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Equilibrium problem and fixed point problem are considered. A general iterative algorithm is
introduced for finding a common element of the set of solutions to the equilibrium problem
and the common set of fixed points of two weak relatively uniformly nonexpansive multivalued
mappings. Furthermore, strong and weak convergence results for the common element in the two
sets mentioned above are established in some Banach space.

1. Introduction

Let E be a smooth Banach space, and let C be a nonempty closed convex subset of E. In the
sequel, we denote by 2C the family of all nonempty subsets of C. We use φ : E × E → R to
denote the Lyapunov functional defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2
, ∀x, y ∈ E. (1.1)

We know several fundamental properties of φ as follows: φ(x, y) ≥ 0 for all x, y ∈ E. For a
sequence {yn} ⊂ E and x ∈ E, {yn} is bounded if and only if {φ(x, yn)} is bounded.

Let T : C → 2C be a multivalued mapping. We denote by F(T) the set of fixed points
of T , that is,

F(T) = {x ∈ C : x ∈ Tx}. (1.2)

For a multivalued mapping T , we define an asymptotic fixed point and a strong
asymptotic fixed point of T as follows.
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Definition 1.1 (see [1]). Let T : C → 2C be a multivalued mapping.

(1) A point p in C is said to be an asymptotic fixed point of T if C contains a sequence
{xn} which converges weakly to p and there exists a sequence {yn} such that yn ∈
Txn, limn→∞‖yn −xn‖ = 0. The set of asymptotic fixed point of T will be denoted by
F̂(T).

(2) A point p in C is said to be a strong asymptotic fixed point of T if C contains a
sequence {xn}which converges strongly to p and there exists a sequence {yn} such
that yn ∈ Txn, limn→∞‖yn − xn‖ = 0. The set of strong asymptotic fixed point of T
will be denoted by F̃(T).

Definition 1.2 (see [1]). A multivalued mapping T : C → 2C is called relatively nonexpansive
multivalued mapping (weak relatively nonexpansive multivalued mapping) if the following
conditions are satisfied:

(1) F(T) is nonempty;

(2) φ(u, v) ≤ φ(u, x), for allu ∈ F(T), for allx ∈ C, ∃v ∈ Tx;

(3) F̂(T) = F(T) (F̃(T) = F(T)).

Definition 1.3 (see [1]). A multivalued mapping T : C → 2C is called relatively uniformly
nonexpansive multivalued mapping (weak relatively uniformly nonexpansive multivalued
mapping) if the following conditions are satisfied:

(1) F(T) is nonempty;

(2) φ(u, v) ≤ φ(u, x), for allu ∈ F(T), for allx ∈ C, for allv ∈ Tx;

(3) F̂(T) = F(T) (F̃(T) = F(T)).

Remark 1.4. By comparing condition (2) of Definitions 1.2 and 1.3, one easily draws the
following conclusions:

(1) the class of relatively nonexpansive multivalued mappings contains the class of
relatively uniformly nonexpansive multivalued mappings as a subclass, but the
converse may be not true;

(2) the class of weak relatively nonexpansive multivalued mappings contains the class
of weak relatively uniformly nonexpansive multivalued mappings as a subclass,
but the converse may be not true.

For any operator T , F(T) ⊂ F̃(T) ⊂ F̂(T) is held. So we have the following remark.

Remark 1.5. From Definitions 1.2 and 1.3, the following conclusions can easily be drawn:

(1) the class of weak relatively nonexpansive multivalued mappings contains the class
of relatively nonexpansive multivalued mappings as a subclass, but the converse
may be not true;

(2) the class of weak relatively uniformly nonexpansive multivalued mappings
contains the class of relatively uniformly nonexpansive multivalued mappings as a
subclass, but the converse may be not true.
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Remark 1.6. The examples of weak relatively uniformly nonexpansive multivalued mapping
can be found in Su [1] and Homaeipour and Razani [2].

Let E be a real Banach space, and let E∗ be the dual space of E. Let f be a bifunction
from C × C to R. The equilibrium problem is to find

x̂ ∈ C such that f
(
x̂, y

) ≥ 0, ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by EP(f). Given a mapping T : C → E∗, let f(x, y) =
〈Tx, y − x〉 for all x, y ∈ C. Then x̂ ∈ EP(f) if and only if 〈Tx̂, y − x̂〉 ≥ 0 for all y ∈ C, that
is, x̂ is a solution of the variational inequality. Numerous problems in physics, optimization,
and economics reduce to find a solution of (1.3). Some methods have been proposed to solve
the equilibrium problem in Hilbert spaces, see [3–5] for details.

In recent years, iterative methods for approximating fixed points of multivalued
mappings in Banach spaces have been studied by many authors, see [2, 6–9] for details.
In 2011, Homaeipour and Razani [2] introduced the concept of relatively nonexpansive
multivalued mappings and proved some weak and strong convergence theorems to
approximate a fixed point for a single relatively nonexpansive multivalued mapping in a
uniformly convex and uniformly smooth Banach space E which improved and extended
the corresponding results of Matsushita and Takahashi [10]. Very recently, Su [1] not
only redefined relatively nonexpansive multivalued mappings, which was different from
Homaeipour and Razani [2]’s definition, but also introduced some interesting examples
about the multivalued mappings. On the other hand, in 2009, Qin et al. [11] introduced an
iterative algorithm for the equilibrium problem (1.3) and relatively nonexpansive mappings.
Moreover, they proved a weak convergence theorem for finding a common element of the
set of solutions to the equilibrium problem (1.3) and the common set of fixed points of two
relatively nonexpansive mappings, which improved and extended the corresponding results
of Takahashi and Zembayashi [12].

Motivated and inspired by the above facts, the purpose of this paper will introduce
an iterative algorithm for the equilibrium problem (1.3) and two weak relatively uniformly
nonexpansive multivalued mappings. Furthermore, a weak convergence theorem will given
for finding a common element of the set of solutions to the equilibrium problem (1.3) and
the common set of fixed points of two weak relatively uniformly nonexpansive multivalued
mappings in some Banach space. Our results improve and extend the corresponding results
of Qin et al. [11] and Takahashi and Zembayashi [12].

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖, and let J be the normalized duality mapping
from E into 2E

∗
given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}, (2.1)

for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality pairing
between E and E∗. It is well known that if E∗ is uniformly convex, then J is uniformly
continuous on bounded subsets of E.
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As we all know that if C is a nonempty closed convex subset of a Hilbert space H,
and PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact
actually characterizes Hilbert spaces, and, consequently, it is not available in more general
Banach spaces. In this connection, Alber [13] introduced a generalized projection operator
ΠC in a Banach space E which is an analogue of the metric projection in Hilbert spaces. The
generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E the
minimum point of the Lyapunov functional φ(x, y), that is, ΠCx = x, where x is the solution
to the minimization problem;

φ(x, x) = inf
y∈C

φ
(
y, x

)
. (2.2)

The existence and uniqueness of the operatorΠC follow from the properties of the Lyapunov
functional φ(x, y) and strict monotonicity of the mapping J , see, for example, [13, 14]. In
Hilbert spaces, ΠC = PC. It is obvious from the definition of function φ that

(∥∥y
∥∥ − ‖x‖)2 ≤ φ

(
y, x

) ≤ (∥∥y
∥∥ − ‖x‖)2, ∀x, y ∈ E. (2.3)

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x /=y. It is said to be uniformly convex if limn→∞‖xn − yn‖ = 0 for any two
sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ = 1. Let
U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to be smooth
provided by

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

, (2.4)

which exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ E. It is well known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of E.

We also need the following lemmas for the proof of our main results.

Lemma 2.1 (see [2]). Let E be a strictly convex and smooth Banach space, then φ(x, y) = 0 if and
only if x = y.

Lemma 2.2 (see [2]). Let E be a uniformly convex and smooth Banach space and r > 0. Then,

g
(∥∥y − z

∥∥) ≤ φ
(
y, z

)
, (2.5)

for all y, z ∈ Br(0) = {x ∈ E : ‖x‖ ≤ r}, where g : [0,∞) → [0,∞) is a continuous, strictly
increasing, and convex function with g(0) = 0.

Lemma 2.3 (see [11]). Let C be a nonempty closed convex subset of a reflexive, strictly convex, and
smooth Banach space E. Then

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ
(
x, y

)
, ∀x ∈ C and y ∈ E. (2.6)
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Lemma 2.4 (see [11]). Let E be a uniformly convex Banach space and Br(0) be a closed ball of E.
Then there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞)with g(0) = 0
such that

∥
∥λx + μy + γz

∥
∥2 ≤ λ‖x‖2 + μ

∥
∥y

∥
∥2 + γ‖z‖2 − λμg

(∥∥x − y
∥
∥), (2.7)

for all x, y, z ∈ Br(0) = {x ∈ E : ‖x‖ ≤ r} and λ, μ, γ ∈ [0, 1] with λ + μ + γ = 1.

Lemma 2.5. Let E be a strictly convex and smooth Banach space, and let C be a closed convex subset
of E. Suppose T : C → 2C is a weak relatively uniformly nonexpansive multivalued mapping. Then,
F(T) is closed and convex.

Proof. First, we show that F(T) is closed. Let {pn} be a sequence in F(T) such that pn → p
as n → ∞. Since the multivalued operator T is uniformly weak relatively nonexpansive, one
has

φ
(
pn, p̃

) ≤ φ
(
pn, p

)
, (2.8)

for all p̃ ∈ Tp and for all n ∈ N. Therefore,

φ
(
p, p̃

)
= lim

n→∞
φ
(
pn, p̃

) ≤ lim
n→∞

φ
(
pn, p

)
= φ

(
p, p

)
. (2.9)

Applying Lemma 2.1, one gets p = p̃. Hence Tp = {p}. Therefore, p ∈ F(T).
Next, we show that F(T) is convex. To this end, for arbitrary p1, p2 ∈ F(T), t ∈ (0, 1).

Putting p = tp1 + (1 − t)p2, we prove that Tp = {p}. Let q ∈ Tp, we have

φ
(
p, q

)
=
∥∥p

∥∥2 − 2
〈
p, Jq

〉
+
∥∥q

∥∥2

=
∥∥p

∥∥2 − 2
〈
tp1 + (1 − t)p2, Jq

〉
+
∥∥q

∥∥2

=
∥∥p

∥∥2 − 2t
〈
p1, Jq

〉 − 2(1 − t)
〈
p2, Jq

〉
+
∥∥q

∥∥2

=
∥∥p

∥∥2 + tφ
(
p1, q

)
+ (1 − t)φ

(
p2, q

) − t
∥∥p1

∥∥2 − (1 − t)
∥∥p2

∥∥2

≤ ∥∥p
∥∥2 + tφ

(
p1, p

)
+ (1 − t)φ

(
p2, p

) − t
∥∥p1

∥∥2 − (1 − t)
∥∥p2

∥∥2

=
∥∥p

∥∥2 − 2
〈
tp1 + (1 − t)p2, Jp

〉
+
∥∥p

∥∥2

=
∥∥p

∥∥2 − 2
〈
p, Jp

〉
+
∥∥p

∥∥2

= 0.

(2.10)

Using Lemma 2.1 again, we also obtain p = q. Hence, T(p) = {p}, that is, p ∈ F(T). Therefore,
F(T) is convex.

For solving the equilibrium problem for a bifunction f : C×C → R, let us assume that
f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;



6 Abstract and Applied Analysis

(A3) for each x, y, z ∈ C,

lim
t↓0

f
(
tz + (1 − t)x, y

) ≤ f
(
x, y

)
; (2.11)

(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.

Lemma 2.6 (see [12]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0 and x ∈ E.
Then, there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.12)

Lemma 2.7 (see [12]). Let C be a closed subset of a strictly convex, uniformly smooth, and reflexive
Banach space E, and let f be a bifunction from C × C to R satisfying (A1)–(A4). For all r > 0 and
x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{
z ∈ C : f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, (2.13)

for all x ∈ E. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive mapping, that is, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
; (2.14)

(3) F(Tr) = EP(f)

(4) EP(f) is closed and convex.

Lemma 2.8 (see [12]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0 and x ∈ E
and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.15)

Lemma 2.9 (see [12]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let x ∈ E, and let z ∈ C. Then

z = ΠCx ⇐⇒ 〈
y − z, Jx − Jz

〉 ≤ 0, ∀y ∈ C. (2.16)

3. Main Results

In this section, we prove a weak convergence theorem for finding a common element of the
set of solutions for an equilibrium problem and the set of fixed points of two weak relatively
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uniformly nonexpansive multivalued mappings in a Banach space. Before proving the result,
we need the following theorem.

Theorem 3.1. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let T, S :
C → C be two weak relatively uniformly nonexpansive multivalued mappings such that F = F(T) ∩
F(S) ∩ EP(f)/= ∅. Let {xn} be a sequence generated by the following manner:

xn ∈ C such that f
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C,

un+1 = J−1
(
αnJxn + βnJyn + γnJzn

)
,

(3.1)

where yn ∈ Txn, zn ∈ Sxn, and J are the duality mapping on E. Assume that {αn}, {βn}, and {γn}
are three sequences in [0, 1] satisfying the following conditions:

(a) αn + βn + γn = 1;

(b) lim infn→∞αnβn > 0, lim infn→∞αnγn > 0;

(c) {rn} ⊂ [a,∞) for some a > 0.

Then {ΠFxn} converges strongly to z ∈ F, whereΠF is the generalized projection of E onto F.

Proof. Let p ∈ F. Putting xn = Trnun for all n ∈ N, it is well known that Trn is relatively
nonexpansive, one has

φ
(
p, xn+1

)
= φ

(
p, Trnun+1

)

≤ φ
(
p, un+1

)

= φ
(
p, J−1

(
αnJxn + βnJyn + γnJzn

))

=
∥∥p

∥∥2 − 2αn

〈
p, Jxn

〉 − 2βn
〈
p, Jyn

〉 − 2γn
〈
p, Jzn

〉
+
∥∥αnJxn + βnJyn + γnJzn

∥∥2

≤ ∥∥p
∥∥2 − 2αn

〈
p, Jxn

〉 − 2βn
〈
p, Jyn

〉 − 2γn
〈
p, Jzn

〉
+ αn‖Jxn‖2 + βn

∥∥Jyn

∥∥2

+ γn‖Jzn‖2

= φ
(
p, xn

)
+ βnφ

(
p, yn

)
+ γnφ

(
p, zn

)

≤ φ
(
p, xn

)
.

(3.2)

Therefore, limn→∞φ(p, xn) exists. Since φ(p, xn) is bounded, {xn}, {yn}, and {zn} are
bounded.

Define vn = ΠFxn for all n ∈ N. Then, from vn ∈ F and (3.2), one gets

φ(vn, xn+1) ≤ φ(vn, xn). (3.3)
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Since ΠF is the generalized projection, from Lemma 2.3, one sees

φ(vn+1, xn+1) = φ(ΠFxn+1, xn+1)

≤ φ(vn, xn+1) − φ(vn,ΠFxn+1)

= φ(vn, xn+1) − φ(vn, vn+1)

≤ φ(vn, xn+1).

(3.4)

Hence, from (3.3), one has

φ(vn+1, xn+1) ≤ φ(vn, xn). (3.5)

Therefore, {φ(vn, xn)} is a convergent sequence. Applying (3.3) again, one also obtains that,
for all m ∈ N,

φ(vn, xn+m) ≤ φ(vn, xn). (3.6)

From vn+m = ΠFxn+m and Lemma 2.3, one has

φ(vn, vn+m) + φ(vn+m, xn+m) ≤ φ(vn, xn+m) ≤ φ(vn, xn), (3.7)

and hence

φ(vn, vn+m) ≤ φ(vn, xn) − φ(vn+m, xn+m). (3.8)

Let r = supn∈N
‖vn‖. From Lemma 2.2, there exists a continuous, strictly increasing, and

convex function g with g(0) = 0 such that

g
(∥∥x − y

∥∥) ≤ φ
(
x, y

)
for x, y ∈ Br. (3.9)

Therefore, one has

g(‖vn − vn+m‖) ≤ φ(vn, vn+m) ≤ φ(vn, xn) − φ(vn+m, xn+m). (3.10)

Since {φ(vn, xn)} is a convergent sequence, from the property of g, one obtains that {vn} is
a Cauchy sequence. Since F is closed, {vn} converges strongly to z ∈ F. This completes the
proof of Theorem 3.1.

In the following, we give our weak convergence result in this paper.

Theorem 3.2. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let
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T, S : C → C be two weak relatively uniformly nonexpansive multivalued mappings such that
F = F(T) ∩ F(S) ∩ EP(f)/= ∅. Let {xn} be a sequence generated by the following manner:

xn ∈ C such that f
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C,

un+1 = J−1
(
αnJxn + βnJyn + γnJzn

)
,

(3.11)

where yn ∈ Txn, zn ∈ Sxn, and J are the duality mapping on E. Assume that {αn}, {βn}, and {γn}
are three sequences in [0, 1] satisfying the following conditions:

(a) αn + βn + γn = 1;

(b) lim infn→∞αnβn > 0, lim infn→∞αnγn > 0;

(c) {rn} ⊂ [a,∞) for some a > 0.

If J is weakly sequentially continuous, then {xn} converges weakly to z ∈ F, where z =
limn→∞ΠFxn.

Proof. In view of the proof Theorem 3.1, one has that {xn}, {yn}, and {zn} are bounded. Let

r = sup
n≥0

{‖xn‖,
∥∥yn

∥∥, ‖zn‖
}
, (3.12)

from Lemma 2.4, for p ∈ F, one has

φ
(
p, xn+1

)
= φ

(
p, Trnun+1

)

≤ φ
(
p, un+1

)

= φ
(
p, J−1

(
αnJxn + βnJyn + γnJzn

))

=
∥∥p

∥∥2 − 2αn

〈
p, Jxn

〉 − 2βn
〈
p, Jyn

〉 − 2γn
〈
p, Jzn

〉

+
∥∥αnJxn + βnJyn + γnJzn

∥∥2 ≤ ∥∥p
∥∥2 − 2αn

〈
p, Jxn

〉 − 2βn
〈
p, Jyn

〉 − 2γn
〈
p, Jzn

〉

+ αn‖Jxn‖2 + βn
∥∥Jyn

∥∥2 + γn‖Jzn‖2 − αnβng
(∥∥Jyn − Jxn

∥∥)

= φ
(
p, xn

)
+ βnφ

(
p, yn

)
+ γnφ

(
p, zn

) − αnβng
(∥∥Jyn − Jxn

∥∥)

≤ φ
(
p, xn

) − αnβng
(∥∥Jyn − Jxn

∥∥).
(3.13)

It follows that

αnβng
(∥∥Jyn − Jxn

∥∥) ≤ φ
(
p, xn

) − φ
(
p, xn+1

)
. (3.14)

In view of lim infn→∞αnβn > 0, by taking the limit in (3.14), one sees

g
(∥∥Jyn − Jxn

∥∥) −→ 0, as n −→ ∞. (3.15)
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From the property of g, one has

∥
∥Jyn − Jxn

∥
∥ −→ 0, as n −→ ∞. (3.16)

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, one obtains

∥
∥yn − xn

∥
∥ −→ 0, as n −→ ∞. (3.17)

Similarly, one could obtain

‖zn − xn‖ −→ 0, as n −→ ∞. (3.18)

Noticing that {xn} is bounded, one gets that there exists a subsequence {xnk} of {xn} such
that xnk converges weakly to x∗ ∈ C. From (3.17) and (3.18), F̃(T) = F(T) and F̃(S) = F(S),
one has

x∗ ∈ F̃(T) ∩ F̃(S) = F(T) ∩ F(S). (3.19)

Next, we show that x∗ ∈ EP(f). Let s = supn≥1{‖xn‖, ‖un‖}. From Lemma 2.2, there
exists a continuous, strictly increasing, and convex function g1 with g1(0) = 0 such that

g1
(∥∥x − y

∥∥) ≤ φ
(
x, y

)
, ∀x, y ∈ Bs. (3.20)

Noticing that xn = Trnun and from Lemma 2.8 and (3.13), for p ∈ F, one has

g1(‖xn − un‖) ≤ φ(xn, un) ≤ φ
(
p, un

) − φ
(
p, xn

) ≤ φ
(
p, xn−1

) − φ
(
p, xn

)
. (3.21)

Noticing that limn→∞φ(p, xn) exists, one gets

lim
n→∞

g1(‖xn − un‖) = 0. (3.22)

It follows from the property of g1 that

lim
n→∞

‖xn − un‖ = 0. (3.23)

Since J is uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞

‖Jxn − Jun‖ = 0. (3.24)

From the assumption rn ≥ a, one obtains

lim
n→∞

‖Jxn − Jun‖
rn

= 0. (3.25)
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Since xn = Trnun, one has

f
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C. (3.26)

By replacing n by nk and from (A2), one sees

∥
∥y − xnk

∥
∥‖Jxnk − Junk‖

rnk

≥ 1
rnk

〈
y − xnk , Jxnk − Junk

〉

≥ −f(xnk , y
)

≥ f
(
y, xnk

)
, ∀y ∈ C.

(3.27)

Taking k → ∞ in the above inequality and from (A4), one has

f
(
y, x∗) ≤ 0, ∀y ∈ C. (3.28)

For 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)x∗. Since y, x∗ ∈ C, one gets yt ∈ C, which
yields that f(yt, x

∗) ≤ 0. It follows from (A1) that

0 = f
(
yt, yt

) ≤ tf
(
yt, y

)
+ (1 − t)f

(
yt, x

∗) ≤ tf
(
yt, y

)
, (3.29)

that is,

f
(
yt, y

) ≥ 0. (3.30)

Let t ↓ 0; from (A3), we obtain f(x∗, y) ≥ 0 for all y ∈ C. This implies that x∗ ∈ EP(f).
Therefore, x∗ ∈ F.

On the other hand, let vn = ΠFxn; from Lemma 2.9 and x∗ ∈ F, we have

〈vnk − x∗, Jxnk − Jvnk〉 ≥ 0. (3.31)

From Theorem 3.1, one knows that {vn} converges strongly to z ∈ F. Since J is weakly
sequentially continuous, one has

〈z − x∗, Jx∗ − Jz〉 ≥ 0, (3.32)

as k → ∞. On the other hand, since J is monotone, one has

〈z − x∗, Jx∗ − Jz〉 ≤ 0, (3.33)

as k → ∞. Also, since E is uniformly convex, one has z = x∗. This completes the proof of
Theorem 3.2.

If we only consider one operator T , the following corollary can been established by
Theorem 3.2.
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Corollary 3.3. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C ×C to R satisfying (A1)–(A4), and let T : C →
C be a weak relatively uniformly nonexpansive multivalued mapping such thatF = F(T)∩EP(f)/= ∅.
Let {xn} be a sequence generated by the following manner:

xn ∈ C such that f
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C,

un+1 = J−1
(
αnJxn + (1 − αn)Jyn

)
,

(3.34)

where yn ∈ Txn, and J is the duality mapping onE. Assume that {αn} is a sequence in [0, 1] satisfying
the following conditions:

(a) lim infn→∞αn(1 − αn) > 0;

(b) {rn} ⊂ [a,∞) for some a > 0.

If J is weakly sequentially continuous, then {xn} converges weakly to z ∈ F, where z =
limn→∞ΠFxn.

If T and S are two relatively uniformly nonexpansive multivalued mappings, from
Definitions 1.1 and 1.3, it is easy to know that the class of weak relatively uniformly
nonexpansive multivalued mappings contains the class of relatively uniformly nonexpansive
multivaluedmappings as a subclass. Therefore, the following corollary can be easily obtained
by Theorem 3.2.

Corollary 3.4. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let T, S :
C → C be two relatively uniformly nonexpansive multivalued mappings such thatF = F(T)∩F(S)∩
EP(f)/= ∅. Let {xn} be a sequence generated by the following manner:

xn ∈ C such that f
(
xn, y

)
+

1
rn

〈
y − xn, Jxn − Jun

〉 ≥ 0, ∀y ∈ C,

un+1 = J−1
(
αnJxn + βnJyn + γnJzn

)
,

(3.35)

where yn ∈ Txn, zn ∈ Sxn, and J are the duality mapping on E. Assume that {αn}, {βn}, and {γn}
are three sequences in [0, 1] satisfying the following conditions:

(a) αn + βn + γn = 1;

(b) lim infn→∞αnβn > 0, lim infn→∞αnγn > 0;

(c) {rn} ⊂ [a,∞) for some a > 0.

If J is weakly sequentially continuous, then {xn} converges weakly to z ∈ F, where z =
limn→∞ΠFxn.

Remark 3.5. Our results improve Theorem 4.1. of Takahashi and Zembayashi [12] and
Theorem 3.5. of Qin et al. [11] in the following senses:

(1) from single-valued mappings to multivalued ones;

(2) from relatively nonexpansive single-valued mappings (the definition can be found
in [1, 11, 12]) to weak relatively uniformly nonexpansive multivalued ones.
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