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We introduce the concept of ϕ-weakly commuting self-mapping pairs in G-metric space. Using
this concept, we establish a new common fixed point theorem of Altman integral type for six self-
mappings in the framework of complete G-metric space. An example is provided to support our
result. The results obtained in this paper differ from the recent relative results in the literature.

1. Introduction and Preliminaries

Metric fixed point theory is an important mathematical discipline because of its applications
in areas as variational and linear inequalities, optimization theory. Many results have been
obtained by many authors considering different contractive conditions for self-mappings in
metric space. In 1975, Altman [1] proved a fixed point theorem for a mapping which satisfies
the condition d(fx, fy) ≤ Q(d(x, y)), where Q : [0,+∞) → [0,+∞) is an increasing function
satisfying the following conditions:

(i) 0 < Q(t) < t, t ∈ (0,∞);

(ii) p(t) = t/(t −Q(t)) is a decreasing function;

(iii) for some positive number t1, there holds
∫ t1
0 p(t)dt < +∞.

Remark 1.1. By condition (i) and that Q is increasing, we know that Q(0) = 0 and Q(t) = t ⇔
t = 0.

Gu and Deng [2], Liu [3], Zhang [4], and Li and Gu [5] discussed common fixed point
theorems for Altman type mappings in metric space. In 2006, a new structure of generalized
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metric space was introduced byMustafa and Sims [6] as an appropriate notion of generalized
metric space called G-metric space. Abbas and Rhoades [7] initiated the study of common
fixed point in generalized metric space. Recently, many fixed point and common fixed point
theorems for certain contractive conditions have been established in G-metric spaces, and
for more details, one can refer to [8–42]. Coupled fixed point problems have also been
considered in partially orderedG-metric spaces (see [43–56]). However, no one has discussed
the common fixed point theorems for two or three pairs combining Altman type mappings
recently.

Inspired by that, the purpose of this paper is to study common fixed point problem of
Altman integral type for six self-mappings in G-metric space. We introduce a new concept of
ϕ-weakly commuting self-mapping pairs in G-metric space, and a new common fixed point
theorem for six self-mappings has been established through this concept. The results obtained
in this paper differ from the recent relative results in the literature.

Throughout the paper, we mean by N the set of all natural numbers.

Definition 1.2 (see [6]). Let X be a nonempty set, and let G : X × X × X → R+ be a function
satisfying the following axioms:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), for all x, y ∈ X with x /=y,

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z/=y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality),

then the function G is called a generalized metric, or, more specifically a G-metric on X and
the pair (X,G) is called a G-metric space.

Definition 1.3 (see [6]). Let (X,G) be a G-metric space and let {xn} be a sequence of points in
X, a point x in X is said to be the limit of the sequence {xn} if limm,n→∞G(x, xn, xm) = 0, and
one says that sequence {xn} is G-convergent to x.

Thus, if xn → x in a G-metric space (X,G), then for any ε > 0, there existsN ∈ N such
that G(x, xn, xm) < ε, for all n,m ≥N.

Proposition 1.4 (see [6]). Let (X,G) be a G-metric space, then the followings are equivalent:

(1) {xn} is G-convergent to x,
(2) G(xn, xn, x) → 0 as n → ∞,

(3) G(xn, x, x) → 0 as n → ∞,

(4) G(xn, xm, x) → 0 as n,m → ∞.

Definition 1.5 (see [6]). Let (X,G) be a G-metric space. A sequence {xn} is called G-Cauchy
sequence if, for each ε > 0 there exists a positive integerN ∈ N such that G(xn, xm, xl) < ε for
all n,m, l ≥N; that is, G(xn, xm, xl) → 0 as n,m, l → ∞.

Definition 1.6 (see [6]). A G-metric space (X,G) is said to be G-complete, if every G-Cauchy
sequence in (X,G) is G-convergent in X.
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Proposition 1.7 (see [6]). Let (X,G) be a G-metric space. Then the followings are equivalent.

(1) The sequence {xn} is G-Cauchy;
(2) For every ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε, for all n,m ≥ k.

Proposition 1.8 (see [6]). Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly
continuous in all three of its variables.

Definition 1.9 (see [6]). Let (X,G) and (X′, G′) be G-metric space, and f : (X,G) → (X′, G′)
be a function. Then f is said to be G-continuous at a point a ∈ X if and only if for every ε > 0,
there is δ > 0 such that x, y ∈ X, and G(a, x, y) < δ imply G′(f(a), f(x), f(y)) < ε. A function
f is G-continuous at X if and only if it is G-continuous at all a ∈ X.

Proposition 1.10 (see [6]). Let (X,G) and (X′, G′) be G-metric space. Then f : X → X′ is G-
continuous at x ∈ X if and only if it is G-sequentially continuous at x, that is, whenever {xn} is
G-convergent to x, {f(xn)} is G-convergent to f(x).

Proposition 1.11 (see [6]). Let (X,G) be a G-metric space. Then, for any x, y, z, a in X it follows
that:

(i) if G(x, y, z) = 0, then x = y = z,

(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),
(iii) G(x, y, y) ≤ 2G(y, x, x),

(iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z),
(v) G(x, y, z) ≤ (2/3)(G(x, y, a) +G(x, a, z) +G(a, y, z)),

(vi) G(x, y, z) ≤ G(x, a, a) +G(y, a, a) +G(z, a, a).

Definition 1.12 (see [8]). Self-mappings f and g of a G-metric space (X,G) are said to be
compatible if limn→∞G(fgxn, gfxn, gfxn) = 0 and limn→∞G(gfxn, fgxn, fgxn) = 0, when-
ever {xn} is a sequence in X such that limn→∞fxn = limn→∞gxn = t, for some t ∈ X.

In 2010, Manro et al. [9] introduced the concept of weakly commuting mappings, R-
weakly commuting mappings into G-metric space as follows.

Definition 1.13 (see [9]). A pair of self-mappings (f, g) of aG-metric space is said to be weakly
commuting if

G
(
fgx, gfx, gfx

) ≤ G(fx, gx, gx), ∀x ∈ X. (1.1)

Definition 1.14 (see [9]). A pair of self-mappings (f, g) of a G-metric space is said to be R-
weakly commuting, if there exists some positive real number R such that

G
(
fgx, gfx, gfx

) ≤ RG(fx, gx, gx), ∀x ∈ X. (1.2)

Remark 1.15. If R ≤ 1, then R-weakly commuting mappings are weakly commuting.

Now we introduce the new concept of ϕ-weakly commuting mappings as follow.
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Definition 1.16. A pair of self-mappings (f, g) of a G-metric space is said to be ϕ-weakly com-
muting, if there exists a continuous function ϕ : [0,∞) → [0,∞), ϕ(0) = 0, such that

G
(
fgx, gfx, gfx

) ≤ ϕ(G(fx, gx, gx)), ∀x ∈ X. (1.3)

Remark 1.17. Commuting mappings are weakly commuting mappings, but the reverse is not
true. For example: let X = [0, 1/2], G(x, y, z) = |x − y| + |y − z| + |z − x|, for all x, y, z ∈ X,
define f(x) = x/2, g(x) = x2/2, through a straightforward calculation, we have: fgx = x2/4,
gfx = x2/8, G(fgx, gfx, gfx) = G(x2/4, x2/8, x2/8) = x2/4, but G(fx, gx, gx) = |x − x2| =
x − x2, hence, G(fgx, gfx, gfx) ≤ G(fx, gx, gx), but fgx /= gfx.

Remark 1.18. Weakly commuting mappings are R-weakly commuting mappings, but the
reverse is not true. For example: let X = [−1, 1], define G(x, y, z) = |x − y| + |y − z| + |z − x|,
for all x, y, z ∈ X, f(x) = |x|, g(x) = |x| − 1, then gfx = |x| − 1, fgx = 1 − |x|, |fx − gx| = 1,
|fgx − gfx| = 2(1 − |x|), G(fgx, gfx, gfx) = 2|fgx − gfx| = 4(1 − |x|) ≤ 4 = 4|fx − gx| =
G(fx, gx, gx), when R = 2, we get that f and g are R-weakly commuting mappings, but not
weakly commuting mappings.

Remark 1.19. R-weakly commuting mappings are ϕ-weakly commuting mappings but the
reverse is not true. For example: let X = [0,+∞), G(x, y, z) = |x − y| + |y − z| + |z − x|,
for all x, y, z ∈ X, f(x) = x2/4, g(x) = x2, thus, we have fgx = x4/4, gfx = x4/16,
G(fgx, gfx, gfx) = (3/8)x4, G(fx, gx, gx) = (3/2)x2. Let ϕ(x) = (1/2)x2, then

G
(
fgx, gfx, gfx

)
=

3
8
x4 ≤ 9

8
x4 =

1
2

(
3
2
x2
)2

= ϕ
(
3
2
x2
)

= ϕ
(
G
(
fx, gx, gx

))
. (1.4)

For any given R > 0, since limx→+∞(1/4)x2 = +∞, there exists x ∈ X such that (1/4)x2 > R,
so we getG(fgx, gfx, gfx) = (1/4)x2G(fx, gx, gx) > RG(fx, gx, gx). Therefore, f and g are
ϕ-weakly commuting mappings, but not R-weakly commuting mappings.

Lemma 1.20. Let δ(t) be Lebesgue integrable, and δ(t) > 0, for all t > 0, let F(x) =
∫x
0 δ(t)dt, then

F(x) is an increasing function in [0,+∞).

Definition 1.21. Let f and g be self-mappings of a set X. If w = fx = gx for some x in X, then
x is called a coincidence point of f and g, and w is called s point of coincidence of f and g.

2. Main Results

In this paper, we denote φ : [0,+∞) → [0,+∞) the function satisfying 0 < φ(t) < t, for all
t > 0.

Theorem 2.1. Let (X,G) be a completeG-metric space and let S, T , R, f , g, and h be six mappings of
X into itself. If there exists an increasing function Q : [0,+∞) → [0,+∞) satisfying the conditions
(i)∼(iii) and the following conditions:

(iv) S(X) ⊆ g(X), T(X) ⊆ h(X), R(X) ⊆ f(X),

(v)
∫G(Sx,Ty,Rz)
0 δ(t)dt ≤ φ(∫Q(G(fx,gy,hz))

0 δ(t)dt), for all x, y, z ∈ X,
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where δ(t) is a Lebesgue integrable function which is summable nonnegative such that

∫ε

0
δ(t)dt > 0, ∀ε > 0. (2.1)

Then,

(a) one of the pairs (S, f), (T, g), and (R, h) has a coincidence point in X,

(b) if (S, f), (T, g), and (R, h) are three pairs of continuous ϕ-weakly commuting mappings,
then the mappings S, T , R, f , g, and h have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point inX, from the condition (iv), there exist x1, x2, x3 ∈ X such
that

y1 = Sx0 = gx1, y2 = Tx1 = hx2, y3 = Rx2 = fx3. (2.2)

By induction, there exist two sequences {xn}, {yn} in X, such that

y3n+1 = Sx3n = gx3n+1, y3n+2 = Tx3n+1 = hx3n+2, y3n+3 = Rx3n+2 = fx3n+3, n ∈ N. (2.3)

If yn = yn+1 for some n, with n = 3m, then p = x3m+1 is a coincidence point of the pair
(S, f); if yn+1 = yn+2 for some n, with n = 3m, then p = x3m+2 is a coincidence point of the pair
(T, g); if yn+2 = yn+3 for some n, with n = 3m, then p = x3m+3 is a coincidence point of the pair
(R, h).

On the other hand, if there exists n0 ∈ N such that yn0 = yn0+1 = yn0+2, then yn = yn0 for
any n ≥ n0. This implies that {yn} is a G-Cauchy sequence.

In fact, if there exists p ∈ N such that y3p = y3p+1 = y3p+2, then applying the contractive
condition (v)with x = y3p, y = y3p+1, and z = y3p+2, and the property of φ, we get

∫G(y3p+1,y3p+2,y3p+3)

0
δ(t)dt =

∫G(Sx3p,Tx3p+1,Rx3p+2)

0
δ(t)dt

≤ φ
(∫Q(G(fx3p,gx3p+1,hx3p+2))

0
δ(t)dt

)

= φ

(∫Q(G(y3p,y3p+1,y3p+2))

0
δ(t)dt

)

≤
∫Q(G(y3p,y3p+1,y3p+2))

0
δ(t)dt.

(2.4)

From Lemma 1.20 and the property of Q, we have

G
(
y3p+1, y3p+2, y3p+3

) ≤ Q(
G
(
y3p, y3p+1, y3p+2

))
= Q(0) = 0. (2.5)
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Which implies that y3p+3 = y3p+1 = y3p. So we find yn = y3p for any n ≥ 3p. This implies
that {yn} is a G-Cauchy sequence. The same conclusion holds if y3p+1 = y3p+2 = y3p+3, or
y3p+2 = y3p+3 = y3p+4 for some p ∈ N.

Without loss of generality, we can assume that yn /=ym for all n,m ∈ N and n/=m.
Now we prove that {yn} is a G-Cauchy sequence in X.
Let tn = G(yn, yn+1, yn+2), then we have

tn+1 ≤ Q(tn) < tn (2.6)

for all n ∈ N. Actually, from the condition (v), (2.3) and the property of φ, we have

∫ t3n

0
δ(t)dt =

∫G(y3n,y3n+1,y3n+2)

0
δ(t)dt =

∫G(Rx3n−1,Sx3n,Tx3n+1)

0
δ(t)dt

=
∫G(Sx3n,Tx3n+1,Rx3n−1)

0
δ(t)dt ≤ φ

(∫Q(G(fx3n,gx3n+1,hx3n−1))

0
δ(t)dt

)

= φ

(∫Q(G(y3n,y3n+1,y3n−1))

0
δ(t)dt

)

= φ

(∫Q(t3n−1)

0
δ(t)dt

)

≤
∫Q(t3n−1)

0
δ(t)dt.

(2.7)

By Lemma 1.20 and the property of Q, we have

t3n ≤ Q(t3n−1) < t3n−1. (2.8)

Again, using condition (v), (2.3) and the property of φ, we get

∫ t3n+1

0
δ(t)dt =

∫G(y3n+1,y3n+2,y3n+3)

0
δ(t)dt =

∫G(Sx3n,Tx3n+1,Rx3n+2)

0
δ(t)dt

≤ φ
(∫Q(G(fx3n,gx3n+1,hx3n+2))

0
δ(t)dt

)

= φ

(∫Q(G(y3n,y3n+1,y3n+2))

0
δ(t)dt

)

= φ

(∫Q(t3n)

0
δ(t)dt

)

≤
∫Q(t3n)

0
δ(t)dt.

(2.9)

From Lemma 1.20 and the property of Q we have

t3n+1 ≤ Q(t3n) < t3n. (2.10)
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Similarly, we can get

∫ t3n+2

0
δ(t)dt =

∫G(y3n+2,y3n+3,y3n+4)

0
δ(t)dt =

∫G(Sx3n+3,Tx3n+1,Rx3n+2)

0
δ(t)dt

≤ φ
(∫Q(G(fx3n+3,gx3n+1,hx3n+2))

0
δ(t)dt

)

= φ

(∫Q(G(y3n+3,y3n+1,y3n+2))

0
δ(t)dt

)

= φ

(∫Q(t3n+1)

0
δ(t)dt

)

≤
∫Q(t3n+1)

0
δ(t)dt.

(2.11)

From Lemma 1.20 and property of Q, we have

t3n+2 ≤ Q(t3n+1) < t3n+1. (2.12)

Combining (2.8), (2.10), and (2.12), we know that the (2.6) holds. This implies that {tn} is
a nonnegative sequence which is strictly decreasing, hence, {tn} is convergent and tn+1 ≤
Q(tn) < tn, for all n ∈ N.

For any n,m ∈ N,m > n, by combining (G5), (G3), and (2.6), we have

G
(
yn, ym, ym

) ≤
m−1∑

i=n

G
(
yi, yi+1, yi+1

) ≤
m−1∑

i=n

G
(
yi, yi+1, yi+2

)
=

m−1∑

i=n

ti

=
m−1∑

i=n

ti(ti − ti+1)
ti − ti+1 ≤

m−1∑

i=n

ti(ti − ti+1)
ti −Q(ti)

≤
m−1∑

i=n

∫ ti

ti+1

t

t −Q(t)
dt =

∫ tn

tm

p(t)dt.

(2.13)

From the convergence of the sequence {tn} and the condition (iii) we assure that

lim
n,m→∞

∫ tn

tm

p(t)dt = 0. (2.14)

Thus, {yn} is a G-Cauchy sequence in X, since (X,G) is a complete G-metric space, there
exists u ∈ X such that limn→∞yn = u, hence

lim
n→∞

y3n+1 = lim
n→∞

Sx3n = lim
n→∞

gx3n+1 = u,

lim
n→∞

y3n+2 = lim
n→∞

Tx3n+1 = lim
n→∞

hx3n+2 = u,

lim
n→∞

y3n+3 = lim
n→∞

Rx3n+2 = lim
n→∞

fx3n+3 = u.

(2.15)

Since (S, f) are ϕ-weakly commuting mappings, thus we have

G
(
Sfx3n, fSx3n, fSx3n

) ≤ ϕ(G(Sx3n, fx3n, fx3n
))
. (2.16)
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On taking n → ∞ at both sides, noting that S and f are continuous mappings, we have

G
(
Su, fu, fu

) ≤ ϕ(G(u, u, u)) = ϕ(0) = 0. (2.17)

Which gives that Su = fu. Similarly, we can get Tu = gu,Ru = hu.
By using condition (v) and the property of φ, we get

∫G(Su,Tu,Ru)

0
δ(t)dt ≤ φ

(∫Q(G(fu,gu,hu))

0
δ(t)dt

)

≤
∫Q(G(fu,gu,hu))

0
δ(t)dt. (2.18)

Thus, by Lemma 1.20, (G5) and the property of Q, noting that Su = fu, Tu = gu, Ru = hu,
we have

G(Su, Tu, Ru) ≤ Q(
G
(
fu, gu, hu

)) ≤ G(fu, gu, hu)

≤ G(fu, Su, Su) +G(Su, gu, hu)

≤ G(fu, Su, Su) +G(hu,Ru,Ru) +G(Ru, gu, Su)

≤ G(fu, Su, Su) +G(hu,Ru,Ru) +G(Ru, Tu, Su) +G(Tu, Tu, gu)

= G(Su, Tu, Ru).

(2.19)

Which implies that

Q
(
G
(
fu, gu, hu

))
= G(Su, Tu, Ru) = G

(
fu, gu, hu

)
. (2.20)

By Remark 1.1, we have G(fu, gu, hu) = 0, therefore, fu = gu = hu. So, immediately, we can
have Su = Tu = Ru = fu = gu = hu. Setting

z = Su = Tu = Ru = fu = gu = hu. (2.21)

Since (S, f) are ϕ-weakly commuting mappings, we have

G
(
Sz, fz, fz

)
= G

(
Sfu, fSu, fSu

) ≤ ϕ(G(Su, fu, fu)) = ϕ(0) = 0. (2.22)

Which gives that Sz = fz. By the same argument, we can get Tz = gz, Rz = hz, So we have
Sfu = fSu, Tgu = gTu, Rhu = hRu. Again, by condition (v), we have

∫G(Sz,z,z)

0
δ(t)dt =

∫G(S2u,Tu,Ru)

0
δ(t)dt ≤ φ

(∫Q(G(fSu,gu,hu))

0
δ(t)dt

)

≤
∫Q(G(fSu,gu,hu))

0
δ(t)dt.

(2.23)

By the Lemma 1.20 and the property of Q, we have

G(Sz, z, z) ≤ Q(
G
(
fSu, gu, hu

)) ≤ G(fSu, gu, hu) = G
(
Sfu, gu, hu

)
= G(Sz, z, z). (2.24)
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Which implies thatQ(G(Sfu, gu, hu)) = G(Sfu, gu, hu). Thus, by the property ofQ, we have
Sfu = gu = hu, hence, z = Sz = fz. Similarly, we can prove that z = Tz = gz, z = Rz = hz, so
we get z = Sz = Tz = Rz = fz = gz = hz, which means that z is a common fixed point of S,
T , R, f , g, and h.

Now, we will show the common fixed point of S, T, R, f , g, and h is unique. Actually,
assumew/= z is another common fixed point of S, T , R, f , g, and h, then by condition (v), we
have

∫G(z,w,w)

0
δ(t)dt =

∫G(Sz,Tw,Rw)

0
δ(t)dt ≤ φ

(∫Q(G(fz,gw,hw))

0
δ(t)dt

)

≤
∫Q(G(fz,gw,hw))

0
δ(t)dt.

(2.25)

By Lemma 1.20 and the property of Q, we have

G(z,w,w) ≤ Q(
G
(
fz, gw, hw

))
= Q(G(z,w,w)) < G(z,w,w). (2.26)

It is a contradiction, unless z = w, that is, S, T , R, f , g, and h have a unique common fixed
point in X. This completes the proof of Theorem 2.1.

Remark 2.2. If we take: (1) S = T = R; (2) f = g = h; (3) f = g = h = I (I is identity mapping);
(4) T = R and g = h; (5) T = R, g = h = I; (6) y = z in Theorem 2.1, then several new results
can be obtained.

Corollary 2.3. Let (X,G) be a completeG-metric space and let S, T ,R, f , g, and h be six mappings of
X into itself. If there exists an increasing function Q : [0,+∞) → [0,+∞) satisfying the conditions
(i)∼(iii) and the following conditions:

(iv) S(X) ⊆ g(X), T(X) ⊆ h(X), R(X) ⊆ f(X),

(v) G(Sx, Ty, Rz) ≤ φ(Q(G(fx, gy, hz))), ∀x, y, z ∈ X.

Then,

(a) one of the pairs (S, f), (T, g), and (R, h) has a coincidence point in X.

(b) if (S, f), (T, g), and (R, h) are three pairs of continuous ϕ-weakly commuting mappings,
then the mappings S, T , R, f , g, and h have a unique common fixed point in X.

Proof. Taking δ(t) = 1 in Theorem 2.1, the conclusion of Corollary 2.3 can be obtained from
Theorem 2.1 immediately. This completes the proof of Corollary 2.3.

Now we give an example to support Corollary 2.3.

Example 2.4. Let X = [0,∞), G(x, y, z) = |x − y| + |y − z| + |z − x|, for all x, y, z ∈ X. Let
S, T, R, f, g, h : X → X be defined by Sx = x/8, Tx = x/16, Rx = x/32, fx = x, gx = x/2,
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hx = x/4. Clearly, we can get S(X) ⊆ g(X), T(X) ⊆ h(X), R(X) ⊆ f(X). Through calculation,
we have

G
(
Sx, Ty, Rz

)
= G

(
x

8
,
y

16
,
z

32

)

=
∣
∣
∣
∣
x

8
− y

16

∣
∣
∣
∣ +

∣
∣
∣
∣
y

16
− z

32

∣
∣
∣
∣ +

∣
∣
∣
∣
x

8
− z

32

∣
∣
∣
∣

=
1
8

(∣∣
∣x − y

2

∣
∣
∣ +

∣
∣
∣
y

2
− z

4

∣
∣
∣ +

∣
∣
∣
z

4
− x

∣
∣
∣
)
,

G
(
fx, gy, hz

)
= G

(
x,
y

2
,
z

4

)
=
∣
∣
∣x − y

2

∣
∣
∣ +

∣
∣
∣
y

2
− z

4

∣
∣
∣ +

∣
∣
∣
z

4
− x

∣
∣
∣.

(2.27)

Thus, we have

G
(
Sx, Ty, Rz

)
=

1
8
G
(
fx, gy, hz

)
. (2.28)

Now we choose φ(t) = 3t/4, and Q(t) = t/2, then we have φ(t) < t and Q(t) satisfies (i)∼(iii).
Thus, we have

G
(
Sx, Ty, Rz

)
=

1
8
G
(
fx, gy, hz

) ≤ 3
4
· 1
2
G
(
fx, gy, hz

)

=
3
4
Q
(
G
(
fx, gy, hz

))
= φ

(
Q
(
G
(
fx, gy, hz

)))
.

(2.29)

On the other hand, let ϕ(u) = u/2 for all u ∈ [0,∞), we have

G
(
Sfx, fSx, fSx

)
= G

(
x

8
,
x

8
,
x

8

)
≤ 1

2
· 7x
4

=
1
2
G
(
Sx, fx, fx

)
= ϕ

(
G
(
Sx, fx, fx

))
,

G
(
Tgx, gTx, gTx

)
= G

(
x

32
,
x

32
,
x

32

)
≤ 1

2
· 7x
8

=
1
2
G
(
Tx, gx, gx

)
= ϕ

(
G
(
Tx, gx, gx

))
,

G(Rhx, hRx, hRx) = G
(

x

128
,
x

128
,
x

128

)
≤ 1

2
· 7x
16

=
1
2
G(Rx, hx, hx) = ϕ(G(Rx, hx, hx)),

(2.30)

for all x ∈ X. Which means that (S, f), (T, g), and (R, h) are three pairs of continuous ϕ-
weakly commuting mappings in X. So that all the conditions of Corollary 2.3 are satisfied.
Moreover, 0 is the unique common fixed point for all of the mappings S, T , R, f , g, and h.

Corollary 2.5. Let (X,G) be a complete G-metric space, S, T, R : X → X are three self-mappings in
X, and function Q : [0,+∞) → [0,+∞) satisfies conditions (i)∼(iii) and the following condition:

G
(
Sx, Ty, Rz

) ≤ φ(Q(
G
(
x, y, z

)))
, ∀x, y, z ∈ X. (2.31)

Then S, T , and R have a unique common fixed point in X.
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Proof. Taking h = g = f = I in Corollary 2.3, where I is an identity mapping. Then the
conclusion of Corollary 2.5 can be obtained from Corollary 2.3 immediately. This completes
the proof of Corollary 2.5.

Corollary 2.6. Let (X,G) be a complete G-metric space, S : X → X is a self-mapping in X, and
function Q : [0,+∞) → [0,+∞) satisfies conditions (i)∼(iii) and the following condition:

G
(
Sx, Sy, Sz

) ≤ φQ(
G
(
x, y, z

))
, ∀x, y, z ∈ X. (2.32)

Then S has a unique fixed point in X.

Proof. Taking S = T = R in Corollary 2.5, the conclusion of Corollary 2.6 can be obtained from
Corollary 2.5 immediately. This completes the proof of Corollary 2.6.
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