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We introduce a new general system of generalized nonlinear mixed composite-type equilibria
and propose a new iterative scheme for finding a common element of the set of solutions
of a generalized equilibrium problem, the set of solutions of a general system of generalized
nonlinear mixed composite-type equilibria, and the set of fixed points of a countable family of
strict pseudocontraction mappings. Furthermore, we prove the strong convergence theorem of the
purposed iterative scheme in a real Hilbert space. As applications, we apply our results to solve
a certain minimization problem related to a strongly positive bounded linear operator. Finally,
we also give a numerical example which supports our results. The results obtained in this paper
extend the recent ones announced by many others.

1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and
‖ · ‖, respectively. Let C be a nonempty closed and convex subset of H. Let φ : C → R

be a real-valued function, where R is the set of real numbers. Let G,B : C → H be two
nonlinear mappings and Θ : H × C × C → R be an equilibrium-like function, that is,
Θ(w,u, v) = Θ(w,v, u) = 0 for all (w,u, v) ∈ H × C × C. We consider the following new
generalized equilibrium problem: find x∗ ∈ C such that

Θ
(
Gx∗, x∗, y

)
+ φ
(
y
) − φ(x∗) +

〈
Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.1)
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The set of solutions of the problem (1.1) is denoted by GEP(C,G,Θ, φ, B). As special cases of
the problem (1.1), we have the following results.

(1) If B = 0, then problem (1.1) reduces to the following generalized equilibrium problem:
find x∗ ∈ C such that

Θ
(
Gx∗, x∗, y

)
+ φ
(
y
) − φ(x∗) ≥ 0, ∀y ∈ C, (1.2)

which was considered by Cho et al. [1] for more details. The set of solutions of the
problem (1.1) is denoted by GEP(C,G,Θ, φ).

(2) If B = 0 andΘ(w,u, v) = F(u, v), where F : C×C → R is an equilibrium bifunction,
then problem (1.1) reduces to the following mixed equilibrium problem: find x∗ ∈ C
such that

F
(
x∗, y

)
+ φ
(
y
) − φ(x∗) ≥ 0, ∀y ∈ C, (1.3)

which was considered by Ceng and Yao [2] for more details. The set of solutions of
the problem (1.3) is denoted by MEP(F, φ).

(3) If B = 0, φ = 0 and Θ(w,u, v) = F(u, v) where F : C × C → R is an equilibrium
bifunction, then problem (1.1) reduces to the following equilibrium problem: find x∗ ∈
C such that

F
(
x∗, y

) ≥ 0, ∀y ∈ C. (1.4)

The set of solutions of problem (1.4) is denoted by EP(F).

(4) If Θ = 0, φ = 0, then problem (1.1) reduces to the following classical variational
inequality problem: find x∗ ∈ C such that

〈
Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.5)

The set of solutions of the problem (1.5) is denoted by VI(C,B).

In brief, for an appropriate choice of the mappingG, the function φ, and the convex set
C, one can obtain a number of the various classes of equilibrium problems as special cases.
In particular, the equilibrium problems (1.4) which were introduced by Blum and Oettli [3]
and Noor and Oettli [4] in 1994 have had a great impact and influence on the development
of several branches of pure and applied sciences. It has been shown that the equilibrium
problem theory provides a novel and unified treatment of a wide class of problems which
arise in economics, finance, image reconstruction, ecology, transportation, network, elasticity,
and optimization. In [3, 4], it has been shown that equilibrium problems include variational
inequalities, fixed point, minimax problems, Nash equilibrium problems in noncooperative
games, and others as special cases. This means that the equilibrium problem theory provides
a novel and unified treatment of a wide class of problems which arise in economics,
finance, image reconstruction, ecology, transportation, network, elasticity, and optimization.
Hence collectively, equilibrium problems cover a vast range of applications. Related to
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the equilibrium problems, we also have the problems of finding the fixed points of the
nonlinear mappings, which is the subject of current interest in functional analysis. It is natural
to construct a unified approach for these problems. In this direction, several authors have
introduced some iterative schemes for finding a common element of the set of solutions of
the equilibrium problems and the set of fixed points of nonlinear mappings (e.g., see [5–18]
and the references therein).

Recall the following definitions.

Definition 1.1. The mapping S : C → C is said to be

(1) nonexpansive if

∥
∥Sx − Sy

∥
∥ ≤ ∥∥x − y

∥
∥ , ∀x, y ∈ C, (1.6)

(2) L-Lipschitzian if there exists a constant L > 0 such that

∥∥Sx − Sy
∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ C, (1.7)

(3) k-strict pseudocontraction [19] if there exists a constant k ∈ [0, 1) such that

∥
∥Sx − Sy

∥∥2 ≤ ∥∥x − y
∥∥2 + k

∥∥(I − S)x − (I − S)y
∥∥2, ∀x, y ∈ C, (1.8)

(4) pseudocontractive if

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 +
∥∥(I − S)x − (I − S)y

∥∥2, ∀x, y ∈ C. (1.9)

Clearly, the class of strict pseudocontractions falls into the one between classes of
nonexpansive mappings and pseudocontractions. It is easy to see that (1.8) is equivalent to

〈
Sx − Sy, x − y

〉 ≤ ∥∥x − y
∥∥2 − 1 − k

2
∥∥(I − S)x − (I − S)y

∥∥2, ∀x, y ∈ C, (1.10)

that is, I−S is (1−k)/2-inverse-strongly monotone. From [19], we know that if S is a k-strictly
pseudocontractive mapping, then S is Lipschitz continuous with constant (3−k)/(1−k), that
is, ‖Sx − Sy‖ ≤ (3 − k)/(1 − k)‖x − y‖, for all x, y ∈ C.

In this paper, we use Fix(S) = {x ∈ C : Sx = x} to denote the set of fixed points of S.

Definition 1.2. A countable family of mapping {Tn}∞n=1 : C → C is called a family of k-strict
pseudocontraction mappings if there exists a constant k ∈ [0, 1) such that

∥∥Tnx − Tny
∥∥2 ≤ ∥∥x − y

∥∥2 + k
∥∥(I − Tn)x − (I − Tn)y

∥∥2, ∀x, y ∈ C, n ≥ 1. (1.11)

On the other hand, let C be a nonempty closed and convex subset of a real Hilbert space H.
Let F1, F2, F3 : C × C → R be three bifunctions and let Ψ1,Ψ2,Ψ3,Φ1,Φ2,Φ3 : C → H be six
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nonlinear mappings and let ϕ1, ϕ2, ϕ3 : C → R be three functions. We consider the following
problem of finding (x∗, y∗, z∗) ∈ C × C × C such that

μ1F1(x∗, x) +
〈
μ1(Ψ1 + Φ1)y∗ + x∗ − y∗, x − x∗〉 ≥ μ1ϕ1(x∗) − μ1ϕ1(x), ∀x ∈ C,

μ2F2
(
y∗, y

)
+
〈
μ2(Ψ2 + Φ2)z∗ + y∗ − z∗, y − y∗〉 ≥ μ2ϕ2

(
y∗) − μ2ϕ2

(
y
)
, ∀y ∈ C,

μ3F3(z∗, z) +
〈
μ3(Ψ3 + Φ3)x∗ + z∗ − x∗, z − z∗

〉 ≥ μ3ϕ3(z∗) − μ3ϕ3(z), ∀z ∈ C,

(1.12)

which is called a new general system of generalized nonlinear mixed composite-type equilibria,
where μi > 0 for all i = 1, 2, 3. Next, we present some special cases of problem (1.12) as
follows.

(1) If Ψi = Ψ, Φi = Φ, Fi = F, and ϕi = ϕ for all i = 1, 2, 3, then the problem (1.12)
reduces to the following new general system of generalized nonlinear mixed composite-
type equilibria: find (x∗, y∗, z∗) ∈ C × C × C such that

μ1F(x∗, x) +
〈
μ1(Ψ + Φ)y∗ + x∗ − y∗, x − x∗〉 ≥ μ1ϕ(x∗) − μ1ϕ(x), ∀x ∈ C,

μ2F
(
y∗, y

)
+
〈
μ2(Ψ + Φ)z∗ + y∗ − z∗, y − y∗〉 ≥ μ2ϕ

(
y∗) − μ2ϕ

(
y
)
, ∀y ∈ C,

μ3F(z∗, z) +
〈
μ3(Ψ + Φ)x∗ + z∗ − x∗, z − z∗

〉 ≥ μ3ϕ(z∗) − μ3ϕ(z), ∀z ∈ C,

(1.13)

where μi > 0 for all i = 1, 2.

(2) If F3 = 0, Ψ3 = Φ3 = 0, μ3 = 0, and z∗ = x∗, then the problem (1.12) reduces to the
following general system of generalized nonlinear mixed composite-type equilibria: find
(x∗, y∗) ∈ C × C such that

μ1F1(x∗, x) +
〈
μ1(Ψ1 + Φ1)y∗ + x∗ − y∗, x − x∗〉 ≥ μ1ϕ1(x∗) − μ1ϕ1(x), ∀x ∈ C,

μ2F2
(
y∗, y

)
+
〈
μ2(Ψ2 + Φ2)x∗ + y∗ − x∗, y − y∗〉 ≥ μ2ϕ2

(
y∗) − μ2ϕ2

(
y
)
, ∀y ∈ C,

(1.14)

which was introduced and considered by Ceng et al. [20], where μi > 0 for all
i = 1, 2.

(3) If F3 = 0, Ψ3 = Φ3 = 0, μ3 = 0, and ϕi = 0 for all i = 1, 2, 3 and z∗ = x∗, then the
problem (1.12) reduces to the following a general system of generalized equilibria: find
(x∗, y∗) ∈ C × C such that

F1(x∗, x) +
〈
Ψ1y

∗, x − x∗〉 +
1
μ1

〈
x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

F2
(
y∗, y

)
+
〈
Ψ2x

∗, y − y∗〉 +
1
μ2

〈
y∗ − x∗, y − y∗〉 ≥ 0, ∀y ∈ C,

(1.15)

which was introduced and considered by Ceng and Yao [21], where μi > 0 for all
i = 1, 2.



Abstract and Applied Analysis 5

(4) If Fi = F, Ψi = Ψ, and Φi = Φ, ϕi = ϕ, for all i = 1, 2, 3, then the problem (1.12)
reduces to the following generalized mixed equilibrium problem with perturbed mapping:
find x∗ ∈ C such that

F
(
x∗, y

)
+ ϕ
(
y
) − ϕ(x∗) +

〈
(Ψ + Φ)x∗, y − x∗〉 ≥ 0, ∀y ∈ C, (1.16)

which was introduced and considered by Hu and Ceng [22].

(5) If Fi = 0, Φi = 0, and ϕi = 0 for all i = 1, 2, 3, then the problem (1.12) reduces to the
following general system of variational inequalities: find (x∗, y∗, z∗) ∈ C × C × C such
that

〈
μ1Ψ1y

∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈
μ2Ψ2z

∗ + y∗ − z∗, y − y∗〉 ≥ 0, ∀y ∈ C,

〈
μ3Ψ3x

∗ + z∗ − x∗, z − z∗
〉 ≥ 0, ∀z ∈ C,

(1.17)

which was introduced and considered by Kumam et al. [23], where μi > 0 for all
i = 1, 2, 3.

(6) If Fi = 0, Φi = 0, ϕi = 0 for all i = 1, 2, 3, Ψ3 = 0 and z∗ = x∗, then the problem (1.12)
reduces to the following general system of variational inequalities: find (x∗, y∗) ∈ C×C
such that

〈
μ1Ψ1y

∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈
μ2Ψ2x

∗ + y∗ − x∗, y − y∗〉 ≥ 0, ∀y ∈ C,
(1.18)

which was introduced and considered by Ceng et al. [24], where μi > 0 for all
i = 1, 2.

In 2010, Cho et al. [1] introduced an iterative method for finding a common element
of the set of solutions of generalized equilibrium problems (1.2), the set of solutions for a
systems of nonlinear variational inequalities problems (1.18), and the set of fixed points of
nonexpansive mappings in Hilbert spaces. Ceng and Yao [21] introduced and considered
a relaxed extragradient-like method for finding a common element of the set of solutions
of a system of generalized equilibria, the set of fixed points of a strictly pseudocontractive
mapping, and the set of solutions of a equilibrium problem in a real Hilbert space and
obtained a strong convergence theorem. The result of Ceng and Yao [21] included, as special
cases, the corresponding ones of S. Takahashi and W. Takahashi [10], Ceng et al. [24], Peng
and Yao [25], and Yao et al. [26].

Motivated and inspired by the works in the literature, we introduce a new general
system of generalized nonlinear mixed composite-type equilibria (1.12) and propose a new
iterative scheme for finding a common element of the set of solutions of a generalized
equilibrium problem, a general system of generalized nonlinear mixed composite-type
equilibria, and the set of fixed points of a countable family of strict pseudocontraction
mappings. Furthermore, we prove the strong convergence theorem of the purposed iterative
scheme in a real Hilbert space. As applications, we apply our results to solve a certain
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minimization problem related to a strongly positive bounded linear operator. The results
presented in this paper extend the recent results of Cho et al. [1], Ceng and Yao [21], Ceng
et al.[20], and many authors.

2. Preliminaries

A bounded linear operatorA is said to be strongly positive, if there exists a constant γ > 0 such
that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (2.1)

Recall that, a mapping f : C → C is said to be contractive if there exists a constant α ∈ (0, 1)
such that

∥∥f(x) − f
(
y
)∥∥ ≤ α

∥∥x − y
∥∥, ∀x, y ∈ C. (2.2)

A mapping A : C → H is called α-inverse-strongly monotone if there exists a constant α > 0
such that

〈
x − y,Ax −Ay

〉 ≥ α
∥∥Ax −Ay

∥∥2, ∀x, y ∈ C. (2.3)

Let C be a nonempty closed convex subset of a real Hilbert space H. For every point x ∈ H
there exists a unique nearest point in C denoted by PCx, such that

‖x − PCx‖ ≤ ∥∥x − y
∥∥, ∀y ∈ C. (2.4)

PC is called the metric projection of H onto C. It is well known that PC is nonexpansive (see
[27]) and for x ∈ H,

z = PCx ⇐⇒ 〈x − z, y − z
〉 ≤ 0, ∀y ∈ C. (2.5)

Let φ : C → R be a real-valued function, G : C → H be a mapping and Θ : H × C × C → R

be an equilibrium-like function. Let r be a positive real number. For all x ∈ C, we consider
the following problem. Find y ∈ C such that

Θ
(
Gx, y, z

)
+ φ(z) − φ

(
y
)
+
1
r

〈
y − x, z − y

〉 ≥ 0, ∀z ∈ C, (2.6)

which is known as the auxiliary generalized equilibrium problem.
Let T (r) : H → C be the mapping such that, for all x ∈ H, T (r) is the solution set of the

auxiliary problem (2.6), that is,

T (r)(x) =
{
y ∈ C : Θ

(
Gx, y, z

)
+ φ(z) − φ

(
y
)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀z ∈ C

}
. (2.7)
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Then, we will assume the Condition (Δ) [28] as follows:

(a) T (r) is single-valued;

(b) T (r) is nonexpansive;

(c) Fix(T (r)) = GEP(C,G,Θ, φ).

Notice that the examples of showing the sufficient conditions for the existence of the
condition (Δ) can be found in [6].

Throughout this paper, we assume that a bifunction F : C × C → R and ϕ : C → R is
a lower semicontinuous and convex function satisfy the following conditions:

(H1) F(x, x) = 0, ∀x ∈ C;

(H2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0, ∀x, y ∈ C;

(H3) for all y ∈ C, x �→ F(x, y) is weakly upper semicontinuous;

(H4) for all x ∈ C, y �→ F(x, y) is convex and lower semicontinuous;

(A1) for all x ∈ H and r > 0, there exist a bounded subset Dx ⊂ C and yx ∈ C such that
for all z ∈ C \Dx,

F
(
z, yx

)
+ ϕ
(
yx

) − ϕ(z) +
1
r

〈
yx − z, z − x

〉
< 0; (2.8)

(A2) C is a bounded set.

In order to prove our main results in the next section, we need the following lemmas.

Lemma 2.1 (see [29]). Let C be a nonempty closed and convex subset of a real Hilbert sapce H. Let
F : C × C → R be a bifunction satisfying condition (H1)–(H4) and let ϕ : C → R be a lower
semicontinuous and convex function. For r > 0 and x ∈ H define a mapping T (F,ϕ)

r : H → C follows

T
(F,ϕ)
r (x) =

{
y ∈ C : F

(
y, z
)
+ ϕ(z) − ϕ

(
y
)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀z ∈ C

}
. (2.9)

Assume that either (A1) or (A2) holds, then the following statements hold

(i) T (F,ϕ)
r /= ∅ for all x ∈ H and T

(F,ϕ)
r is single-valued;

(ii) T (F,ϕ)
r is firmly nonexpansive, that is, for all x, y ∈ H,

∥∥∥T
(F,ϕ)
r x − T

(F,ϕ)
r y

∥∥∥
2 ≤
〈
T
(F,ϕ)
r x − T

(F,ϕ)
r y, x − y

〉
; (2.10)

(iii) Fix(T (F,ϕ)
r ) = MEP(F, ϕ);

(iv) MEP(F, ϕ) is closed and convex.

Remark 2.2. If ϕ = 0, then T
(F,ϕ)
r is rewritten as TF

r (see [21, Lemma 2.1] for more details).
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Lemma 2.3 (see [30]). Let {xn} and {ln} be bounded sequences in a Banach space X and let {βn} be
a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose xn+1 = (1−βn)ln +βnxn

for all integers n ≥ 0 and lim supn→∞(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞‖ln − xn‖ = 0.

Lemma 2.4 (see [31]). LetH be a real Hilbert space. Then the following inequalities hold.

(i) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2, ∀x, y ∈ H and λ ∈ [0, 1].

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Definition 2.5 (see [32]). Let {Tn} be a sequence of mappings from a subset C of a real Hilbert
space H into itself. We say that {Tn} satisfies the PT-condition if

lim
k,l→∞

ρkl = 0, (2.11)

where ρk
l
= supz∈C{‖Tkz − Tlz‖} < ∞, for all k, l ∈ N.

Lemma 2.6 (see [32]). Suppose that {Tn} satisfies the PT-condition such that

(i) for each x ∈ C, {Tn} is converse strongly to some point in C

(ii) let the mapping T : C → C defined by Tx = limn→∞Tnx for all x ∈ C.

Then, limn→∞supω∈C‖Tω − Tnω‖ = 0.

Lemma 2.7 (see [33]). Let C be a closed and convex subset of a strictly convex Banach space X.
Let {Tn : n ∈ N} be a sequence of nonexpansive mappings on C. Suppose

⋂∞
n=1 Fix(Tn) is nonempty.

Let {γn} be a sequence of positive numbers with
∑∞

n=1 γn = 1. Then a mapping S on C defined by
Sx =

∑∞
n=1 γnTnx for all x ∈ C is well defined, nonexpansive, and Fix(S) =

⋂∞
n=1 Fix(Tn) holds.

Lemma 2.8 (see [19]). Let T : C → H be a k-strict pseudocontraction. Define S : C → H by
Sx = δx+(1−δ)Tx for each x ∈ C. Then, as δ ∈ [k, 1), S is nonexpansive such that Fix(S) = Fix(T).

Lemma 2.9 (see [34]). Let C be a closed and convex subset of a real Hilbert spaceH and let S : C →
C be a nonexpansive mapping. then, the mapping I − S is demiclosed. That is, if {xn} is a sequence in
C such that xn ⇀ z and (I − S)xn → y, then (I − S)z = y.

Lemma 2.10 (see [35]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − σn)an + δn, (2.12)

where {σn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 σn = ∞;

(ii) lim supn→∞(δn/σn) ≤ 0 or
∑∞

n=0 |δn| < ∞.

then, limn→∞an = 0.
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Lemma 2.11. Let C be a nonempty closed and convex subset of a real Hilbert spaceH. Let mappings
Ψ,Φ : C → H be β̃-inverse-strongly monotone and γ̃-inverse-strongly monotone, respectively. Then,
we have

∥
∥(I − μ(Ψ + Φ)

)
x − (I − μ(Ψ + Φ)

)
y
∥
∥2 ≤ ∥∥x − y

∥
∥2 + 2μ

(
μ − β̃

)∥
∥Ψx −Ψy

∥
∥2

+ 2μ
(
μ − γ̃

)∥∥Φx −Φy
∥
∥2,

(2.13)

where μ > 0. In particular, if μ ∈ (0,min{β̃, γ̃}), then I − μ(Ψ + Φ) is nonexpansive.

Proof. From Lemma 2.4(i), for all x, y ∈ C, we have

∥
∥(I − μ(Ψ + Φ)

)
x − (I − μ(Ψ + Φ)

)
y
∥
∥2

=
∥
∥(x − y

) − μ
(
(Ψ + Φ)x − (Ψ + Φ)y

)∥∥2

=
∥∥∥∥
1
2
((
x − y

) − 2μ
(
Ψx −Ψy

))
+
1
2
((
x − y

) − 2μ
(
Φx −Φy

))
∥∥∥∥

2

≤ 1
2
∥∥((x − y

) − 2μ
(
Ψx −Ψy

))∥∥2 +
1
2
∥∥((x − y

) − 2μ
(
Φx −Φy

))∥∥2

=
1
2

(∥∥x − y
∥∥2 − 4μ

〈
x − y,Ψx −Ψy

〉
+ 4μ2∥∥Ψx −Ψy

∥∥2
)

+
1
2

(∥∥x − y
∥∥2 − 4μ

〈
x − y,Φx −Φy

〉
+ 4μ2∥∥Φx −Φy

∥∥2
)

≤ 1
2

(∥∥x − y
∥∥2 + 4μ

(
μ − β̃

)∥∥Ψx −Ψy
∥∥2
)

+
1
2

(∥∥x − y
∥∥2 + 4μ

(
μ − γ̃

)∥∥Φx −Φy
∥∥2
)

=
∥∥x − y

∥∥2 + 2μ
(
μ − β̃

)∥∥Ψx −Ψy
∥∥2 + 2μ

(
μ − γ̃

)∥∥Φx −Φy
∥∥2.

(2.14)

It is clear that, if 0 < μ ≤ min{β̃, γ̃}, then I − μ(Ψ + Φ) is nonexpansive. This completes the
proof.

Lemma 2.12. Let C be a nonempty closed and convex subset of a real Hilbert spaceH. Let mappings
Ψi,Φi : C → H(i = 1, 2, 3) be β̃i-inverse-strongly monotone and γ̃i-inverse-strongly monotone,
respectively. Let Q : C → C be the mapping defined by

Qx = T
(F1,ϕ1)
μ1

[
T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

) − μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

)]

− μ1(Ψ1 + Φ1)T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

)

−μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

)]]
, ∀x ∈ C.

(2.15)

If μi ∈ (0,min{β̃i, γ̃i}) (i = 1, 2, 3), then Q is nonexpansive.
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Proof. From Lemma 2.11, for all x, y ∈ C, we have
∥
∥Qx −Qy

∥
∥ =

∥
∥
∥T

(F1,ϕ1)
μ1

[
T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

) − μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

)]

− μ1(Ψ1 + Φ1)T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

)

−μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

)]]

− T
(F1,ϕ1)
μ1

[
T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
y − μ3(Ψ3 + Φ3)y

) − μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
y − μ3(Ψ3 + Φ3)y

)]

− μ1(Ψ1 + Φ1)T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
y − μ3(Ψ3 + Φ3)y

)

−μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
y − μ3(Ψ3 + Φ3)y

)]]∥∥
∥

≤
∥∥∥T

(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

) − μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

)]

− μ1(Ψ1 + Φ1)T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

)

−μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
x − μ3(Ψ3 + Φ3)x

)]

−
[
T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
y − μ3(Ψ3 + Φ3)y

) − μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
y − μ3(Ψ3 + Φ3)y

)]

− μ1(Ψ1 + Φ1)T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
y − μ3(Ψ3 + Φ3)y

)

−μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
y − μ3(Ψ3 + Φ3)y

)]]∥∥∥

=
∥∥∥T

(F2,ϕ2)
μ2

(
I − μ2(Ψ2 + Φ2)

)
T
(F3,ϕ3)
μ3

(
I − μ3(Ψ3 + Φ3)

)(
I − μ1(Ψ1 + Φ1)

)
x

−T (F2,ϕ2)
μ2

(
I − μ2(Ψ2 + Φ2)

)
T
(F3,ϕ3)
μ3

(
I − μ3(Ψ3 + Φ3)

)(
I − μ1(Ψ1 + Φ1)

)
y
∥∥∥

≤
∥∥∥
(
I − μ2(Ψ2 + Φ2)

)
T
(F3,ϕ3)
μ3

(
I − μ3(Ψ3 + Φ3)

)(
I − μ1(Ψ1 + Φ1)

)
x

−(I − μ2(Ψ2 + Φ2)
)
T
(F3,ϕ3)
μ3

(
I − μ3(Ψ3 + Φ3)

)(
I − μ1(Ψ1 + Φ1)

)
y
∥∥∥

≤
∥∥∥T

(F3,ϕ3)
μ3

(
I − μ3(Ψ3 + Φ3)

)(
I − μ1(Ψ1 + Φ1)

)
x

−T (F3,ϕ3)
μ3

(
I − μ3(Ψ3 + Φ3)

)(
I − μ1(Ψ1 + Φ1)

)
y
∥∥∥

≤ ∥∥(I − μ3(Ψ3 + Φ3)
)(
I − μ1(Ψ1 + Φ1)

)
x − (I − μ3(Ψ3 + Φ3)

)(
I − μ1(Ψ1 + Φ1)

)
y
∥∥

≤ ∥∥(I − μ1(Ψ1 + Φ1)
)
x − (I − μ1(Ψ1 + Φ1)

)
y
∥∥

≤ ∥∥x − y
∥∥,

(2.16)

which implies that Q : C → C is nonexpansive. This completes the proof.
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Lemma 2.13. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let Fi :
C × C → R (i = 1, 2, 3) be a bifunction satisfying conditions (H1)–(H4) and let Ψi,Φi : C →
H(i = 1, 2, 3) be a nonlinear mapping. Suppose that μi (i = 1, 2, 3) be a real positive number. Let
ϕi : C → R (i = 1, 2, 3) be a lower semicontinuous and convex function. Assume that either condition
(A1) or (A2) holds. Then, for (x∗, y∗, z∗) ∈ C × C × C is a solution of the problem (1.12) if and only
if x∗ ∈ Fix(Q), y∗ = T

(F2,ϕ2)
μ2 (z∗ − μ2(Ψ2 + Φ2)z∗) and z∗ = T

(F3,ϕ3)
μ3 (x∗ − μ3(Ψ3 + Φ3)x∗), where Q

is the mapping defined as in Lemma 2.12.

Proof. Let (x∗, y∗, z∗) ∈ C × C × C be a solution of the problem (1.12). Then, we have

μ1F1(x∗, x) +
〈
μ1(Ψ1 + Φ1)y∗ + x∗ − y∗, x − x∗〉 ≥ μ1ϕ1(x∗) − μ1ϕ1(x), ∀x ∈ C,

μ2F2
(
y∗, y

)
+
〈
μ2(Ψ2 + Φ2)z∗ + y∗ − z∗, y − y∗〉 ≥ μ2ϕ2

(
y∗) − μ2ϕ2

(
y
)
, ∀y ∈ C,

μ3F3(z∗, z) +
〈
μ3(Ψ3 + Φ3)x∗ + z∗ − x∗, z − z∗

〉 ≥ μ3ϕ3(z∗) − μ3ϕ3(z), ∀z ∈ C,

(2.17)

⇔

x∗ = T
(F1,ϕ1)
μ1

(
y∗ − μ1(Ψ1 + Φ1)y∗),

y∗ = T
(F2,ϕ2)
μ2

(
z∗ − μ2(Ψ2 + Φ2)z∗

)
,

z∗ = T
(F3,ϕ3)
μ3

(
x∗ − μ3(Ψ3 + Φ3)x∗),

(2.18)

⇔

x∗ = T
(F1,ϕ1)
μ1

[
T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x∗ − μ3(Ψ3 + Φ3)x∗) − μ2(Ψ2 + Φ2)T

(F3,ϕ3)
μ3

(
x∗ − μ3(Ψ3 + Φ3)x∗)

]

− μ1(Ψ1 + Φ1)T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x∗ − μ3(Ψ3 + Φ3)x∗)

−μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
x∗ − μ3(Ψ3 + Φ3)x∗)

]]
.

(2.19)

This completes the proof.

Corollary 2.14 (see [20]). Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let Fi : C × C → R (i = 1, 2) be a bifunction satisfying conditions (H1)–(H4) and let Ψi,Φi :
C → H(i = 1, 2) be a nonlinear mapping. Suppose that μi (i = 1, 2) be a real positive number. Let
ϕi : C → R (i = 1, 2) be a lower semicontinuous and convex function. Assume that either condition
(A1) or (A2) holds. Then, for (x∗, y∗) ∈ C × C is a solution of the problem (1.14) if and only if
x∗ ∈ Fix(Q), y∗ = T

(F2,ϕ2)
μ2 (x∗ − μ2(Ψ2 + Φ2)x∗), where G is the mapping defined by

Qx = T
(F1,ϕ1)
μ1

[
T
(F2,ϕ2)
μ2

(
x − μ2(Ψ2 + Φ2)x

) − μ1(Ψ1 + Φ1)T
(F2,ϕ2)
μ2

(
x − μ2(Ψ2 + Φ2)x

)]
, ∀x ∈ C.

(2.20)

Corollary 2.15 (see [21]). Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let Fi : C × C → R (i = 1, 2) be a bifunction satisfying conditions (H1)–(H4) and let Ψi : C →
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H (i = 1, 2) be a nonlinear mapping. Suppose that μi (i = 1, 2) is a real positive number. Assume that
either condition (A1) or (A2) holds. Then, for (x∗, y∗) ∈ C × C is a solution of the problem (1.15) if
and only if x∗ ∈ Fix(Q), y∗ = TF2

μ2 (x
∗ − μ2Ψ2x

∗), where Q is the mapping defined by

Qx = TF1
μ1

[
TF2
μ2

(
x − μ2Ψ2x

) − μ1Ψ1T
F2
μ2

(
x − μ2Ψ2x

)]
, ∀x ∈ C. (2.21)

Corollary 2.16 (see [23]). Let C be a nonempty closed and convex subset of a real Hilbert space H.
For given (x∗, y∗, z∗) ∈ C × C × C is a solution of the problem (1.17) if and only if x∗ ∈ Fix(Q),
y∗ = PC(z∗ − μ2Ψ2z

∗) and z∗ = PC(x∗ − μ3Ψ3x
∗), where Q is the mapping defined by

Qx = PC[PC

[
PC

(
x − μ3Ψ3x

) − μ2Ψ2PC

(
x − μ3Ψx

)]

−μ1Ψ1PC

[
PC

(
x − μ3Ψ3x

) − μ2Ψ2PC

(
x − μ3Ψ3x

)]]
, ∀x ∈ C.

(2.22)

Corollary 2.17 (see [24]). Let C be a nonempty closed and convex subset of a real Hilbert space
H. For given (x∗, y∗) ∈ C × C is a solution of the problem (1.18) if and only if x∗ ∈ Fix(Q),
y∗ = PC(x∗ − μ2Ψ2x

∗), where Q is the mapping defined by

Qx = PC

[
PC

(
x − μ2Ψ2x

) − μ1Ψ1PC

(
x − μ2Ψ2x

)]
, ∀x ∈ C. (2.23)

3. Main Results

We are now in a position to prove the main result of this paper.

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H such that
C ± C ⊂ C. Let φ, ϕi : C → R (i = 1, 2, 3) be lower semicontinuous and convex functionals,
Θ : H × C × C → R be an equilibrium-like function, G : C → H be a mapping, and Fi : C × C →
R (i = 1, 2, 3) be a bifunction satisfying conditions (H1)–(H4). Assume that either condition (A1)
or (A2) holds. Let B : C → H be β-inverse-strongly monotone, Ψi,Φi : C → H (i = 1, 2, 3) be
β̃i-inverse-strongly monotone and γ̃i-inverse-strongly monotone, respectively. Let {Tn}∞n=1 : C → C
be a family of k-strict pseudocontraction mappings. Define a mapping Snx := δx + (1 − δ)Tnx, for
all x ∈ C, δ ∈ [k, 1) and n ≥ 1. Assume that the condition (Δ) is satisfied and Ω :=

⋂∞
n=1 Fix(Tn) ∩

Fix(Q) ∩ GEP(C,G,Θ, φ)/= ∅, where Q is defined as in Lemma 2.13. Let μ > 0, γ > 0, and r > 0
be three constants. Let f : C → C be a contraction mapping with a coefficient α ∈ (0, 1) and
let A be a strongly positive bounded linear operator on C with a coefficient γ ∈ (0, 1] such that
0 < γ < ((1 + μ)γ)/α. For x1 ∈ C, let the sequence {xn} defined by

Θ
(
Gxn, un, y

)
+ φ
(
y
) − φ(un) +

1
r

〈
y − un, un − (xn − rBxn)

〉 ≥ 0, ∀y ∈ C,

zn = T
(F3,ϕ3)
μ3

(
xn − μ3(Ψ3 + Φ3)xn

)
,

yn = T
(F2,ϕ2)
μ2

(
zn − μ2(Ψ2 + Φ2)zn

)
,

vn = T
(F1,ϕ1)
μ1

(
yn − μ1(Ψ1 + Φ1)yn

)
,

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αn

(
I + μA

))[
γ1Snxn + γ2un + γ3vn

]
, ∀n ≥ 1,

(3.1)
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where γ1, γ2, γ3 ∈ [0, 1] such that γ1 + γ2 + γ3 = 1, μ1 ∈ (0,min{β̃1, γ̃1}), μ2 ∈ (0,min{β̃2, γ̃2}),
μ3 ∈ (0,min{β̃3, γ̃3}), r ∈ (0, 2β) and {αn}, {βn} are two sequences in [0, 1]. Suppose that {Tn}
satisfies the PT-condition. Let T : C → C be the mapping defined by Tx = limn→∞Tnx for all x ∈ C
and suppose that Fix(T) =

⋂∞
n=1 Fix(Tn). Assume the following conditions are satisfied:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(C2) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then the sequence {xn} defined by (3.1) converges strongly to x̂ ∈ Ω, where x̂ is the unique
solution of the variational inequality

〈(γf − (I + μA
))
x̂, v − x̂〉 ≤ 0, ∀v ∈ Ω, (3.2)

or equivalently, x̂ = PΩ(γf − μA)x̂, where PΩ is a metric projection mapping from C onto Ω, and
(x̂, ŷ, ẑ) is a solution of the problem (1.12), where ŷ = T

(F2,ϕ2)
μ2 (ẑ−μ2(Ψ2+Φ2)ẑ) and ẑ = T

(F3,ϕ3)
μ3 (x̂−

μ3(Ψ3 + Φ3)x̂).

Proof. Note that from the conditions (C1) and (C2), we may assume, without loss of
generality, that αn ≤ (1−βn)(1+μ‖A‖)−1 for all n ∈ N. SinceA is a linear bounded self-adjoint
operator on C, by (2.2), we have

‖A‖ = sup{|〈Au, u〉| : u ∈ C, ‖u‖ = 1}. (3.3)

Observe that

〈((
1 − βn

)
I − αn

(
I + μA

))
u, u
〉
= 1 − βn − αn − αnμ〈Au, u〉
≥ 1 − βn − αn − αnμ‖A‖
≥ 0.

(3.4)

This show that (1 − βn)I − αn(I + μA) is positive. It follows that

∥∥(1 − βn
)
I − αn

(
I + μA

)∥∥ = sup
{∣∣〈((1 − βn

)
I − αn

(
I + μA

))
u, u
〉∣∣ : u ∈ C, ‖u‖ = 1

}

= sup
{
1 − βn − αn − αnμ〈Au, u〉 : u ∈ C, ‖u‖ = 1

}

≤ 1 − βn − αn

(
1 + μγ

)

≤ 1 − βn − αn

(
1 + μ

)
γ.

(3.5)

First, we show that {xn} is bounded. Taking x∗ ∈ Ω, it follows from Lemma 2.13 that

x∗ = T
(F1,ϕ1)
μ1

[
T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x∗ − μ3(Ψ3 + Φ3)x∗) − μ2(Ψ2 + Φ2)T

(F3,ϕ3)
μ3

(
x∗ − μ3(Ψ3 + Φ3)x∗)

]

− μ1(Ψ1 + Φ1)T
(F2,ϕ2)
μ2

[
T
(F3,ϕ3)
μ3

(
x∗ − μ3(Ψ3 + Φ3)x∗)

−μ2(Ψ2 + Φ2)T
(F3,ϕ3)
μ3

(
x∗ − μ3(Ψ3 + Φ3)x∗)

]]
.

(3.6)
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Putting y∗ = T
(F2,ϕ2)
μ2 (z∗ − μ2(Ψ2 + Φ2)z∗) and z∗ = T

(F3,ϕ3)
μ3 (x∗ − μ3(Ψ3 + Φ3)x∗), we obtain

x∗ = T
(F1,ϕ1)
μ1 (y∗ − μ1(Ψ1 + Φ1)y∗). Notice that un = T (r)(I − rB)xn. Since T (r) is nonexpansive

and B is β-inverse-strongly monotone, we have

‖un − x∗‖2 =
∥
∥
∥T (r)(I − rB)xn − T (r)(I − rB)x∗

∥
∥
∥
2

≤ ‖(I − rB)xn − (I − rB)x∗‖2

= ‖(xn − x∗) − r(Bxn − Bx∗)‖2

= ‖xn − x∗‖2 − 2r〈xn − x∗, Bxn − Bx∗〉 + r2‖Bxn − Bx∗‖2

≤ ‖xn − x∗‖2 + r
(
r − 2β

)‖Bxn − Bx∗‖2

≤ ‖xn − x∗‖2,

(3.7)

and hence

‖un − x∗‖ ≤ ‖xn − x∗‖. (3.8)

We observe that

‖vn − x∗‖ = ‖Qxn −Qx∗‖
≤ ‖xn − x∗‖.

(3.9)

Setting θn := γ1Snxn+γ2un+γ3vn. By Lemma 2.8, we have Sn is a nonexpansive mapping such
that Fix(Sn) = Fix(Tn) for all n ≥ 1. Then, we have

‖θn − x∗‖ =
∥∥γ1(Snxn − x∗) + γ2(un − x∗) + γ3(vn − x∗)

∥∥

≤ γ1‖Snxn − x∗‖ + γ2‖un − x∗‖ + γ3‖vn − x∗‖
≤ γ1‖xn − x∗‖ + γ2‖xn − x∗‖ + γ3‖xn − x∗‖
= ‖xn − x∗‖.

(3.10)

It follows that

‖xn+1 − x∗‖ =
∥∥αn

(
γf(xn) −

(
I + μA

)
x∗) + βn(xn − x∗) +

((
1 − βn

)
I − αn

(
I + μA

))
(θn − x∗)

∥∥

≤ αn

∥∥γf(xn) − αn

(
I + μA

)
x∗∥∥ + βn‖xn − x∗‖ + (1 − βn − αn

(
1 + μγ

))‖θn − x∗‖
≤ αnγ

∥∥f(xn) − f(x∗)
∥∥ + αn

∥∥γf(x∗) − (I + μA
)
x∗∥∥ +

(
1 − αn

(
1 + μγ

))‖xn − x∗‖
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≤ αnγα‖xn − x∗‖ + αn

∥
∥γf(x∗) − (I + μA

)
x∗∥∥ +

(
1 − αn

(
1 + μγ

))‖xn − x∗‖
≤ (1 − ((1 + μ

)
γ − γα

)
αn

)‖xn − x∗‖ + αn

∥
∥γf(x∗) − (I + μA

)
x∗∥∥

=
(
1 − ((1 + μ

)
γ − γα

)
αn

)‖xn − x∗‖ + ((1 + μ
)
γ − γα

)
αn

∥
∥γf(x∗) − (I + μA

)
x∗∥∥

(
1 + μ

)
γ − γα

.

(3.11)

By induction, we have

‖xn − x∗‖ ≤ max

{

‖x1 − x∗‖,
∥
∥γf(x∗) − (I + μA

)
x∗∥∥

(
1 + μ

)
γ − γα

}

, ∀n ≥ 1. (3.12)

Hence, {xn} is bounded, so are {un}, {vn}, {yn}, and {zn}. From definition of Sn and for all
k, l ∈ N, it follows that

sup
ω∈C

‖Skω − Slω‖ = γ1sup
ω∈C

‖Tkω − Tlω‖. (3.13)

By our assumption, {Tn} satisfies the PT-condition, we obtain that

lim
n→∞

sup
ω∈C

‖Skω − Slω‖ = 0, (3.14)

that is {Sn} satisfies the PT-condition.
Next, we show that limn→∞‖xn+1 − xn‖ = 0. Since un = T (r)(I − rB)xn, we have

‖un+1 − un‖ =
∥∥∥T (r)(xn+1 − rBxn+1) − T (r)(xn − rBxn)

∥∥∥

≤ ‖(xn+1 − rBxn+1) − (xn − rBxn)‖
≤ ‖xn+1 − xn‖,

‖vn+1 − vn‖ = ‖Qxn+1 −Qxn‖
≤ ‖xn+1 − xn‖.

(3.15)

It follows from (3.15) that

‖θn+1 − θn‖ =
∥∥(γ1Sn+1xn+1 + γ2un+1 + γ3vn+1

) − (γ1Snxn + γ2un + γ3vn

)∥∥

=
∥∥γ1(Sn+1xn+1 − Snxn) + γ(un+1 − un) + γ3(vn+1 − vn)

∥∥

≤ γ1‖Sn+1xn+1 − Snxn‖ + γ2‖un+1 − un‖ + γ3‖vn+1 − vn‖
≤ γ1‖Sn+1xn+1 − Sn+1xn‖ + γ1‖Sn+1xn − Snxn‖ + γ2‖un+1 − un‖ + γ3‖vn+1 − vn‖
≤ γ1‖xn+1 − xn‖ + γ2‖xn+1 − xn‖ + γ3‖xn+1 − xn‖ + γ1‖Sn+1xn − Snxn‖
= ‖xn+1 − xn‖ + γ1‖Sn+1xn − Snxn‖.

(3.16)
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Let xn+1 = (1 − βn)ln + βnxn for all n ≥ 1. Then, we have

ln+1 − ln =
xn+2 − βn+1xn+1

1 − βn+1
− xn+1 − βnxn

1 − βn

=
αn+1γf(xn+1) +

((
1 − βn+1

)
I − αn+1

(
I + μA

))
θn+1

1 − βn+1

− αnγf(xn) +
((
1 − βn

)
I − αn

(
I + μA

))
θn

1 − βn

=
αn+1

1 − βn+1
γf(xn+1) +

(
1 − βn+1

)
I − αn+1

(
I + μA

)
θn+1

1 − βn+1

− αn

1 − βn
γf(xn) −

(
1 − βn

)
I − αn

(
I + μA

)
θn

1 − βn

=
αn+1

1 − βn+1

(
γf(xn+1) −

(
I + μA

)
θn+1
) − αn

1 − βn

(
γf(xn) −

(
I + μA

)
θn
)
+ θn+1 − θn.

(3.17)

Combining (3.16) and (3.17), we have

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤ αn+1

1 − βn+1

∥∥γf(xn+1) −
(
I + μA

)
θn+1
∥∥ +

αn

1 − βn

∥∥γf(xn) −
(
I + μA

)
θn
∥∥

+ γ1‖Sn+1xn − Snxn‖.
(3.18)

Since {Sn} satisfies the PT-condition, we can define a mapping S : C → C by

Sx = lim
n→∞

Snx = lim
n→∞

[δx + (1 − δ)Tnx] = δx + (1 − δ)Tx, ∀x ∈ C. (3.19)

We observe that

‖Sn+1xn − Snxn‖ ≤ ‖Sn+1xn − Sxn‖ + ‖Sxn − Snxn‖
≤ sup

ω∈C
‖Sn+1ω − Sω‖ + sup

ω∈C
‖Sω − Snω‖. (3.20)

Be Lemma 2.6, we have

lim
n→∞

‖Sn+1xn − Snxn‖ = 0. (3.21)

Consequently, it follows from the conditions (C1), (C2), and (3.18) that

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0. (3.22)
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Hence, by Lemma 2.3, we obtain that

lim
n→∞

‖ln − xn‖ = 0. (3.23)

Consequently, we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞
(
1 − βn

)‖ln − xn‖ = 0. (3.24)

On the other hand, we observe that

xn+1 − xn = αn

(
γf(xn) −

(
I + μA

)
xn

)
+
((
1 − βn

)
I − αn

(
I + μA

))
(θn − xn). (3.25)

It follows that

(
1 − βn − αn

(
1 + μ

)
γ
)‖θn − xn‖ ≤ ‖xn+1 − xn‖ + αn

∥∥γf(xn) −
(
I + μA

)
xn

∥∥. (3.26)

From the conditions (C1), (C2), and (3.24), we obtain that

lim
n→∞

‖θn − xn‖ = 0. (3.27)

Next, we show that

lim sup
n→∞

〈
γf(x̂) − (I + μA

)
x̂, xn − x̂

〉 ≤ 0. (3.28)

To show this, we take a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈
γf(x̂) − (I + μA

)
x̂, xn − x̂

〉
= lim

j→∞

〈
γf(x̂) − (I + μA

)
x̂, xnj − x̂

〉
. (3.29)

Since {xnj} is bounded, without loss of generality, we can assume that xnj ⇀ v ∈ C. So, we
get

lim sup
n→∞

〈
γf(x̂) − (I + μA

)
x̂, xn − x̂

〉
= lim

j→∞

〈
γf(x̂) − (I + μA

)
x̂, xnj − x̂

〉

=
〈
γf(x̂) − (I + μA

)
x̂, v − x̂

〉

≤ 0.

(3.30)

Next, we show that v ∈ Ω :=
⋂∞

n=1 Fix(Tn) ∩ Fix(Q) ∩ GEP(C,G,Θ, φ). Define a mapping
Kn : C → C by

Knx = γ1Snx + γ2Qx + γ3T
(r)(I − rB)x, ∀x ∈ C. (3.31)
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From (3.27), we have

lim
n→∞

‖Knxn −Kxn‖ = 0. (3.32)

For all k, l ∈ N, it follows that

sup
ω∈C

‖Kkω −Klω‖ = γ1sup
ω∈C

‖Skω − Slω‖. (3.33)

Since {Sn} satisfies the PT-condition, we obtain that

lim
k,l→∞

sup
ω∈C

‖Kkω −Klω‖ = 0, (3.34)

that is {Kn} satisfies the PT-condition. Define a mapping K : C → C by

Kx = lim
n→∞

Knx = lim
n→∞

[
γ1Snx + γ2Qx + γ3T

(r)(I − rB)x
]

= γ1Sx + γ2Qx + γ3T
(r)(I − rB)x, ∀x ∈ C.

(3.35)

By Lemma 2.6, we obtain that

lim
n→∞

sup
ω∈C

‖Knω −Kω‖ = 0. (3.36)

From Lemma 2.7, we see that K is nonexpansive and

Fix(K) = Fix(S) ∩ Fix(Q) ∩ Fix
(
T (r)(I − rB)

)

=
∞⋂

n=1

Fix(Sn) ∩ Fix(Q) ∩ Fix
(
T (r)(I − rB)

)

=
∞⋂

n=1

Fix(Tn) ∩ Fix(Q) ∩GEP
(
C,G,Θ, ϕ

)

=
∞⋂

n=1

Fix(Kn).

(3.37)

Notice that

‖xn −Kxn‖ ≤ ‖xn −Knxn‖ + ‖Knxn −Kxn‖
≤ ‖xn −Knxn‖ + sup

ω∈C
‖Knω −Kω‖. (3.38)
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From (3.32) and (3.39), we obtain that

lim
n→∞

‖xn −Kxn‖ = 0. (3.39)

Thus, by Lemma 2.9, we obtain that v ∈ Fix(K) = Ω.
Finally, we show that xn → x̂ as n → ∞. From Lemma 2.4, we compute

‖xn+1 − x̂‖2 = ∥∥αn

(
γf(xn) −

(
I + μA

)
x̂
)
+ βn(xn − x̂) +

((
1 − βn

)
I − αn

(
I + μA

))
(θn − x̂)

∥
∥2

≤ ∥∥((1 − βn
)
I − αn

(
I + μA

))
(θn − x̂) + βn(xn − x̂)

∥
∥2

+ 2αn

〈
γf(xn) −

(
I + μA

)
x̂, xn+1 − x̂

〉

≤ [(1 − βn − αn

(
1 + μγ

))‖θn − x̂‖ + βn‖xn − x̂‖]2

+ 2αnγ
〈
f(xn) − f(x̂), xn+1 − x̂

〉
+ 2αn

〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉

≤ [(1 − βn − αn

(
1 + μ

)
γ
)‖xn − x̂‖ + βn‖xn − x̂‖]2 + 2αnγα‖xn − x̂‖‖xn+1 − x̂‖

+ 2αn

〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉

≤ [(1 − βn − αn

(
1 + μ

)
γ
)‖xn − x̂‖ + βn‖xn − x̂‖]2 + 2αnγα‖xn − x̂‖‖xn+1 − x̂‖

+ 2αn

〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉

≤ (1 − αn

(
1 + μ

)
γ
)2‖xn − x̂‖2 + αnγα

(
‖xn − x̂‖2 + ‖xn+1 − x̂‖2

)

+ 2αn

〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉

=
(
1 − 2αn

(
1 + μ

)
γ + α2

n

[(
1 + μ

)
γ
]2 + αnγα

)
‖xn − x̂‖2 + αnγα‖xn+1 − x̂‖2

+ 2αn

〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉
.

(3.40)

It follows that

‖xn+1 − x̂‖2 ≤ 1 − 2αn

(
1 + μ

)
γ + α2

n

[(
1 + μ

)
γ
]2 + αnγα

1 − αnγα
‖xn − x̂‖2

+
2αn

1 − αnγα

〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉

=
1 − 2αn

(
1 + μ

)
γ + αnγα

1 − αnγα
‖xn − x̂‖2 + α2

n

[(
1 + μ

)
γ
]2

1 − αnγα
‖xn − x̂‖2

+
2αn

1 − αnγα

〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉
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≤
[

1 − 2
((
1 + μ

)
γ − γα

)
αn

1 − αnγα

]

‖xn − x̂‖2 + α2
n

[(
1 + μ

)
γ
]2

1 − αnγα
M

+
2αn

1 − αnγα

〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉
,

(3.41)

where M = supn≥1{‖xn − x̂‖2}. Put σn = (2((1 + μ)γ − γα)αn)/(1 − αnγα) and

δn =
α2
n

[(
1 + μ

)
γ
]2

1 − αnγα
M +

2αn

1 − αnγα

〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉
. (3.42)

Then, the (3.41) reduces to the formula

‖xn+1 − x̂‖2 ≤ (1 − σn)‖xn − x̂‖2 + δn. (3.43)

It is easily seen that
∑∞

n=1 σn = ∞ and (using (3.30)), we get

lim sup
n→∞

δn
σn

= lim sup
n→∞

1
2
((
1 + μ

)
γ − γα

)
[
αn

[(
1 + μ

)
γ
]2
M

+2
〈
γf(x̂) − (I + μA

)
x̂, xn+1 − x̂

〉] ≤ 0.

(3.44)

Hence, by Lemma 2.10, we conclude that xn → x̂ as n → ∞. This completes the proof.

Remark 3.2. Theorem 3.1 improves and generalizes [1, Theorem 2.1] in the following ways.

(i) From a one nonexpansive mapping to a countable family of strict pseudocontrac-
tion mappings.

(ii) From a general system of variational inequalities to a general system of generalized
nonlinear mixed composite-type equilibria.

(iii) Theorem 3.1 for finding an element x̂ ∈ ⋂∞
n=1 Fix(Tn) ∩ Fix(Q) ∩ GEP(C,G,Θ,Φ)

(Q is defined as in Lemma 2.13) is more general the one of finding elements of
Fix(S) ∩ Fix(D) ∩ GEP(C,G,Θ,Φ) (D is defined as in Lemma 2.17) in [1, Theorem
2.1].

Furthermore, our method of the proof is very different from that in [1, Theorem
2.1] because (3.1) involves the countable family of strict pseudocontraction mappings and
strongly positive bounded linear operator.
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4. Application to Minimization Problems

Let C be a nonempty closed and convex subset of a real Hilbert space H and A : H → H
be a strongly positive linear bounded operator with a constant γ > 0. In this section, we will
utilize the results presented in Section 3 to study the following minimization problem:

min
x∈Ω

μ

2
〈Ax, x〉 + 1

2
‖x‖2 − h(x), (4.1)

where Ω is a nonempty closed and convex subsets of C, μ ≥ 0 is some constant and h :
C → R is a potential function for γf (i.e., h′(x) = γf(x) for all x ∈ C), where f : C → C
is a contraction mapping with a constant α ∈ (0, 1). Note that this kind of minimization
problems has been studied extensively by many authors (e.g., see [18, 36–39]). We can apply
Theorem 3.1 to solve the above minimization problem in the framework of Hilbert spaces as
follows.

Theorem 4.1. Let C be a nonempty closed and convex subset of a real Hilbert space H such that
C ± C ⊂ C. Let S : C → C be a nonexpansive mappings such that Fix(S)/= ∅. Let μ > 0 and
γ > 0 be two constants. Let f : C → C be a contraction mapping with a coefficient α ∈ (0, 1)
and A be a strongly positive bounded linear operator on C with a coefficient γ ∈ (0, 1) such that
0 < γ < ((1 + μ)γ)/α. Let {xn} be a sequence defined by x1 ∈ C and

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αn

(
I + μA

))
Sxn, ∀n ≥ 1, (4.2)

where {αn}, {βn} are two sequences in [0, 1]. Assume the following conditions are satisfied:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(C2) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Suppose that Fix(S) is a compact subset of C. Then the sequence {xn} defined by (4.2) converges
strongly to x̂ ∈ Fix(S) which solves the minimization problem (4.1).

Proof. Taking γ1 = 1 and γ2 = γ3 = 0 in Theorem 3.1. Hence, from Theorem 3.1, we know that
the sequence {xn} defined by (4.2) converges strongly to x̂ ∈ Fix(S), where x̂ is the unique
solution of the variational inequality

〈(
γf − (I + μA

))
x̂, v − x̂

〉 ≤ 0, ∀v ∈ Fix(S). (4.3)

Since S is nonexpansive, then Fix(S) is convex. Again by the assumption that Fix(S) is
compact, then it is a compact and convex subset of C, and

μ

2
〈Ax, x〉 + 1

2
‖x‖2 − h(x) : C −→ R (4.4)

is a continuous mapping. By virtue of the well-known Weierstrass’s theorem, there exists a
point x̃ ∈ Fix(S) which is a minimal point of minimization problem (4.1). As is known to all,
(4.3) is the optimality necessary condition [18] for the minimization problem (4.1). Therefore
we also have

〈(
γf − (I + μA

))
x̃, v − x̃

〉 ≤ 0, ∀v ∈ Fix(S). (4.5)

Since x̂ is the unique solution of (4.3), we have x̂ = x̃. This completes the proof.
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5. A Numerical Example

In this section, we give a real example in which the conditions satisfy the ones of Theorem 3.1
and some numerical experiment results to explain the main result Theorem 3.1 as follows.

Example 5.1. Let H = R, C = [0, 1], Θ(x, y, z) = φ(x) = Bx = 0, ∀x, y, z ∈ C, r = 1, Fi(x, y) =
ϕi(x) = Ψix = Φix = 0, ∀x, y ∈ C, μi = 1 (i = 1, 2, 3), A = I, f(x) = (1/2)x, and ∀x ∈ C, with
a constant α = 1/2, αn = 1/n, βn = (n + 1)/2n, ∀n ∈ N, γi = (1/3) (i = 1, 2, 3), γ = 1, and
μ = 1. For all n ∈ N, let Tn : C → C define by Tnx = nx2/(2n + 1), ∀x ∈ C, we see that, {Tn}
is a family of 0-strictly pseudocontractive with

⋂∞
n=1 Fix(Tn) = {0}. Then, {xn} is the sequence

defined by

xn+1 =
(
5
6
− 2
3n

)
xn +

1
6

(
n − 5
2n + 1

)
x2
n, (5.1)

and xn → 0 as n → ∞, where 0 is the unique solution of the minimization problem

min
x∈C

3
4
x2 + q. (5.2)

Proof. Step 1. We show that

T (r)(x) = PCx, ∀x ∈ H, (5.3)

where

PCx =

⎧
⎨

⎩

x

|x| , x ∈ H \ C,
x, x ∈ C.

(5.4)

Since Θ(x, y, z) = φ(x) = Bx = 0, due to the definition of T (r)(x), ∀x ∈ H in (2.7), we have

T (r)(x) =
{
y ∈ C :

〈
y − z, z − x

〉 ≥ 0, ∀z ∈ C
}
. (5.5)

Also by the equivalent property (2.5) of the nearest projection PC fromH to C, we obtain this
conclusion. When we take x ∈ C, then T (r)(x) = PCx = x. By the condition (Δ)(c), we have
GEP(C,G,Θ, φ) = C. In a similar way, for all i = 1, 2, 3, we can get

T
(Fi,ϕi)
μi

(x) = PCx = x, ∀x ∈ C, (5.6)

and Fix(Q) = C. Hence

GEP
(
C,G,Θ, φ

) ∩ Fix(Q) = C. (5.7)



Abstract and Applied Analysis 23

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(a)

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

1 2 3 4 5 6 7 8 9 10 11 12

(b)

Figure 1: These figures show the iteration comparison chart of different initial values (a) x1 = 1 and
(b) x1 = 0.5, respectively.

Step 2. We show that {Tn} is satisfies the PT-condition. Since Tnx = (nx2/(2n + 1)),
∀x ∈ C, and n ∈ N. For all k, l ∈ N, we have

lim
k,l→∞

∣∣∣∣∣
kx2

2k + 1
− lx2

2l + 1

∣∣∣∣∣
≤ lim

k,l→∞
sup
ω∈C

∣∣∣∣∣
kω2

2k + 1
− lω2

2l + 1

∣∣∣∣∣

= lim
k,l→∞

∣∣∣∣
k

2k + 1
− l

2l + 1

∣∣∣∣sup
ω∈C

{
ω2
}

= 0,

(5.8)

that is {Tn} satisfies the PT-condition.

Step 3.We show that

xn+1 =
(
5
6
− 2
3n

)
xn +

1
6

(
n − 5
2n + 1

)
x2
n, xn −→ 0, as n −→ ∞, (5.9)

where 0 is the unique solution of the minimization problem:

min
x∈C

3
4
x2 + q. (5.10)

Due to (5.3) and (5.4), we can obtain a special sequence {xn} of (3.1) in Theorem 3.1 as
follows:

xn+1 =
(
5
6
− 2
3n

)
xn +

1
6

(
n − 5
2n + 1

)
x2
n. (5.11)
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Table 1: This table shows the value of sequence {xn} on each iteration step (initial value x1 = 1).

n xn

1 1.000000000000000
2 0.400000000000000
3 0.236825396825397
4 0.156844963280237
5 0.109791474296166
6 0.079448383160412
7 0.058780740964773
8 0.044187178532649
9 0.033618033450111
10 0.000000000000000

Table 2: This table shows the value of sequence {xn} on each iteration step (initial value x1 = 0.5).

n xn

1 0.500000000000000
2 0.225000000000000
3 0.135089285714286
4 0.089721577233324
5 0.062805104063327
6 0.045409812093980
7 0.033562589425687
8 0.025205072875411
9 0.019159476038106
10 0.000000000000000

Since
⋂∞

n=1 Fix(Tn) = {0}, combining with (5.7), we have

Ω := GEP
(
C,G,Θ, φ

) ∩ Fix(Q) ∩
∞⋂

n=1

Fix(Tn) = {0}. (5.12)

By Lemma 2.10, we obtain that xn → 0, where 0 is the unique solution of the minimization
problem minx∈C(3/4)x2 + q, where q is a constant number.

5.1. Numerical Experiment Results

Next, we show the numerical experiment results using software MATLAB 7.0 and we obtain
the results shown in Tables 1 and 2 and Figure 1, which show that the iteration process of the
sequence {xn} as initial points x1 = 1 and x1 = 0.5, respectively.
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