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This paper investigates the synchronization ofYin andYang chaotic T-S fuzzyHenonmaps via PDC
controllers. Based on the Chinese philosophy,Yin is the decreasing, negative, historical, or feminine
principle in nature, while Yang is the increasing, positive, contemporary, or masculine principle in
nature. Yin and Yang are two fundamental opposites in Chinese philosophy. The Henon map is
an invertible map; so the Henon maps with increasing and decreasing argument can be called the
Yang and Yin Henon maps, respectively. Chaos synchronization of Yin and Yang T-S fuzzy Henon
maps is achieved by PDC controllers. The design of PDC controllers is based on the linear invertible
matrix theory. The T-S fuzzy model of Yin and YangHenonmaps and the design of PDC controllers
are novel, and the simulation results show that the approach is effective.

1. Introduction

Chaotic behavior in nonlinear system is an interesting phenomenon, which is very sensitive
in initial conditions. Chaos plays an important role in nonlinear science field [1–4]. In [5],
the Yin chaos in continuous time nonlinear system is firstly proposed. In 1990, Pecora and
Carroll proposed chaotic synchronization scheme and started a new research interest [6].
In many papers, chaos synchronization of two-dimensional Hênon map system is studied
[7–11]. In 1985, Takagi and Sugeno [12] proposed T-S fuzzy model and has been used in
complex nonlinear systems successfully [13]. The T-S fuzzy model of the nonlinear systems
can exactly be represented as a fuzzy aggregation of some local linear systems. Generally, the
implementation of synchronization [14] and control [15, 16] in T-S fuzzy model of chaotic
systems uses the parallel distributed compensation (PDC) scheme.
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The features of this paper are as follows.

(1) We develop the chaotic Henon map with decreasing argument, which is called Yin
chaotic Henon map.

(2) Yin and Yang T-S fuzzy models of chaotic Henon maps are proposed.

(3) The nonlinear discrete time Yin Henon map is the inverse of Yang Henon map.
Besides, the design of PDC controllers uses linear invertible matrix theory to
achieve chaos synchronization of T-S fuzzy Yin and Yang Henon maps.

This paper is organized as follows. In Section 2, the two-dimensional invertible maps,
Yin and Yang chaos are introduced. In Section 3, the Yang and Yin chaos of Henon maps are
presented. Section 4, Takagi-Sugeno fuzzy model scheme is given. In Section 5, Yang and Yin
T-S fuzzy models of the chaotic Henon maps are given. In Section 6, the design of PDC
controllers for Yin and Yang T-S fuzzy synchronization of chaotic Henon maps is given by the
linear invertible matrix theory. In Section 7, simulation results are given. In Section 8,
conclusions are drawn.

2. Two-Dimensional Invertible Maps

Consider the general two-dimensional map form as follows:

x1[n1 + 1] = f1{x1[n1], x2[n1]},
x2[n1 + 1] = f2{x1[n1], x2[n1]},

(2.1)

where x1[n1 + 1], x2[n1 + 1] are the functions of x1[n1], x2[n1], n1 is the positive argument,
that is, n1 = 0, 1, 2, 3, . . . , n. The map is invertible [17] if (2.1) can be solved uniquely for x1[n1]
and x2[n1] as functions of x1[n1 + 1] and x2[n1 + 1]. The inversed map system can be written
from (2.1):

x̂1[n2 − 1] = g1{x̂1[n2], x̂2[n2]},
x̂2[n2 − 1] = g2{x̂1[n2], x̂2[n2]},

(2.2)

where n2 is the negative argument, that is, n2 = 0,−1,−2,−3, . . . ,−n. The chaos obtained for
negative argument is called Yin chaos, while that obtained for positive argument is called
Yang chaos.

3. The Yang Chaos of Henon Map System and Yin Chaos of
Inversed Henon Map System

Consider the Henon map system [18]:

x1[n1 + 1] = −a1x
2
1[n1] + x2[n1] + 1,

x2[n1 + 1] = b1x1[n1],
(3.1)
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Figure 1: Phase portrait of the chaotic YangHenon map system with a1 = 1.4, b1 = 0.3.

where a1 = 1.4, b1 = 0.3 and positive argument n1 = 0, 1, 2, 3, . . . , n. The Yang chaotic behaviors
of Henon map system are quoted [19] by phase portraits in Figure 1.

The Henon map system is invertible if b1 /= 0. The inversed Henon map system can be
described as follows:

x̂1[n2 − 1] =
1
b1

x̂2[n2],

x̂2[n2 − 1] = x̂1[n2] +
a1

b21
x̂2
2[n2] − 1.

(3.2)

The parameters 1/b1, a1/b
2
1 are replaced by b2, a2, respectively, where b2 = 0.3, a2 = 1.4

and negative argument n2 = −1,−2,−3, . . . ,−n. The Yin chaotic behaviors of inversed Henon
map system are shown in Figure 2.

Comparing Figure 1 and Figure 2, it is surprisingly noted that Figure 2 gives new
information for famous Henon map system. Since 1976 [18], traditional studies of Henon
system have only been devoted to its behaviors with positive argument. Now it is discovered
that with negative argument or negative time, a new continent is waiting for us in the future
study of either nonlinear map systems or nonlinear continuous systems.

4. Takagi-Sugeno Fuzzy Model

The T-S fuzzy model [12] can represent a nonlinear system by linear state space which is
described by fuzzy IF-THEN rules.

Consider the following discrete time T-S fuzzy rules:

Ri : IF p1(n) is Mi1, . . . , and pq(n) is Miq,

THEN x(n + 1) = Aix(n) + c,
(4.1)
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Figure 2: Phase portrait of the chaotic Yin Henon map system with a2 = 1.4, b2 = 0.3.

where i = 1, 2, . . . , r (r is the number of fuzzy rules), x(n) ∈ Rj represents the state vector,
Ai ∈ Rj×j are known matrix, p1(n), p2(n), . . . , pq(n) are premise variables, Mih is a fuzzy set
(h = 1, 2, . . . , q), and c ∈ Rj is a constant vector. The final discrete time T-S fuzzy system is
inferred as follows:

x(n + 1) =
∑r

i=1 ωi

(

p(n)
)

(Aix(n) + c)
∑r

i=1 ωi

(

p(n)
) , (4.2)

where

ωi

(

p(n)
)

=
q

∏

h=1

Mih

(

ph(n)
)

, (4.3)

in which Mih(ph(n)) is the degree of membership of ph(n) in Mih. The following conditions
must be satisfied:

r
∑

i=1

ωi

(

p(n)
)

> 0,

ωi

(

p(n)
) ≥ 0,

i = 1, 2, . . . , r. (4.4)

let μi(p(n)) = ωi(p(n))/
∑r

i=1 ωi(p(n)), (4.2) can be rewritten as

x(n + 1) =
r
∑

i=1

μi

(

p(n)
)

(Aix(n) + c). (4.5)
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Note that

r
∑

i=1

μi

(

p(n)
)

= 1,

μi

(

p(n)
) ≥ 0.

i = 1, 2, . . . , r. (4.6)

5. Yang and Yin T-S Fuzzy Models of the Chaotic Henon Maps

Figures 1 and 2 show that the ranges of the states x1(n) and x̂2(n) forYang andHenonmap are
from −1.4 to 1.4 (x1(n), x̂2 ∈ [−1.4, 1.4]), respectively. The Yang and Yin T-S fuzzy models of
chaotic Henon map systems can be obtained as follows.

Yang T-S fuzzy model of chaotic Henon map system:

R1 : IF x1(n1) is M11, THEN x(n1 + 1) = A1x(n1) + c,

R2 : IF x1(n1) is M21, THEN x(n1 + 1) = A2x(n1) + c.
(5.1)

Yin T-S fuzzy model of chaotic Henon map system:

R1 : IF x̂2(n2) is ̂M11, THEN x̂(n2 − 1) = ̂A1x̂(n2) + ĉ,

R2 : IF x̂2(n2) is ̂M21, THEN x̂(n2 − 1) = ̂A2x̂(n2) + ĉ.
(5.2)

In (5.1), x(n1) = (x1(n1), x2(n1))
T , n1 = 0, 1, 2, 3, . . . , n, A1 =

[

−a1(1.4) 1
b1 0

]

, and A2 =
[

−a1(−1.4) 1
b1 0

]

,

c = (1, 0)T .
The membership functions are chosen as follows:

M11(x1(n1)) =
1
2

(

1 +
x1(n1)
1.4

)

,

M21(x1(n1)) =
1
2

(

1 − x1(n1)
1.4

)

.

(5.3)

In (5.2), x̂(n2) = (x̂1(n2), x̂2(n2))
T , n2 = 0,−1,−2,−3, . . . , −n, ̂A1 =

[

0 b2
1 a2(1.4)

]

, ̂A2 =
[

0 b2
1 a2(−1.4)

]

,

and ĉ = (0,−1)T .
The membership functions are chosen as follows:

̂M11(x̂2(n2)) =
1
2

(

1 +
x̂2(n2)
1.4

)

̂M21(x̂2(n2)) =
1
2

(

1 − x̂2(n2)
1.4

)

.

(5.4)
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Figure 3: Phase portrait of Yang T-S fuzzy model of Henon map system with a1 = 1.4, b1 = 0.3.

Then, applying the product-inference rule, singleton fuzzifier, and the center of gravity
defuzzifier to the above fuzzy rule base ((5.1) and (5.2)), the overall Yang and Yin fuzzy
chaotic maps can be shown in (5.5) and (5.6), respectively

x(n1 + 1) =
2
∑

i=1

μi(x1(n1))(Aix(n1) + c), (5.5)

x̂(n2 + 1) =
2
∑

i=1

μi(x̂2(n2))(Aix̂(n2) + ĉ), (5.6)

where

μi(x1(n1)) =
Mi1(x1(n1))

∑2
i=1(Mi1(x1(n1)))

,

μi(x̂2(n2)) =
Mi1(x̂2(n2))

∑2
i=1(Mi1(x̂2(n2)))

.

(5.7)

The Yang T-S fuzzy model of chaotic Henon map system is given in Figure 3. It is
clear to see that the derived Yang T-S fuzzy model is equivalent to the original chaotic map
in Figure 1. Otherwise, the Yin T-S fuzzy model of chaotic Henon map system is given in
Figure 4 and is equivalent to the original chaotic map in Figure 2.

6. Controller Design for Chaos Synchronization of Yin and Yang T-S
Fuzzy Model of Henon Maps

Let Yang T-S fuzzy chaotic map (5.5) be as the drive system and the response system as fol-
lows:

y(n + 1) =
2
∑

i=1

μi

(

y1(n)
)(

Aiy(n) + c
)

+ u(n). (6.1)
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Figure 4: Phase portrait of Yin T-S fuzzy model of Henon map system with a2 = 1.4, b2 = 0.3.

The target for the design of a fuzzy controller u(n) is synchronized the two discrete time
chaotic maps by the PDC technique as follows:

u(n) =
2
∑

i=1

μi(x1(n))Kix(n) −
2
∑

i=1

μi

(

y1(n)
)

Kiy(n). (6.2)

Define the error dynamics:

e(n) = x(n) − y(n). (6.3)

From (6.1) and (6.2), the closed loop synchronization error dynamics (6.3) is arranged as

e(n + 1) =
2
∑

i=1

μi(x1(n))(Ai +Ki)x(n) −
2
∑

i=1

μi

(

y1(n)
)

(Ai +Ki)y(n). (6.4)

According to stability theory for discrete linear system, it is known that a matrix H if
and only if the eigenvalues of matrix H are less than 1 in absolute value [20], the error
dynamics (6.3) is asymptotically stable, in other words, the chaos synchronization is
achieved. Let a Schur stable matrix H1 for Yang controller design satisfy the following equa-
tion:

A1 +K1 = A2 −K2 = H1. (6.5)
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Since the system is the T-S fuzzy model of invertible map and the determinants ofK1,K2 are
not equal to zero, the Yin fuzzy controllers meet the following equation:

̂K1 = ̂K−1
1 , ̂K2 = ̂K−1

2 . (6.6)

So the Schur matrix H2 for Yin controller design satisfy the following equation:

A−1
1 +K−1

1 = A−1
2 −K−1

2 = H2. (6.7)

We need to find the K1, K2, ̂K1, ̂K2 to meet (6.5) and (6.7), that is, if all the eigenvalues of
H1,H2 are less than 1 in absolute value, the Yang and Yin T-S fuzzy chaotic Henon maps are
synchronized individually. Because (6.7) is not the invertible of (6.5) (the invertible of (6.5)
is (A1 +K1)

−1 = (A2 −K2)
−1 = (H1)

−1), we can findH1 and H2 to meet Schur matrix.

7. Simulation Results

In order to apply the proposedYin-Yang chaos synchronization scheme by PDC technique, the
T-S fuzzy model is used. Yang T-S fuzzy model of Henon map system as drive system is
described in (5.1), (5.3), (5.5), and (5.7). Yang T-S fuzzy model of Henon map system as
response system is described by (6.1) and (6.2):

y(n1 + 1) =
2
∑

i=1

μi

(

y1(n1)
)(

Aiy(n1) + c
)

+ u(n1), (7.1)

where

A1 =
[−a1(1.4) 1

b1 0

]

, A2 =
[−a1(−1.4) 1

b1 0

]

, c = [1, 0]T ,

u(n) =
2
∑

i=1

μi(x1(n1))Kix(n1) −
2
∑

i=1

μi

(

y1(n1)
)

Kiy(n1).

(7.2)

According to the proposed Yin-Yang chaos synchronization by PDC technique, the stable
matrix H1 is chosen as H1 =

[ −0.96 0.5
−0.7 0

]

, where the two eigenvalues of H1 are −0.48,−0.48.
The Yang fuzzy controller can be obtained by (6.5):

K1 =
[

1 −0.5
−1 0

]

,

K2 =
[

2.92 0.5
1 0

]

.

(7.3)

Yang T-S fuzzy model of chaotic Henon maps as drive and response system is simulated with
initial conditions [ x1(0) x2(0) ]T = [ 0.63 0.19 ]T , [ y1(0) y2(0) ]T = [ 0.4 0.1 ]T .
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Figure 5: Error dynamics e1 for chaos synchronization of Yang T-S fuzzy model of Henon map system.
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Figure 6: Error dynamics e2 for chaos synchronization of Yang T-S fuzzy model of Henon map system.

Simulation results show that the error dynamics approach to be asymptotically stable
in Figures 5 and 6. The Yin fuzzy controllers can be obtained by (6.6):

̂K1 = K−1
1 =

[

0 −1
−2 −2

]

,

̂K2 = K−1
2 =

[

0 1
2 −5.84

]

.

(7.4)

From (6.7), we can obtain the Schur matrix H2 =
[ 0 −0.7
−1 −0.04

]

, where the initial conditions
[ x̂1(0) x̂2(0) ]T = [ 0.19 0.63 ]T , [ ŷ1(0) ŷ2(0) ]T = [ 0.1 0.4 ]T and the two eigenvalues of H2 are 0.817,
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Figure 7: Error dynamics ê1 for chaos synchronization of Yin T-S fuzzy model of Henon map system.
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Figure 8: Error dynamics ê2 for chaos synchronization of Yin T-S fuzzy model of Henon map system.

−0.857. Simulation results show that the error dynamics approach to be asymptotically stable
in Figures 7 and 8. In other words, chaos synchronization is achieved.

8. Conclusions

Yin chaos of inversed Henon map system and the Yin T-S fuzzy model of chaotic Henon map
system are proposed. The T-S fuzzy model of a chaotic system can exactly be represented as
a fuzzy aggregation of some local linear systems. As a result, the conventional linear system
theory can be applied. Since nonlinear discrete time Henon map is an invertible map, we
develop the Yang and Yin T-S fuzzy model of Henon map system. The design of the Yin fuzzy
controller is fleetly obtained by the inverse of Yang fuzzy controller, the concern is that the Yin
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chaotic system must be an inverse of the Yang chaotic system and meet the stability theory
for discrete linear system. In secure communication, the chaotic system as transmitter and the
inverse chaotic system as receiver are hard to achieve due to the nonlinearity; however the
Yin and Yang T-S fuzzy models of Henon map system can overcome these difficulties.
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