ∈ C are defined by

λp,n(w; z) = inf
P∈Pn

(‖Pw‖Lp(I)

|P(z)|

)p

. (1.4)

For p = ∞, generalized Christoffel functions with respect to w for z ∈ C are defined by

λ∞,n(w; z) = inf
P∈Pn

‖Pw‖L∞(I)

|P(z)| . (1.5)

Obviously, for the classical Christoffel function λn(w2;x) with respect to w2, we have

λn
(
w2;x

)
= λ2,n−1(w;x). (1.6)

A function f : (c, d) → (0,∞) is said to be quasi-increasing (or quasi-decreasing) if there
exists C > 0 such that

f(x) ≤ (or ≥)Cf(
y
)
, c < x ≤ y < d. (1.7)

Definition 1.3 (see [1, pages 10–12]). Let a < 0 < b. Assume that W = e−Q where Q : I →
[0,∞) satisfies the following properties

(a) Q′ ∈ C(I) and Q(0) = 0.

(b) Q′ is nondecreasing in I.

(c) We have

lim
t→a+

Q(t) = lim
t→ b−

Q(t) = ∞. (1.8)
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(d) The function

T(t) :=
tQ′(t)
Q(t)

, t /= 0, (1.9)

is quasi-decreasing in (a, 0) and quasi-increasing in (0, b), respectively. Moreover

T(t) ≥ Λ > 1, t ∈ I \ {0}. (1.10)

(e) There exists ε0 ∈ (0, 1) such that, for y ∈ I \ {0},

T
(
y
) ∼ T

(
y

[
1 − ε0

T
(
y
)
])

. (1.11)

Then we write W ∈ F.

(f) In addition, assume that there exist C, ε1 > 0 such that, for all x ∈ I \ {0},

∫x

x−ε1|x|/T(x)

|Q′(t) −Q′(x)|
|t − x|3/2

dt ≤ C
∣∣Q′(x)

∣∣
[
T(x)
|x|

]1/2
. (1.12)

Then we write W ∈ F(Lip(1/2)).
For W ∈ F and t > 0, the Mhaskar-Rahmanov-Saff numbers a−t := a−t(Q) < 0 < at :=

at(Q) are defined by the equations

t =
1
π

∫at

a−t

xQ′(x)

[(x − a−t)(at − x)]1/2
dx,

0 =
1
π

∫at

a−t

Q′(x)

[(x − a−t)(at − x)]1/2
dx.

(1.13)

Put for t > 0,
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Δt := Δt(Q) := [a−t, at],

δt := δt(Q) :=
1
2
(at + |a−t|), η±t := η±t(Q) :=

⎡

⎣tT(a±t)

√
|a±t|
δt

⎤

⎦
−2/3

,

ϕt(x) := ϕt(Q;x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|x − a−2t||x − a2t|
t
√[|x − a−t| + |a−t|η−t

][|x − at| + atηt
] , x ∈ [a−t, at],

ϕt(at), x ∈ (at, b),
ϕt(a−t), x ∈ (a, a−t),

JL,t := JL,t(Q) :=
[
a−t

(
1 + Lη−t

)
, at

(
1 + Lηt

)]
, L > 0,

KL,t := KL,t(Q) := [−1 + L(1 + a−t), 1 − L(1 − at)], L > 1.

(1.14)

Let

Ut(x) :=
r∏

i=1

(
|x − ti| + δt

t

)pi

, ρ := ρ(U) :=
r∑

i=1

max
{
pi, 0

}
. (1.15)

In 1994 and 2001, Levin and Lubinsky [1, 2] published their monographs on
orthogonal polynomials for exponential weights W2. Then they [3, 4] discussed orthogonal
polynomials for exponential weights x2αW(x)2, α > −1/2, in [0, b), since the results of
[1, 2] cannot be applied to such weights. Kasuga and Sakai [5] considered generalized
Freud weights |x|2αW(x)2 in (−∞,∞). Recently the second author [6] obtained the Lp

Christoffel functions for Jacobi-exponential weights UW , which are the combination of the
two best important weights: Jacobi weight and the exponential weight, and restricted range
inequalities.

Theorem 1.4 (see [6, Theorem 1.1]). LetW ∈ F(Lip (1/2)), L > 0, and 0 < p < ∞. Assume that

lim
t→∞

|a−t|
at

= γ, 0 < γ < ∞. (1.16)

Then there exists n0 > 0 such that, for n ≥ n0 and x ∈ JL,n, the relation

λp,n(UW ;x) ∼ ϕn(x)Un(x)pW(x)p (1.17)

uniformly holds.

Theorem 1.5 (see [6, Theorem 1.2]). Let W = e−Q(x), where Q : I → [0,∞) is convex with
Q(a+) = Q(b−) = ∞ and Q(x) > Q(0) = 0, x ∈ I \ {0}. Let 0 < p ≤ ∞. Assume that relation
(1.16) is valid. Then there exist C, t0 > 0 such that, for t ≥ t0 and P ∈ Pt−ρ−2/p,

‖PUW‖Lp(I) ≤ C‖PUW‖Lp(Δt),

‖PUtW‖Lp(I) ≤ C‖PUtW‖Lp(Δt).
(1.18)
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Theorem 1.6 (see [6, Theorem 1.3]). LetW ∈ F(Lip (1/2)), L > 0, and 0 < p < ∞. Assume that
relation (1.16) is valid. Then there exist C, t0 > 0 such that, for t ≥ t0 and P ∈ Pt,

‖PUW‖Lp(I) ≤ C‖PUW‖Lp([a−t(1−Lη−t),at(1−Lηt)]). (1.19)

In this paper we discuss the zeros of orthogonal polynomials for Jacobi-exponential
weights UW and restricted range inequalities.

Theorem 1.7. LetW ∈ F(Lip (1/2)). Assume that (1.16) is valid, and

a < tr < · · · < t1 < b, (1.20)

ϕt(x) = O(1), t −→ ∞. (1.21)

Then

xkn − xk+1,n ≤ cϕn(xkn), k = 1, 2, . . . , n − 1. (1.22)

Theorem 1.8. Let W = e−Q(x), where Q : I → [0,∞) is convex with Q(a+) = Q(b−) = ∞ and
Q(x) > Q(0) = 0, x ∈ I \ {0}. Let 0 < p ≤ ∞. Assume that all pi are positive and relation (1.16) is
valid. Then there exist t0 > 0 such that, for t ≥ t0 and P ∈ Pt−ρ−2/p,

‖PUW‖Lp(I\Δt) ≤ ‖PUW‖Lp(Δt). (1.23)

Theorem 1.9. Let the assumptions of Theorem 1.8 prevail. Then

x1n < an+ρ+1/2, (1.24)

xnn > a−n−ρ−1/2. (1.25)

Theorem 1.10. Let W ∈ F(Lip(1/2)). Then

x1n ≥ an

(
1 − cηn

)
, (1.26)

xnn ≤ a−n
(
1 − cη−n

)
. (1.27)

If all pi ≥ 0, then

1 − x1n

an
∼ ηn, (1.28)

1 − xnn

a−n
∼ η−n. (1.29)

Here we should point out that our main result (Theorem 1.7) cannot follow from
[7] given by Mastroianni and Totik, because in general Jacobi-exponential weights UW are
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not doubling weights, although Jacobi weights U are doubling weights. A doubling weight
means that the measure of a twice enlarged interval is less than a constant times the measure
of the original interval. For example, for W(t) = exp(−t2), by L’Hospital rule

lim
d→∞

∫5d/2
d/2 exp

(−t2)dt
∫2d
d exp(−t2)dt

= lim
d→∞

exp
(
−(5d/2)2

)
− exp

(
−(d/2)2

)

exp
(
−(2d)2

)
− exp(−d2)

= lim
d→∞

exp
(
3d2/4

) − exp
(−21d2/4

)

1 − exp(−3d2)
= ∞,

(1.30)

which implies that W(t) = exp(−t2) is not a doubling weight.
We will give some auxiliary lemmas in Section 2 and the proofs of Theorems 1.7–1.10

in Section 3, respectively.

2. Auxiliary Lemmas

Lemma 2.1 (Levin and Lubinsky [1, Lemma 3.5, pages 71-72]). LetW ∈ F. Then for fixed L > 1
and uniformly for t > 0,

aLt ∼ at. (2.1)

Moreover, there exists τ0 > 0 such that, for t ≥ τ ≥ τ0, the inequalities

1 ≤ δt
δτ

≤ c

(
t

τ

)1/Λ
(2.2)

hold.

Lemma 2.2 (Shi [6]). Let W ∈ F. Then, for large enough t,

a2t ≥ at

(
1 + ηt

)
. (2.3)

Lemma 2.3. Let I = (−1, 1), W ∈ F, and L > 1. Then, for x ∈ KL,t,

ϕt(x) ∼ 1
t
[(a2t − x)(x − a−2t)]1/2, (2.4)

ϕt(x) ≤ cδt
t
. (2.5)

Proof. By the same argument as that of [8, (2.25)] we can prove (2.4). By (2.4) and (2.1) for
x ∈ KL,t,

ϕt(x) ≤ c

t
· 1
2
(a2t − a−2t) ≤ cδt

t
. (2.6)
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Lemma 2.4. LetW ∈ F. Then, for x ∈ I,

ϕt(x) ≤ cδt

t2/3T(at)1/6
. (2.7)

Proof. By the definition of ϕt it is enough to prove (2.7) for x ∈ Δt. Without loss of generality
we can assume that 0 ≤ x ≤ at. By Lemma 3.11(b) in [1, page 81] for t > 0,

∣∣∣∣
a2t

at
− 1

∣∣∣∣ ∼
1

T(at)
. (2.8)

By Lemma 2.12 in [8], (2.3), (2.1), and (2.8),

S(x) =
a2t − x

at

(
1 + ηt

) − x
· a−2t − x

a−t
(
1 + η−t

) − x

≤ a2t − at

atηt
· a−2t
a−t

(
1 + η−t

) ≤ c
a2t/at − 1

ηt
≤ c

ηtT(at)
.

(2.9)

By (1.63) in [1, page 15],

ηtT(at) ≥ t−2/3T(at)1/3 (2.10)

and hence

S(x) ≤ ct2/3T(at)−1/3. (2.11)

Thus

ϕt(x) =
[(a2t − x)(x − a−2t)]1/2

t
S(x)1/2

≤ cδt
t

[
t2/3T(at)−1/3

]1/2
=

cδt

t2/3T(at)1/6
.

(2.12)

Let Ik = [xk+1,n, xkn], dk = xkn − xk+1,n, k = 1, 2, . . . , n − 1. Let, for n ≥ n0 and d :=
min1≤i≤r−1(ti − ti+1),

max
1≤k≤n−1

dk ≤ d

4
. (2.13)

Lemma 2.5. For fixed index k, 1 ≤ k ≤ n − 1, let j, 1 ≤ j ≤ r, satisfy

min
x∈Ik

∣∣x − tj
∣∣ = min

1≤i≤r
min
x∈Ik

|x − ti|. (2.14)
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Then

∏

i /= j

|xκn − ti|pi ∼
∏

i /= j

(
|xκn − ti| + δn

n

)pi

∼
∏

i /= j

|x − ti|pi , x ∈ Ik, κ = k, k + 1. (2.15)

Proof. We give the proof of (2.15) for κ = k only, the proof of (2.15) for κ = k + 1 being similar.
We claim that, for i /= j,

|xkn − ti| ≥ 3
8
d. (2.16)

In fact, suppose without loss of generality that xkn ≥ tj . It is enough to show (2.16) for i = j−1.
Because |xkn − tj+1| ≥ tj − tj+1 ≥ d.

If tj ∈ Ik then by (2.13)

|xkn − xk+1,n| ≤ d

4
≤ tj−1 − tj ≤

∣∣tj−1 − xkn

∣∣ +
∣∣xkn − tj

∣∣ (2.17)

and hence

∣∣xk+1,n − tj
∣∣ ≤ ∣∣xkn − tj−1

∣∣; (2.18)

if tj /∈ Ik then by (2.14)

∣∣xk+1,n − tj
∣∣ = min

x∈Ik

∣∣x − tj
∣∣ ≤ min

x∈Ik

∣∣x − tj−1
∣∣ = tj−1 − xkn, (2.19)

which again implies (2.18). Then by (2.18)

d ≤ ∣∣tj−1 − tj
∣∣ ≤ ∣∣tj−1 − xkn

∣∣ + |xkn − xk+1,n| +
∣∣xk+1,n − tj

∣∣

≤ 2
∣∣xkn − tj−1

∣∣ + dk

≤ 2
∣∣xkn − tj−1

∣∣ +
1
4
d

(2.20)

and hence |xkn − tj−1| ≥ 3d/8. This proves (2.16).
With the help of (2.16) for x ∈ Ik and i /= j,

|x − ti| ≤ |xkn − ti| + |x − xkn| ≤ |xkn − ti| + d

4
≤ 5

3
|xkn − ti|,

|x − ti| ≥ |xkn − ti| − |x − xkn| ≥ |xkn − ti| − d

4
≥ 1

3
|xkn − ti|.

(2.21)

Hence

|x − ti| ∼ |xkn − ti|. (2.22)
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Furthermore, by (2.2) with τ = 1

δt
t
≤ cδ1t

1/Λ−1 = o(1), t −→ ∞. (2.23)

So for i /= j,

|xkn − ti| ∼ |xkn − ti| + δn
n
. (2.24)

This proves (2.15).

By the same argument as that of Lemma 7.2.7 in [9, page 157] replacing 1/n by Cn, we
can get its extension.

Lemma 2.6. Let p ≥ 0, Bn ≥ An ≥ 0, Cn ≥ 0, σ = ±1, and

B
p+1
n + σA

p+1
n ≤ CCn

[
(Bn + Cn)p + (An + Cn)p

]
. (2.25)

Then

Bn + σAn ≤ cCn. (2.26)

Lemma 2.7. LetW ∈ F. Let (1.16), (1.20), and (1.21) prevail. Then there exists t0 > 0 such that, for
t ≥ t0 and for each index j, 1 ≤ j ≤ r,

∣∣x − tj
∣∣ +

δt
t
∼ ∣∣x − tj

∣∣ + ϕt(x) (2.27)

holds uniformly for x ∈ I.

Proof. Let 0 < ε < min{b − t1, tr − a} and Δ = [tr − ε, t1 + ε]. We separate two cases.
Case 1 (x ∈ Δ). In this case by (2.3) and (2.1),

ϕt(x) ≥ 1
t
[(a2t − x)(x − a−2t)]1/2 ≥ 1

t
[(a2t − t1 − ε)(tr − ε − a−2t)]1/2 ≥ cδt

t
(2.28)

which coupled with (2.5) gives

ϕt(x) ∼ δt
t
. (2.29)

Hence (2.27) follows.
Case 2 (x /∈ Δ). In this case by (2.23),

∣∣x − tj
∣∣ ≥ ε ≥ cδt

t
(2.30)
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and by (1.21)

∣∣x − tj
∣∣ ≥ ε ≥ cϕt(x). (2.31)

Again (2.27) follows.

Corollary 2.8. LetW ∈ F. Let (1.16) and (1.20) prevail. If

δt

t2/3T(at)1/6
= O(1), t −→ ∞ (2.32)

then (2.27) holds.
In particular, if Λ ≥ 3/2 then (2.32), (1.21), and (2.27) hold.

Proof. By (2.7) relation (2.32) implies (1.21). Then by Lemma 2.7 relation (2.27) is valid.
In particular, if Λ ≥ 3/2 then by (2.2) with τ = τ0 relation (2.32) is valid and hence

(1.21) and (2.27) hold.

3. Proof of Theorems

3.1. Proof of Theorem 1.7

Denote by �kn’s the fundamental polynomials based on the zeros xkn’s. By Theorem 1.4 and
Lemma 11.8 in [8, pages 320-321]

λn(WU;xkn)W(xkn)−2 + λn(WU;xk+1,n)W(xk+1,n)−2

=
∫

I

[
�kn(t)2W(xkn)−2 + �k+1,n(t)2W(xk+1,n)−2

]
W(t)2U(t)2dt

≥
∫xkn

xk+1,n

[
�kn(t)2W(xkn)−2 + �k+1,n(t)2W(xk+1,n)−2

]
W(t)2U(t)2dt

≥ 1
2

∫xkn

xk+1,n

U(t)2dt.

(3.1)

On the other hand, by Theorem 1.4,

λn(WU;xkn)W(xkn)−2 + λn(WU;xk+1,n)W(xk+1,n)−2

≤ c
[
ϕn(xkn)Un(xkn)2 + ϕn(xk+1,n)Un(xk+1,n)2

]
.

(3.2)

Then for ϕn(xkn) := max{ϕn(xkn), ϕn(xk+1,n)},
∫xkn

xk+1,n

U(t)2dt ≤ cϕn(xkn)
[
Un(xkn)2 +Un(xk+1,n)2

]
. (3.3)
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Let j be defined by (2.14). Using Lemma 2.5 it follows from (3.3) that

∫xkn

xk+1,n

∣∣t − tj
∣∣2pj dt ≤ cϕn(xkn)

[(∣∣xkn − tj
∣∣ +

δn
n

)2pj
+

(∣∣xk+1,n − tj
∣∣ +

δn
n

)2pj
]
. (3.4)

Further, by (2.27),

∫xkn

xk+1,n

∣∣t − tj
∣∣2pj dt ≤ cϕn(xkn)

{[∣∣xkn − tj
∣∣ + ϕn(xkn)

]2pj +
[∣∣xk+1,n − tj

∣∣ + ϕn(xkn)
]2pj}. (3.5)

By calculation from (3.5) we get

1
2pj + 1

[∣∣xkn − tj
∣∣2pj+1 + σ

∣∣xk+1,n − tj
∣∣2pj+1

]

=
∫xkn

xk+1,n

∣∣t − tj
∣∣2pj dt ≤ cϕn(xkn)

{[∣∣xkn − tj
∣∣ + ϕn(xkn)

]2pj +
[∣∣xk+1,n − tj

∣∣ + ϕn(xkn)
]2pj},

(3.6)

where

σ =

{
1, tj ∈ Ik,

−1, tj /∈ Ik.
(3.7)

We separate two cases.

Case 1 (pj ≥ 0). Using Lemma 2.6 it follows from (3.6) that

xkn − xk+1,n ≤ cϕn(xkn). (3.8)

Case 2 (pj < 0). Suppose without loss of generality that xk+1,n > tj for the case when tj /∈ Ik.
By (3.6),

1
2pj + 1

[∣∣xkn − tj
∣∣2pj+1 + σ

∣∣xk+1,n − tj
∣∣2pj+1

]

=
∫xkn

xk+1,n

∣∣t − tj
∣∣2pj dt ≤ c0ϕn(xkn)min

{
ϕn(xkn)2pj ,

∣∣xk+1,n − tj
∣∣2pj

}
.

(3.9)

Subcase 2.1 (tj ∈ Ik). Inequality (3.9) gives

∣∣xκn − tj
∣∣2pj+1 ≤ cϕn(xkn)2pj+1, κ = k, k + 1 (3.10)

which yields (3.8).
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Subcase 2.2 (tj /∈ Ik). In this case we distinguish two subcases.

(1) |xk+1,n − tj | ≥ 2c0ϕn(xkn), where c0 is given by (3.9). In this case

∫xkn

xk+1,n

(
t − tj

)2pj dt =
∫xkn

xk+1,n

(
t − tj

)(
t − tj

)2pj−1dt

≥ (
xk+1,n − tj

) ∫xkn

xk+1,n

(
t − tj

)2pj−1dt

=
(
xk+1,n − tj

) 1
2
∣∣pj

∣∣
[(
xk+1,n − tj

)2pj − (
xkn − tj

)2pj ]

≥ c0ϕn(xkn)∣∣pj
∣∣

[(
xk+1,n − tj

)2pj − (
xkn − tj

)2pj ],

(3.11)

which by (3.9) gives

(
xk+1,n − tj

)2pj ≤ (
1 − ∣∣pj

∣∣)−1(xkn − tj
)2pj ≤ 2

(
xkn − tj

)2pj . (3.12)

On the other hand, by (3.9) and (3.12),

c0ϕn(xkn)
(
xk+1,n − tj

)2pj ≥
∫xkn

xk+1,n

(
t − tj

)2pj dt ≥ (
xkn − tj

)2pj (xkn − xk+1,n)

≥ 1
2
(
xk+1,n − tj

)2pj (xkn − xk+1,n)

(3.13)

and hence (3.8) follows.

(2) |xk+1,n − tj | < 2c0ϕn(xkn). By (3.9),

c0ϕn(xkn)2pj+1 ≥ 1
2pj + 1

[(
xkn − tj

)2pj+1 − (
xk+1,n − tj

)2pj+1]

≥ 1
2pj + 1

[(
xkn − tj

)2pj+1 − (
2c0ϕn(xkn)

)2pj+1].
(3.14)

So xkn − tj ≤ cϕn(xkn) and (3.8) follows.
Finally, applying Theorem 5.7(b) in [1, page 125] we conclude ϕn(xkn) ∼ ϕn(xkn) and

hence (1.22) follows from (3.8).

3.2. Proof of Theorem 1.8

For P ∈ Pt−ρ−2/p, we have PU ∈ Pt−2/p and hence apply Theorem 1.8 in [1, page 15] to obtain
(1.23).
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3.3. Proof of Theorem 1.9

Use the same argument as that of Theorem 11.1 in [1, page 313].

3.4. Proof of Theorem 1.10

We give the proofs of (1.26) and (1.28) only, the proofs of (1.27) and (1.29) being similar.
First let us prove (1.26). Choose α, β > 1 so that

1
α
+
1
β
= 1, 2βpi > −1, i = 1, . . . , r. (3.15)

Let Ln denote the linear map of Δn onto [−1, 1]. By Lemma 11.7 in [1, page 318] there exists
yn ∈ Δn such that

Ln

(
yn

)
= cos

2π
m

, m = m(n), (3.16)

and for large enough n and Rn ∈ Pn−2m such that

Rn(x)W(x)1/α ≥ C1, x ∈ [
0, yn

]
, (3.17)

∥∥∥RnW
1/α

∥∥∥
L∞(I)

≤ C2. (3.18)

Using (11.7) in [1, page 318] in the form

1 − x1n

an
= min

P∈Pn−1

∫
I(1 − x/an)(PUW)2(x)dx

∫
I (PUW)2(x)dx

. (3.19)

Again choose [1, page 319]

P(x) = Rn(x)Vm,cos(2π/m)(Ln(x))
2 ∈ Pn−2. (3.20)
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Applying Theorem 1.5 and (3.18), and using the same argument as that in [1, pages 319-320],
we can get

∫

I

(
1 − x

an

)
(PUW)2(x)dx

≤ c

∫

Δn

(
1 − x

an

)
(PUW)2(x)dx

= c

∫

Δn

[(
1 − x

an

)(
P(x)W(x)1/α

)2
][(

U(x)W(x)1/β
)2

]
dx

≤ c

{∫

Δn

[(
1 − x

an

)(
P(x)W(x)1/α

)2
]α
dx

}1/α{∫

Δn

[(
U(x)W(x)1/β

)2
]β
dx

}1/β

≤ c

{∫

Δn

[(
1 − x

an

)(
P(x)W(x)1/α

)2
]α
dx

}1/α

≤ c

{∫

Δn

[(
1 − x

an

)
Vm,cos(2π/m)(Ln(x))4

]α
dx

}1/α

=
cδn
an

{∫

Δn

[
(1 − Ln(x))Vm,cos(2π/m)(Ln(x))4

]α
dx

}1/α

=
cδ2

n

an

{∫1

−1

[
(1 − t)Vm,cos(2π/m)(t)

4
]α
dt

}1/α

≤ cδ2
n

anm4

{∫∞

−∞

[
(1 + |v|)min

{
1,

c

|v|
}4

]α

dv

}1/α

≤ canη
2
n.

(3.21)

On the other hand, by (3.17),

∫

I
(PUW)2(x)dx ≥

∫yn

yn(1−C1ηn)
(PUW)2(x)dx

≥
∫yn

yn(1−C1ηn)
Vm,cos(2π/m)(Ln(x))

4U(x)2dx.

(3.22)

By (1.20) for large enough n, we have

U(x) ≥ c > 0, x ∈ [
yn

(
1 − C1ηn

)
, yn

]
. (3.23)
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Hence (3.22) implies

∫

I
(PUW)2(x)dx ≥ c

∫yn

yn(1−C1ηn)
Vm,cos(2π/m)(Ln(x))

4dx

= cδn

∫ cos(2π/m)

cos(2π/m)−C1ynηn/δn

Vm,cos(2π/m)(t)4dt.

(3.24)

But in [1, page 320] the following estimate is given:

δn

∫ cos(2π/m)

cos(2π/m)−C1ynηn/δn

Vm,cos(2π/m)(t)4dt ≥ canηn. (3.25)

Substituting this estimate into (3.24) gives

∫

I
(PUW)2(x)dx ≥ canηn (3.26)

which coupled with (3.21) yields (1.26).
Next let us prove (1.28). We already know that

an

(
1 − cηn

) ≤ x1n < an+ρ+1/2 = an

(
1 + o

(
ηn

))
, (3.27)

by (1.26) and (1.24). We must prove that, for some c1 > 0, and n large enough, we have

x1n < an

(
1 − c1ηn

)
. (3.28)

We use the idea for the proof of Corollary 13.4(b) in [1, pages 380-381] with
modification. By the same argument as that proof withA = an+ρ+1/2(1−εηn) instead, applying
Theorem 1.8 we obtain

1 − x1n

A
= λn

(
(UW)2, x1n

)−1 ∫

I

(
1 − x

A

)
(�1nUW)(x)2dx, (3.29)

∫

I

(
1 − x

A

)
(�1nUW)(x)2dx

=
∫A

a

∣∣∣1 − x

A

∣∣∣(�1nUW)(x)2dx −
∫b

A

∣∣∣1 − x

A

∣∣∣(�1nUW)(x)2dx

≥
∫A

a

∣∣∣1 − x

A

∣∣∣(�1nUW)(x)2dx

−
∫an+ρ+1/2

A

∣∣∣1 − x

A

∣∣∣(�1nUW)(x)2dx −
∫

Δn+ρ+1/2

∣∣∣1 − x

A

∣∣∣(�1nUW)(x)2dx

≥ −2
∫an+ρ+1/2

A

∣∣∣1 − x

A

∣∣∣(�1nUW)(x)2dx,

(3.30)
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where �1n denotes the fundamental polynomial of Lagrange interpolation based on the zeros
of the nth orthogonal polynomial with respect to the weight (UW)2.

But

∫an+ρ+1/2

A

∣∣∣1 − x

A

∣∣∣(�1nUW)(x)2dx

≤
(
an+ρ+1/2

A
− 1

)∫

I
(�1nUW)(x)2dx =

(
an+ρ+1/2

A
− 1

)
λn

(
(UW)2, x1n

) (3.31)

which, coupled with (3.30) and (3.29), gives

1 − x1n

A
≥ −cεηn. (3.32)

Thus

x1n

an
=

x1n

A

A

an+ρ+1/2

an+ρ+1/2

an

≤ (
1 + cεηn

)(
1 − εηn

)(
1 + o

(
ηn

))

< 1 − c1ηn,

(3.33)

for n large enough, provided ε > 0 is small enough.
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