
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 236484, 19 pages
doi:10.1155/2012/236484

Research Article
Stability and Hopf Bifurcation in
a Modified Holling-Tanner Predator-Prey System
with Multiple Delays

Zizhen Zhang,1, 2 Huizhong Yang,1 and Juan Liu3

1 Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education,
Jiangnan University, Wuxi 214122, China

2 School of Management Science and Engineering, Anhui University of Finance and Economics,
Bengbu 233030, China

3 Department of Science, Bengbu College, Bengbu 233030, China

Correspondence should be addressed to Huizhong Yang, yanghzjiangnan@163.com

Received 9 August 2012; Revised 17 September 2012; Accepted 4 October 2012

Academic Editor: Kunquan Lan

Copyright q 2012 Zizhen Zhang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A modified Holling-Tanner predator-prey system with multiple delays is investigated. By
analyzing the associated characteristic equation, the local stability and the existence of periodic
solutions via Hopf bifurcation with respect to both delays are established. Direction and stability
of the periodic solutions are obtained by using normal form and center manifold theory. Finally,
numerical simulations are carried out to substantiate the analytical results.

1. Introduction

Predator-prey dynamics has long been and will continue to be of interest to both applied
mathematicians and ecologists due to its universal existence and importance [1, 2]. Many
population models investigating the dynamic relationship between predators and their
preys have been proposed and studied. For example, Lotka-Volterra model [3–5], Leslie-
Gower model [6–10], and Holling-Tanner model [11–16]. Among these widely used models,
Holling-Tanner model plays a special role in view of the interesting dynamics it possesses.
Holling-Tanner model for predator-prey interaction is governed by the following nonlinear
coupled ordinary differential equations:

dX

dT
= rX

(
1 − X

K

)
− mXY

a +X
,

dY

dT
= Y

[
s

(
1 − h

Y

X

)]
,

(1.1)
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where X and Y denote the population densities of prey species and predator species at time
T , respectively. The first equation in system (1.1) shows that the prey grows logistically with
the carrying capacity K and the intrinsic growth rate r in the absence of the predator. And
the growth of the prey is hampered by the predator at a rate proportional to the functional
response mX/(a + X) in the presence of the predator. The second equation shows that the
predator consumes the prey according to the functional response mX/(a + X) and grows
logistically with the intrinsic growth rate s and carrying capacity X/h proportional to the
number of the prey. The parameter m denotes the maximal predator per capita consumption
rate. a is a saturation value; it corresponds to the number of prey necessary to achieve one
half the maximum rate m. The parameter h denotes the number of prey required to support
one predator at equilibrium when y equals X/h.

Recently, there has been considerable interest in predator-prey systems with the
Beddington-DeAngelis functional response. And it has been shown that the predator-prey
systems with the Beddington-DeAngelis functional response have rich but biologically
reasonable dynamics. For more details about this functional response one can refer to [17–
21]. Zhang [16], Lu and Liu [22] considered the following modified Holling-Tanner delayed
predator-prey system:

dX

dT
= rX

(
1 − X

K

)
− αXY

a + bX + cY
,

dY

dT
= Y

[
s

(
1 − h

Y (t − τ)
X(t − τ)

)]
,

(1.2)

where τ is incorporated in the negative feedback of the predator density. αXY/(a+bX+cY ) is
the Beddington-DeAngelis functional response. The parameters α, a, b, and c are assumed to
be positive. α is the maximum value at which per capita reduction rate of the prey can attain.
a measures the extent to which environment provides protection to the prey. b describes
the effect of handling time on the feeding rate. c describes the magnitude of interference
among predators. Zhang [16] investigated the local Hopf bifurcation of system (1.2). Lu and
Liu [22] proved that system (1.2) is permanent under some conditions and obtained the
sufficient conditions of local and global stability of system (1.2). Since both the species are
growing logistically, it is reasonable to assume delay in prey species as well. Based on this
consideration, we incorporate the negative feedback of the prey density into system (1.2) and
obtain the following system:

dX

dT
= rX

(
1 − X(T − T1)

K

)
− αXY

a + bX + cY
,

dY

dT
= Y

[
s

(
1 − h

Y (T − T2)
X(T − T2)

)]
,

(1.3)

where T1 and T2 are the feedback time delays of the prey density and the predator density
respectively. Let X = Kx, Y = (rK/α)y, t = rT , τ1 = rT1, τ2 = rT2, system (1.3) can be
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transformed into the following nondimensional form:

dx

dt
= x(1 − x(t − τ1)) −

xy

a1 + bx + c1y
,

dy

dt
= y

[
δ − β

y(t − τ2)
x(t − τ2)

]
,

(1.4)

where a1 = a/K, c1 = cr/α, δ = s/r, β = sh/α are the non-dimensional parameters and they
are positive.

The main purpose of this paper is to consider the effect of multiple delays on system
(1.4). The local stability of the positive equilibrium and the existence of Hopf bifurcation are
investigated. By employing normal form and center manifold theory, the direction of Hopf
bifurcation and the stability of the bifurcating periodic solutions are determined. Finally,
some numerical simulations are also included to illustrate the theoretical analysis.

2. Local Stability and the Existence of Hopf Bifurcation

In this section, we study the local stability of each of feasible equilibria and the existence of
Hopf bifurcation at the positive equilibrium. Obviously, system (1.4) has a unique boundary
equilibrium E1(1, 0) and a unique positive equilibrium E∗(x∗, y∗), where

x∗ =
−[(a1 − b)β + (1 − c1)δ

]
+
√[

(a1 − b)β + (1 − c1)δ
]2 + 4a1β

(
bβ + c1δ

)
2
(
bβ + c1δ

) , y∗ =
δ

β
x∗.

(2.1)

The Jacobian matrix of system (1.4) at E1 takes the form

J(E1) =

⎛
⎜⎝−e−λτ1 − 1

a1 + b

0 δ

⎞
⎟⎠. (2.2)

The characteristic equation of system (1.4) at E1 is of the form

(λ − δ)
(
λ + e−λτ1

)
= 0. (2.3)

Clearly, the boundary equilibrium E1(1, 0) is unable.
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Next, we discuss the existence of Hopf bifurcation at the positive equilibrium E(x∗, y∗).
Let x(t) = z1(t) + x∗, y(t) = z2(t) + y∗, and still denote z1(t) and z2(t) by x(t) and y(t),
respectively, then system (1.4) becomes

dx

dt
= a11x(t) + a12y(t) + b11x(t − τ1) +

∑
i+j+k≥2

f
ijk

1 xiyjxk(t − τ1),

dy

dt
= c21x(t − τ2) + c22y(t − τ2) +

∑
i+j+k≥2

f
ijk

2 yixj(t − τ2)yk(t − τ2),

(2.4)

where

a11 =
bx∗y∗(

a1 + bx∗ + c1y∗
)2 , a12 = − (a1 + bx∗)x∗(

a1 + bx∗ + c1y∗
)2 ,

b11 = −x∗, c21 =
δ2

β
, c22 = −δ,

f1 = x(1 − x(t − τ1)) −
xy

a1 + bx + c1y
, f2 = y

(
δ − β

y(t − τ2)
x(t − τ2)

)
,

f
ijk

1 xiyjxk(t − τ1) =
1

i!j!k!
∂i+j+kf1

∂xi∂yj∂xk(t − τ1)
|(x∗,y∗),

f
ijk

2 yixj(t − τ2)yk(t − τ2) =
1

i!j!k!
∂i+j+kf2

∂yi∂xj(t − τ2)∂yk(t − τ2)
|(x∗,y∗).

(2.5)

Then we can obtain the linearized system of system (1.4)

dx

dt
= a11x(t) + a12y(t) + b11x(t − τ1),

dy

dt
= c21x(t − τ2) + c22y(t − τ2).

(2.6)

The characteristic equation of system (2.6) is

λ2 − a11λ − b11λe
−λτ1 + (a11c22 − a12c21 − c22λ)e−λτ2 + b11c22e

−λ(τ1+τ2) = 0. (2.7)

Case 1. τ1 = τ2 = τ = 0.
The characteristic equation of system (1.4) becomes

λ2 + (A + B +D)λ + C + E = 0, (2.8)

where

A = −a11, B = −b11, C = a11c22 − a12c21, D = −c22, E = b11c22. (2.9)
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It is easy to verify that

C + E = δx∗ +
a1δ

2x∗

β
(
a1 + bx∗ + c1y∗

)2 > 0. (2.10)

Therefore, if (H1) : A + B +D > 0, the roots of (2.8) must have negative real parts. Then, we
know that the positive equilibrium E∗(x∗, y∗) of system (1.4) is locally stable in the absence
of delay, if (H1) holds.

Case 2. τ1 = τ2 = τ > 0.
The associated characteristic equation of the system is

λ2 +A1λ + (B1 + C1λ)e−λτ +D1e
−2λτ = 0, (2.11)

where

A1 = −a11, B1 = a11c22 − a12c21, C1 = −(b11 + c22), D1 = b11c22. (2.12)

Multiplying eλτ on both sides of (2.11), we can obtain

(
λ2 +A1λ

)
eλτ + (B1 + C1λ) +D1e

−λτ = 0. (2.13)

Now, for τ > 0, if λ = iω(ω > 0) be a root of (2.13). Then, we have

(
D1 −ω2

)
cos τω −A1ω sin τω = −B1,(

D1 +ω2
)
sin τω −A1ω cos τω = C1ω.

(2.14)

It follows from (2.14) that

sin τω =
C1ω

2 + (A1B1 − C1D1)ω
ω4 +A2

1ω
2 −D2

1

, cos τω =
(B1 −A1C1)ω2 + B1D1

ω4 +A2
1ω

2 −D2
1

. (2.15)

Then we have

ω8 + e3ω
6 + e2ω

4 + e1ω
2 + e0 = 0, (2.16)

where

e3 = 2A2
1 − C2

1, e2 = A4
1 + 2C2

1D1 −A2
1C

2
1 − B2

1 − 2D2
1 ,

e1 = 4A1B1C1D1 −A2
1B

2
1 − C2

1D
2
1 − 2A2

1D
2
1 − 2B2

1D1, e0 = D4
1 − B2

1D
2
1 .

(2.17)
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Let v = ω2, then (2.16) becomes

v4 + e3v
3 + e2v

2 + e1v + e0 = 0. (2.18)

Next, we give the following assumption. (H2): (2.18) has at least one positive real root.

Suppose that (H2) holds. Without loss of generality, we assume that (2.18) has four
real positive roots, which are defined by v1, v2, v3, and v4, respectively. Then (2.16) has four
positive roots ωk =

√
vk, k = 1, 2, 3, 4. Therefore,

τ
(j)
k

=
1
ωk

arccos

(
(B1 −A1C1)ω2

k
+ B1D1

ω4
k
+A2

1ω
2
k
−D2

1

+ 2jπ

)
, k = 1, 2, 3, 4; j = 0, 1, 2 . . . (2.19)

Then we can know that ±iωk are a pair of purely imaginary roots of (2.11) with τ = τ
(j)
k
.

Define

τ0 = τ
(0)
k

= min
{
τ
(0)
k

}
, ω0 = ωk0 , k = 1, 2, 3, 4. (2.20)

Let λ(τ) = α(τ) + iω(τ) be the root of (2.11) near τ = τ0 which satisfies α(τ0) = 0, ω(τ0) = ω0.
Taking the derivative of λ with respect to τ in (2.13), we obtain

C1
dλ

dτ
+ (2λ +A1)eλτ

dλ

dτ
+
(
λ2 +A1λ

)
eλτ
(
λ + τ

dλ

dτ

)
−D1e

−λτ
(
λ + τ

dλ

dτ

)
= 0. (2.21)

it follows that

dλ

dτ
=

λ
(
D1e

−λτ − (λ2 +A1λ
)
eλτ
)

(2λ +A1)eλτ + C1 − τ
(
D1e−λτ − (λ2 +A1λ)eλτ

) . (2.22)

Thus

[
dλ

dτ

]−1
=

(2λ +A1)eλτ + C1

D1λe−λτ − (λ3 +A1λ2)eλτ
− τ

λ
. (2.23)

Let

Λ1 =
(
D1ω0 −ω3

0

)
sin τ0ω0 +A1ω

2
0 cos τ0ω0, Λ2 =

(
D1ω0 +ω3

0

)
cos τ0ω0 +A1ω

2
0 sin τ0ω0,

Λ3 = A1 cos τ0ω0 − 2ω0 sin τ0ω0 + C1, Λ4 = A1 sin τ0ω0 − 2ω0 cos τ0ω0.

(2.24)

Substitute λ = iω0(ω0 > 0) into (2.23), we can get

Re
[
dλ(τ0)
dτ

]−1
= Re

[
(2λ +A1)eλτ + C1

D1λe−λτ − (λ3 +A1λ2)eλτ

]
λ=iω0

=
Λ1 ×Λ3 + Λ2 ×Λ4

Λ2
1 + Λ2

2

. (2.25)
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Noting that

signRe
[
dλ(τ0)
dτ

]
= sign

[
dReλ(τ0)

dτ

]−1
. (2.26)

Therefore, we make the following assumption in order to give the main results: (H3) : Λ1 ×
Λ3 + Λ2 ×Λ4 /= 0. Then, by Corollary 2.4 in [23, 24], we have the following theorem.

Theorem 2.1. For system (1.4), if the conditions (H1)–(H3) hold, then the equilibrium E∗(x∗, y∗) of
system (1.4) is asymptotically stable for τ ∈ [0, τ0) and unstable when τ > τ0. And system (1.4) has
a branch of periodic solution bifurcation from the zero solution near τ = τ0.

Case 3. τ1 /= τ2, τ1 > 0 and τ2 > 0.
The associated characteristic equation of the system is

λ2 +A2λ + B2λe
−λτ1 + (C2 +D2λ)e−λτ2 + E2e

−λ(τ1+τ2), (2.27)

where

A2 = −a11, B2 = −b11, C2 = a11c22 − a12c21, D2 = −c22, E2 = b11c22. (2.28)

We consider (2.27) with τ2 in its stable interval, regarding τ1 as a parameter. Without loss of
generality, we consider system (1.4) under the case considered in [16], and τ2 ∈ [0, τ20). τ20 is
defined as in [16] and can be obtained by

τ20 =
1
ω+

arccos

[
(a11c22 + b11c22 − a12c21)ω2

+ − (a11 + b11)c22ω2
+

(a11c22 + b11c22 − a12c21)
2 + (c22ω+)2

]
, (2.29)

with

ω+ =

√√√√√−
(
(a11 + b11)

2 − c222

)
+
√(

(a11 + b11)
2 − c222

)2
+ 4(a11c22 + b11c22 − a12c21)

2

2
.

(2.30)

Let λ = iω(ω > 0) be a root of (2.27). Then we obtain

(B2ω − E2 sin τ2ω) sin τ1ω + E2 cos τ2ω cos τ1ω = ω2 − C2 cos τ2ω −D2ω sin τ2ω,

(B2ω − E2 sin τ2ω) cos τ1ω − E2 cos τ2ω sin τ1ω = C2 sin τ2ω −D2ω cos τ2ω −A2ω.
(2.31)

It follows from (2.31) that

sin τ1ω =
M1N1 −M2N2

M2
1 +M2

2

, cos τ1ω =
M1N2 +M2N1

M2
1 +M2

2

, (2.32)
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With

M1 = B2ω − E2 sin τ2ω, M2 = E2 cos τ2ω,

N1 = ω2 − C2 cos τ2ω −D2ω sin τ2ω, N2 = −A2ω + C2 sin τ2ω −D2ω cos τ2ω.
(2.33)

Then we have

P1(ω) + P2(ω) sin τ2ω + P3(ω) cos τ2ω = 0, (2.34)

where

P1(ω) = ω4 +
(
A2

2 +D2
2 − B2

2

)
ω2 + C2

2 − E2
2,

P2(ω) = −2D2ω
3 − 2A2C2ω + 2B2E2ω, P3(ω) = 2(A2D2 − C2)ω2.

(2.35)

Suppose that (H4): (2.34) has at least finite positive roots. If (H4) holds, we define the roots
of (2.34) as ω1, ω2, . . . , ωk. Then, for every fixed ωi(i = 1, 2, . . . , k), there exists a sequence
{τ (j)1i

| j = 1, 2, . . .} which satisfies (2.34). Let

τ1∗ = min
{
τ
(j)
1i

| i = 1, 2, . . . , k, j = 0, 1, . . .
}
. (2.36)

When τ1 = τ1∗, (2.27) has a pair of purely imaginary roots ±iω∗ for τ2 ∈ [0, τ20).

To verify the transversality condition of Hopf bifurcation, we take the derivative of λ
with respect to τ1 in (2.27), we can obtain

dλ

dτ1
=

λe−λτ1
(
B2λ + E2e

−λτ2)(
2λ +A2 + B2e−λτ1 +D2e−λτ2

) − τ1e−λτ1
(
B2λ + E2e−λτ2

) − τ2e−λτ2
(
C2 +D2λ + E2e−λτ1

) .
(2.37)

Thus

[
dλ

dτ1

]−1
=

2λ +A2 + B2e
−λτ1 +D2e

−λτ2 − τ2e
−λτ2(C2 +D2λ + E2e

−λτ1)
λe−λτ1

(
B2λ + E2e−λτ2

) − τ1
λ
. (2.38)

Substitute λ = iω∗(ω∗ > 0) into (2.38), we can get

Re
[
dλ(τ1∗)
dτ1

]−1
=

Δ1 ×Δ3 + Δ2 ×Δ4

Δ2
1 + Δ2

2

, (2.39)
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where

Δ1 = E2ω∗ cos τ2ω∗ sin τ1∗ω∗ −ω∗ cos τ1∗ω∗(B2ω∗ − E2ω∗ sin τ2ω∗),

Δ2 = E2ω∗ cos τ2ω∗ cos τ1∗ω∗ +ω∗ sin τ1∗ω∗(B2ω∗ − E2ω∗ sin τ2ω∗),

Δ3 = A2 + (D2 − τ2C2) cos τ2ω∗ − τ2D2ω∗ sin τ2ω∗

+ τ2E2 sin τ2ω∗ sin τ1∗ω∗ + (B2 − τ2E2 cos τ2ω∗) cos τ1∗ω∗,

Δ4 = 2ω∗ + (τ2C2 + τ2D2ω∗ −D2) sin τ2ω∗

+ τ2E2 sin τ2ω∗ cos τ1∗ω∗ − (B2 − τ2E2 cos τ2ω∗) sin τ1∗ω∗.

(2.40)

Next, we make the following assumption: (H5): Δ1 ×Δ3 + Δ2 ×Δ4 /= 0.
Thus, by the discussion above and by the general Hopf bifurcation theorem for FDEs

in Hale [25], we have the following results.

Theorem 2.2. For τ2 ∈ (0, τ20), τ20 is defined by (2.29). If the conditions (H4)-(H5) hold, then the
equilibrium E∗(x∗, y∗) of system (1.4) is asymptotically stable for τ1 ∈ [0, τ1∗) and unstable when
τ > τ1∗. System (1.4) has a branch of periodic solution bifurcation from the zero solution near τ = τ1∗.

3. Direction and Stability of Bifurcated Periodic Solutions

In this section, we shall investigate the direction of the Hopf bifurcation and the stability of
bifurcating periodic solution of system (1.4) w.r. to τ1 for τ2 ∈ (0, τ20), and τ20 is defined by
(2.29). The idea employed here is the normal form and center manifold theory described in
Hassard et al. [26]. Throughout this section, it is considered that system (1.4) undergoes the
Hopf bifurcation at τ1 = τ1∗, τ2 ∈ (0, τ20) at E∗(x∗, y∗). Let τ1 = τ1∗ + μ, μ ∈ R so that the
Hopf bifurcation occurs at μ = 0. Without loss of generality, we assume that τ2∗ < τ1∗, where
τ2∗ ∈ (0, τ20).

Let u1(t) = x(t) − x∗, u2(t) = y(t) − y∗, and rescaling the time delay t → (t/τ1), Then
system (1.4) can be transformed into an FDE in C = C([−1, 0], R2) as:

u̇(t) = Lμut + F
(
μ, ut

)
, (3.1)

where u(t) = (u1(t), u2(t))
T ∈ R2 and Lμ : C → R2, F : R ×C → R2 are given, respectively, by

Lμφ =
(
τ1∗ + μ

)(
A′φ(0) + C′φ

(
−τ2∗
τ1∗

)
+ B′φ(−1)

)
,

F
(
μ, φ
)
=
(
τ1∗ + μ

)(
f1, f2

)T
,

(3.2)
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with

A′ =
(
a11 a12

0 0

)
, B′ =

(
b11 0
0 0

)
, C′ =

(
0 0
c21 c22

)
,

f1 = g1φ
2
1(0) + g2φ1(0)φ2(0) + g3φ

2
2(0) + g4φ1(0)φ1(−1)

+ h1φ
3
1(0) + h2φ

2
1(0)φ2(0) + h3φ1(0)φ2

2(0) + h4φ
3
2(0) + · · · ,

f2 = g ′
1φ

2
1

(
−τ2∗
τ1∗

)
+ g ′

2φ1

(
−τ2∗
τ1∗

)
φ2(0) + g ′

3φ1

(
−τ2∗
τ1∗

)
φ2

(
−τ2∗
τ1∗

)
,

+ g ′
4φ2(0)φ2

(
−τ2∗
τ1∗

)
+ h′

1φ
3
1

(
−τ2∗
τ1∗

)
+ h′

2φ
2
1

(
−τ2∗
τ1∗

)
φ2(0),

+ h′
3φ

2
1

(
−τ2∗
τ1∗

)
φ2

(
−τ2∗
τ1∗

)
+ h4φ

3
2(0) + · · · ,

(3.3)

where

g1 =
by∗
(
a1 + c1y∗

)
(
a1 + bx∗ + c1y∗

)3 , g2 = −a
2
1 + a1bx∗ + a1c1y∗ + 2bc1x∗y∗(

a1 + bx∗ + c1y∗
)3 ,

g3 =
c1x∗(a1 + bx∗)(
a1 + bx∗ + c1y∗

)3 , g4 = −1,

h1 = − b2y∗
(
a1 + c1y∗

)
(
a1 + bx∗ + c1y∗

)4 , h2 =
a2
1b + a1b

2x∗ + 2b2c1x∗y∗ − bc21y
2
∗(

a1 + bx∗ + c1y∗
)4 ,

h3 =
a2
1c1 + a1c

2
1y∗ + 2bc21x∗y∗ − b2c1x

2
∗(

a1 + bx∗ + c1y∗
)4 , h4 = − c21x∗(a1 + bx∗)(

a1 + bx∗ + c1y∗
)4 ,

g ′
1 = −βy

2
∗

x3∗
, g ′

2 =
βy∗
x2∗

, g ′
3 =

βy∗
x2∗

, g ′
4 = − β

x∗
,

h′
1 =

βy2
∗

x4∗
, h′

2 = −βy∗
x3∗

, h′
3 = −βy∗

x3∗
.

(3.4)

Using Riesz representation theorem, there exists a 2 × 2 matrix function η(θ, μ), θ ∈ [−1, 0]
whose elements are of bounded variation, such that

Lμφ =
∫0

−1
dη
(
θ, μ
)
φ(θ), φ ∈ C([−1, 0], R2). (3.5)
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In fact, choosing

η
(
θ, μ
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
τ1∗+μ

)
(A′ + C′ + B′), θ = 0,(

τ1∗+μ
)
(C′ + B′), θ ∈

[
−τ2∗
τ1

, 0
)
,

(
τ1∗+μ

)
B′, θ ∈

(
−1,−τ2∗

τ1

)
,

0, θ = −1.

(3.6)

For φ ∈ C([−1, 0]), we define

A
(
μ
)
φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dφ(θ)
dθ

, −1 ≤ θ < 0,

∫0

−1
dη
(
θ, μ
)
φ(θ), θ = 0,

R
(
μ
)
φ =

{
0, −1 ≤ θ < 0,
F
(
μ, φ
)
, θ = 0.

(3.7)

Then system (3.1) can be transformed into the following operator equation

u̇(t) = A
(
μ
)
ut + R

(
μ
)
ut, (3.8)

where ut = u(t + θ) = (u1(t + θ), u2(t + θ)).
For ϕ ∈ C1([0, 1], (R2)∗), where (R2)∗ is the 2-dimensional space of row vectors, we

further define the adjoint operator A∗ of A(0):

A∗(ϕ) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−dϕ(s)

ds
, 0 < s ≤ 1,

∫0

−1
ϕ(−ξ)dη(ξ, 0), s = 0,

(3.9)

and a bilinear inner product:

〈
ϕ(s), φ(θ)

〉
= ϕT (0)φ(0) −

∫0

θ=−1

∫θ

ξ=0
ϕT (ξ − θ)dη(θ)φ(ξ)dξ, (3.10)

where η(θ) = η(θ, 0).
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Since ±iω∗τ1∗ are eigenvalues of A(0), they are also eigenvalues of A∗. Let
q(θ) = (1, q2)

Teiω∗τ1∗θ be the eigenvectors of A(0) corresponding to iω∗τ1∗ and q∗(s) =
(1/ρ)(1, q∗2)

Teiω∗τ1∗s be the eigenvectors of A∗ corresponding to −iω∗τ1∗. By a simple
computation, we can get

q2 =
iω∗ − a11 − b11e

iω∗τ1∗

a12
, q∗2 = − iω∗ + a11 + b11e

iω∗τ1∗

c21eiω∗τ2∗
,

ρ = 1 + q2q
∗
2 + b11τ1∗e−iω∗τ1∗ + c21τ2∗q

∗
2e

−iω∗τ2∗ + c22τ2∗q2q
∗
2e

−iω∗τ2∗ .

(3.11)

Then 〈q∗, q〉 = 1, 〈q∗, q〉 = 0.
In the remainder of this section, Following the algorithms given in [26] and using

similar computation process to that in [16], we can get that the coefficients which will be
used to determine the important qualities of the bifurcating periodic solutions,

g20 =
2τ1∗
ρ

{
g1 + g2q

(2)(0) + g3
(
q(2)(0)

)2
+ g4q

(1)(−1)

+ q∗2

(
g ′
1

(
q(1)
(
−τ2∗
τ1∗

))2

+ g ′
2q

(1)
(
−τ2∗
τ1∗

)
q(2)(0) + g ′

3q
(1)
(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

)

+g ′
4q

(2)(0)q(2)
(
−τ2∗
τ1∗

))}
,

g11 =
τ1∗
ρ

{
2g1 + g2

(
q(2)(0) + q(2)(0)

)
+ 2g3q(2)(0)q

(2)(0) + g4
(
q(1)(−1) + q(1)(−1)

)

+ q∗2

(
2g ′

1q
(1)
(
−τ2∗
τ1∗

)
q(1)
(
−τ2∗
τ1∗

)
+ g ′

2

(
q(1)
(
−τ2∗
τ1∗

)
q(2)(0) + q(1)

(
−τ2∗
τ1∗

)
q(2)(0)

)

+ g ′
3

(
q(1)
(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

)
+ q(1)

(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

))

+g ′
4

(
q(2)(0)q(2)

(
−τ2∗
τ1∗

)
+ q(2)(0)q(2)

(
−τ2∗
τ1∗

)))}
,

g02 =
2τ1∗
ρ

{
g1 + g2q

(2)(0) + g3
(
q(2)(0)

)2
+ g4q

(1)(−1)

+ q∗2

(
g ′
1

(
q(1)
(
−τ2∗
τ1∗

))2

+ g ′
2q

(1)
(
−τ2∗
τ1∗

)
q(2)(0) + g ′

3q
(1)
(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

)

+g ′
4q

(2)(0)q(2)
(
−τ2∗
τ1∗

))}
,
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g21 =
2τ1∗
ρ

{
g1
(
W

(1)
20 (0) + 2W (1)

11 (0)
)

+ g2

(
1
2
W

(2)
20 (0) +W

(2)
11 (0) +

1
2
W

(1)
20 (0)q

(2)(0) +W
(1)
11 (0)q

(2)(0)
)

+ g3
(
W

(2)
20 (0)q

(2)(0) + 2W (2)
11 (0)q

(2)(0)
)

+ g4

(
1
2
W

(1)
20 (−1) +W

(1)
11 (−1) +

1
2
W

(1)
20 (0)q

(1)(−1) +W
(1)
11 (0)q

(1)(−1)
)
+ 3h1

+ h2

(
2q(2)(0) + q(2)(0)

)
+ h3

(
2q(2)(0)q(2)(0) +

(
q(2)(0)

)2)
+ 3h4

(
q(2)(0)

)2
q(2)(0)

+ q∗2

(
g ′
1

(
W

(1)
20

(
−τ2∗
τ1∗

)
q(1)
(
−τ2∗
τ1∗

)
+ 2W (1)

11

(
−τ2∗
τ1∗

)
q(1)
(
−τ2∗
τ1∗

))

+ g ′
2

(
1
2
W

(1)
20

(
−τ2∗
τ1∗

)
q(2)(0) +W

(1)
11

(
−τ2∗
τ1∗

)
q(2)(0) +

1
2
W

(2)
20 (0)q

(1)
(
−τ2∗
τ1∗

)

+W (2)
11 (0)q

(1)
(
−τ2∗
τ1∗

))

+ g ′
3

(
1
2
W

(1)
20

(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

)
+W

(1)
11

(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

)

+
1
2
W

(2)
20

(
−τ2∗
τ1∗

)
q(1)
(
−τ2∗
τ1∗

))

+ g ′
4

(
1
2
W

(2)
20 (0)q

(2)
(
−τ2∗
τ1∗

)
+W

(2)
11 (0)q

(2)
(
−τ2∗
τ1∗

)
+
1
2
W

(2)
20

(
−τ2∗
τ1∗

)
q(2)(0)

+W (2)
11

(
−τ2∗
τ1∗

)
q(2)(0)

)

+ 3h′
1

(
q(1)
(
−τ2∗
τ1∗

))2

q(1)
(
−τ2∗
τ1∗

)

+ h′
2

((
q(1)
(
−τ2∗
τ1∗

))2

q(2)(0) + 2q(1)
(
−τ2∗
τ1∗

)
q(1)
(
−τ2∗
τ1∗

)
q(2)(0)

)

+h′
3

((
q(1)
(
−τ2∗
τ1∗

))2

q(2)
(
−τ2∗
τ1∗

)
+ 2q(1)

(
−τ2∗
τ1∗

)
q(1)
(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

)))}
,

(3.12)

with

W20(θ) =
ig20q(0)
τ1∗ω∗

eiτ1∗ω∗θ +
ig02q(0)
3τ1∗ω∗

e−iτ1∗ω∗θ + E20e
2iτ1∗ω∗θ,

W11(θ) = − ig11q(0)
τ1∗ω∗

eiτ1∗ω∗θ +
ig11q(0)
τ1∗ω∗

e−iτ1∗ω∗θ + E11,

(3.13)
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where E20 and E11 can be computed as the following equations, respectively,

E20 = 2

⎛
⎜⎝E

(1)
20

E
(2)
20

⎞
⎟⎠ ×

(
2iω∗ − a11 − b11e

−2iτ1∗ω∗ −a12

−c21e−2iτ2∗ω∗ 2iω∗ − c22e
−2iτ2∗ω∗

)−1
,

E11 = −

⎛
⎜⎝E

(1)
11

E
(2)
11

⎞
⎟⎠ ×

(
a11 + b11 a12

c21 c22

)−1
,

(3.14)

with

E
(1)
20 = g1 + g2q

(2)(0) + g3
(
q(2)(0)

)2
+ g4q

(1)(−1),

E
(2)
20 = g ′

1

(
q(1)
(
−τ2∗
τ1∗

))2

+ g ′
2q

(1)
(
−τ2∗
τ1∗

)
q(2)(0)

+ g ′
3q

(1)
(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

)
+ g ′

4q
(2)(0)q(2)

(
−τ2∗
τ1∗

)
,

E
(1)
11 = 2g1 + g2

(
q(2)(0) + q(2)(0)

)
+ 2g3q(2)(0)q

(2)(0) + g4
(
q(1)(−1) + q(1)(−1)

)
,

E
(2)
11 = 2g ′

1q
(1)
(
−τ2∗
τ1∗

)
q(1)
(
−τ2∗
τ1∗

)
+ g ′

2

(
q(1)
(
−τ2∗
τ1∗

)
q(2)(0) + q(1)

(
−τ2∗
τ1∗

)
q(2)(0)

)

+ g ′
3

(
q(1)
(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

)
+ q(1)

(
−τ2∗
τ1∗

)
q(2)
(
−τ2∗
τ1∗

))

+ g ′
4

(
q(2)(0)q(2)

(
−τ2∗
τ1∗

)
+ q−(2)(0)q(2)

(
−τ2∗
τ1∗

))
.

(3.15)

Therefore, we can calculate the following values:

C1(0) =
i

2τ1∗ω∗

(
g11g20 − 2

∣∣g11∣∣2 −
∣∣g02∣∣2
3

)
+
g21
2

,

μ2 = − Re{C1(0)}
Re{λ′(τ1∗)} ,

β2 = 2Re{C1(0)},

T2 = − Im{C1(0)} + μ2 Im{λ′(τ1∗)}
τ1∗ω∗

.

(3.16)

Based on the discussion above, we can obtain the following results.

Theorem 3.1. The direction of the Hopf bifurcation is determined by the sign of μ2: if μ2 > 0 (μ2 <
0), the Hopf bifurcation is supercritical (subcritical). The stability of bifurcating periodic solutions is
determined by the sign of β2: if β2 < 0 (β2 > 0), the bifurcating periodic solutions are stable (unstable).
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The period of the bifurcating periodic solutions is determined by the sign of T2: if T2 > 0 (T2 < 0), the
period of the bifurcating periodic solutions increases (decreases).

4. Numerical Example

In order to support the analytic results obtained above, we give some numerical simulations
in this section. We only study the most important steady state, namely, the positive steady
state. We consider the following system by taking the same coefficients as in [16]:

dx

dt
= x(1 − x(t − τ1)) −

xy

0.01 + 3x + y
,

dy

dt
= y

[
3.5 − 2

y(t − τ2)
x(t − τ2)

]
,

(4.1)

where we get the positive equilibrium E∗(0.6328, 1.1074). For system (4.1), we can get that
A + B +D = 3.9017 > 0, namely, the condition (H1) holds.

For τ1 = τ2 = τ /= 0. By a simple computation, we obtain that (2.18) has two positive
roots: v1 = 12.0256, v2 = 0.3915. Thus, we know that the condition (H2) holds. Further, we
get ω0 = 3.4678, τ0 = 0.4292. In addition, we have Λ1 ×Λ3 + Λ2 ×Λ4 = 94.4826 > 0. Therefore,
the condition (H3) is satisfied. Hence, from Theorem 2.1, we conclude that the positive
equilibrium E∗(0.6328, 1.1074) is asymptotically stable when τ ∈ [0, τ0). The corresponding
waveform and the phase plot are illustrated by Figure 1. When the delay τ passes through the
critical value τ0 the positive equilibrium E∗(0.6328, 1.1074) will lose its stability and a Hopf
bifurcation occurs, and a family of periodic solution bifurcates from the positive equilibrium
E∗(0.6328, 1.1074). This property is illustrated by the numerical simulation in Figure 2.

For τ1 /= τ2, τ1 > 0 and τ2 > 0. Regard τ1 as a parameter and let τ2 = 0.36 ∈ [0, τ20),
and from (2.29) we can obtian τ20 = 0.4037. Then by a simple computation, we can obtain
(2.34) has a positive root ω∗ = 0.6792. Thus, the condition (H4) holds. Further, we we can
get τ1∗ = 2.3211 and Δ1 × Δ3 + Δ2 × Δ4 = 3.7131 > 0. Namely, the condition (H5) holds.
Thus, by Theorem 2.2, the positive equilibrium E∗(0.6328, 1.1074) is asymptotically stable
when τ1 ∈ [0, τ1∗) and unstable when τ1 > τ1∗, and a family of periodic solution bifurcates
from the positive equilibrium E∗(0.6328, 1.1074). The corresponding waveform and the phase
plot are illustrated by Figures 3 and 4, respectively. In addition, from (3.16), we can get
C1(0) = −26.2632 − 7.5707i, then μ2 = 12.1471, β2 = −52.5264, T2 = 5.8586. From Theorem 3.1,
we know that the Hopf bifurcation is supercritical and the bifurcating periodic solutions are
stable.

5. Conclusion

In this paper, a delayed predator-prey system with Beddington-DeAngelis functional
response has been investigated. The bifurcation of a predator-prey system with single delay
has been studied bymany researchers [16, 27–30]. However, there are few papers considering
the bifurcation of a predator-prey system with multiple delays (see [31–33]). Compared
with the system considered in [16], the system in this paper accounts for not only the
feedback delay of the prey density but also the feedback delay of the predator. The sufficient
conditions for the stability of the positive equilibrium and the existence of periodic solutions
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Figure 1: E∗ is stable for τ1 = τ2 = τ = 0.4 < τ0 = 0.4292 with initial value 0.62,2.35.
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Figure 2: E∗ is unstable for τ1 = τ2 = τ = 0.44 > τ0 = 0.4292 with initial value 0.62,2.35.

via Hopf bifurcation at the positive equilibrium are obtained when τ1 = τ2 and τ1 /= τ2 with
τ2 ∈ [0, τ20). Special attention is paid to the direction of the Hopf bifurcation and the stability
of the bifurcating periodic solutions. By computation, we find that the feedback delay of the
predator is marked because the critical value of τ2 is much smaller when we only consider it.
The feedback delay of the prey is unremarkable because the critical value of τ1 is much bigger
when we consider it with τ2 in its stable interval. Furthermore, Zhang [16] has obtained that
the two species in system (1.4) with only the feedback delay of the predator could coexist.
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Figure 3: E∗ is stable for τ1 = 0.8 < τ1∗ = 2.3211, τ2 = 0.36 with initial value 0.62,2.35.
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Figure 4: E∗ is unstable for τ1 = 2.4 > τ1∗ = 2.3211, τ2 = 0.36 with initial value 0.62,2.35.

However, we get that the two species could also coexist with some available feedback delays
of the prey and the predator. This is valuable from the view of ecology.

Unfortunately, the existence of the periodic solutions remain valid only in a small
neighborhood of the critical value. It is definitely an interesting work to investigate whether
these nonconstant periodic solutions which are obtained through local Hopf bifurcation can
still exist for large values of the corresponding parameter time delay. The global continuation
of the local Hopf bifurcation is left as the future work.
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