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Optimization problems defined by (objective) functions for which derivatives are unavailable or
available at an expensive cost are emerging in computational science. Due to this, the main aim
of this paper is to attain as high as possible of local convergence order by using fixed number of
(functional) evaluations to find efficient solvers for one-variable nonlinear equations, while the
procedure to achieve this goal is totally free from derivative. To this end, we consider the fourth-
order uniparametric family of Kung and Traub to suggest and demonstrate two classes of three-
step derivative-free methods using only four pieces of information per full iteration to reach the
optimal order eight and the optimal efficiency index 1.682. Moreover, a large number of numerical
tests are considered to confirm the applicability and efficiency of the produced methods from the
new classes.

1. Introduction

This paper focuses on finding approximate solutions to nonlinear scalar and sufficiently
smooth equations by derivative-free methods. Techniques such as the false position method
in the root-finding of a nonlinear equation f(x) = 0, requires bracketing of the zero by two
guesses. Such schemes are called bracketing methods. These methods are almost always
convergent since they are based on reducing the interval between the two guesses so as to
zero in on the root of the equation. In the Newton method, the zero is not bracketed. In fact,
only one initial guess of the solution is needed to get the iterative process started in order to
find the zero. The method hence falls in the category of open methods.

Convergence in open methods is not guaranteed but if the method does converge,
it does so much faster than the bracketing methods [1]. Although Newton’s iteration has
widely been discussed and improved in the literature, see for example, [2, 3], one of the
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main drawback, which is the matter of first derivative evaluation, occasionally restricts the
application of this method or its variants. On the other hand, when we discuss improving
the iterative without memory methods for solving one variable nonlinear equations, the
conjecture of Kung and Traub [4] is taken automatically into consideration. It should be
remarked that according to the unproved conjecture of Kung and Traub [4], the index
of efficiency will not pass the maximum level 2(n−1)/n, wherein n is the total number of
(functional) evaluations.

Apart from being involved in the first derivative, Newton’s iteration will use the
second derivative of the function, when it is applied in optimization problems to final the
local minima. Therefore, its use will be limited especially when the cost of first and second
derivatives of the functions is expensive. And subsequently, derivative-free algorithms come
to attention.

For the first time, Steffensen in [5] gave the following derivative-free form of Newton’s
iteration

xn+1 = xn −
f(xn)

f[xn,wn]
, wn = xn + f(xn), n = 0, 1, 2, . . . (1.1)

which possesses the same rate of convergence and efficiency index as Newton’s.
In this work, we suggest novel classes of three-step four-point iterative methods,

which are without memory, derivative-free, optimal, and therefore consistent with hard
problems. For this reason, the contents of the paper unfold as comes next. Section 2 reveals
our main contribution as some generalizations to the fourth-order uniparametric family of
Kung and Traub [4]. Subsequently, Section 3 gives a very short discussion on the available
derivative-free methods in the literature. Section 4 discusses the implementation of the new
produced methods from our classes on large number of numerical examples. And finally, a
short conclusion will be given in Section 5.

2. Main Outcome

In order to contribute and provide a class of methods, which are derivative-free with high
efficiency index, we take into consideration the optimal two-step fourth-order uniparametric
family of Kung and Traub [4] in the first two steps of a three-step cycle in which the Newton’s
iteration has been performed in the last step as comes next

yn = xn −
f(xn)

f[xn,wn]
, wn = xn + βf(xn), β ∈ R \ {0},

zn = yn −
f
(
yn

)
f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

] ,

xn+1 = zn −
f(zn)
f ′(zn)

.

(2.1)

This scheme includes four evaluations of the function and one of its first-order
derivative to reach the order eight and 1.516 as its efficiency index. To improve the efficiency
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index, we first consider the same approximation as used in the second step of (2.1) to
annihilate f ′(zn) and then take advantage of weight function approach as follows:

yn = xn −
f(xn)

f[xn,wn]
, wn = xn + βf(xn),

zn = yn −
f
(
yn

)
f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

] ,

xn+1 = zn −
f(zn)f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

]
{
G
(
ϕ
) ×H(τ) ×Q(σ) × L

(
ρ
)}

,

(2.2)

where β ∈ R\{0}, ϕ = f(z)/f(y), τ = f(z)/f(w), σ = f(z)/f(x), ρ = f(y)/f(w), without the
index n, and G(ϕ), H(τ), Q(σ), L(ρ) are four real-valued weight functions, which force the
order to arrive at themaximum level eight by using the fixed number of evaluations per cycle.
Theorem 2.1 shows that (2.2)will arrive at local eighth-order convergence by using only four
function evaluations per full cycle. This reveals that any method from our proposed class
possesses 1.682 as the efficiency index, which is optimal according to the Kung and Traub
conjecture, while it is fully free from derivative evaluations.

Theorem 2.1. Let α ∈ D be a simple zero of a sufficiently differentiable function f : D ⊆ R → R and
let that cj = f (j)(α)/j!, j ≥ 1. If x0 is sufficiently close to α, then, (i) the local order of convergence of
the solution by the class of methods without memory defined in (2.2) is eight, when

G(0) = G′(0) = 1,
∣∣G′′(0)

∣∣ < ∞,

H(0) = H ′(0) = 1,

Q(0) = 1, Q′(0) = 1,

L(0) = 1, L′(0) = L′′′(0) = 0, L′′(0) = 2 + 2βf[xn,wn],
∣∣∣L(4)(0)

∣∣∣ < ∞,

(2.3)

and (ii) this solution reads the error equation

en+1 = xn+1 − α

= − 1
24c71

(
c2
(
2c22 − c1c3

)(
1 + c1β

)2

×
(
12
(
1 + c1β

)2 ×
(
−2
(
7c42 − 8c1c22c3 + c21c

2
3 + c21c2c4

)

+
(
−2c22 + c1c3

)2
G′′(0)

)
+ c42L

(4)(0)
))

e8n +O
(
e9n

)
.

(2.4)



4 Abstract and Applied Analysis

Proof. We expand any terms of (2.2) around the simple root α in the nth iterate by taking into
account en = xn −α and f(α) = 0. Thus, we write f(xn) = c1en + c2e

2
n + c3e

3
n + c4e

4
n + · · ·+O(e9n).

Accordingly, we attain

yn − α = c2

(
1
c1

+ β

)
e2n + · · · +O

(
e9n

)
. (2.5)

In the same vein, we obtain

zn − α =

(
2c32 − c1c2c3

)(
1 + c1β

)2

c31
e4n −

1
c41

(
1 + c1β

)

×
(
c21c

2
3
(
1 + c1β

)(
2 + c1β

)
+ c21c2c4

(
1 + c1β

)(
2 + c1β

)
+ c42
(
10 + c1β

(
11 + 5c1β

))

−c1c22c3
(
14 + c1β

(
19 + 7c1β

)))
e5n + · · · +O

(
e9n

)
.

(2.6)

We also have f(zn) = (1/c21)(2c
3
2 − c1c2c3)(1 + c1β)

2e4n + · · · + O(e9n). Now using symbolic
computation in the last step of (2.2), we attain

zn −
f(zn)f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

] − α =

(
6c52 − 5c1c32c3 + c21c2c

2
3

)(
1 + c1β

)3

c51
e6n + · · · +O

(
e9n

)
.

(2.7)

Furthermore, by considering (2.7) and the real-valued weight functions as in (2.3), we
will obtain the error equation (2.4). This shows that the proposed class of derivative-free
methods (2.2)-(2.3) reaches the optimal eighth-order convergence by using only four function
evaluations per full iteration. This ends the proof.

Now, any optimal three-step four-point derivative-free without memory method can
be produced by using (2.2)-(2.3). As an instance, we can have (β = 0.01)

yn = xn −
f(xn)

f[xn,wn]
, wn = xn + 0.01f(xn),

zn = yn −
f
(
yn

)
f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

] ,
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xn+1 = zn −
f(zn)f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

]

×
⎧
⎨

⎩

(

1 +
f(zn)
f
(
yn

)

)(
1 +

f(zn)
f(wn)

)(
1 +

f(zn)
f(xn)

)

×
⎛

⎝1 +
(
1 + 0.01f[xn,wn]

)
(

f
(
yn

)

f(wn)

)2
⎞

⎠

⎫
⎬

⎭
,

(2.8)

where its error equation reads

en+1 =
(1 + 0.01c1)4c2

(
2c22 − c1c3

)(
7c42 − 8c1c22c3 + c21c

2
3 + c21c2c4

)

c71
e8n +O

(
e9n

)
. (2.9)

We should here recall that per computing step for any of the methods from the new
class, the values of f(wn)/((f(wn)−f(yn))f[xn, yn]) and f[xn,wn] should be computed only
once, and then their values will be considered in the rest of the cycle wherever required.

Many of the nonlinear functions are arising from solving complex environmental
engineering problems, where the objective depends on the output of a numerical simulation
of a physical process. These simulators are expensive to evaluate because they involve
numerically solving systems of partial differential equations governing the underlying
physical phenomena. However, function evaluation remains the dominant expense in
optimization problems since the savings in time are often offset by increased accuracy of
the simulation. For these reasons, algorithms like (2.2)-(2.3) in which there is no need of
derivative evaluation, the order is optimal as well as the efficiency index is high are important
in hard problems.

Before going to the next sections, it is required to have a discussion on another similar
class of derivative-free methods that is attainable by choosing a different approximation in
the first step of (2.1) and also with a somehow different weight functions in the last step.
Considering these in (2.1), we can have the following without memory derivative-free class

yn = xn −
f(xn)

f[xn,wn]
, wn = xn − βf(xn),

zn = yn −
f
(
yn

)
f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

] ,

xn+1 = zn −
f(zn)f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

]
{
G
(
ϕ
) ×H(τ) ×Q(σ) × L

(
ρ
)}

,

(2.10)

which its order is given in Theorem 2.2 to be eight by choosing appropriate weight functions.
Noting that β ∈ R \ {0}, ϕ = f(z)/f(y), τ = f(z)/f(w), σ = f(z)/f(x), ρ = f(y)/f(w),
without the index n, G(ϕ),H(τ), Q(σ), and L(ρ) are four real-valued weight functions.
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Theorem 2.2. Let α ∈ D be a simple zero of a sufficiently differentiable function f : D ⊆ R → R and
let that cj = f (j)(α)/j!, j ≥ 1. If x0 is sufficiently close to α, then, (i) the local order of convergence of
the solution by the class of methods without memory defined in (2.10) is eight, when

G(0) = G′(0) = 1,
∣
∣G′′(0)

∣
∣ < ∞,

H(0) = 1, H ′(0) = 2 − βf[xn,wn],

Q(0) = 1, Q′(0) = 0,

L(0) = 1, L′(0) = L′′′(0) = 0, L′′(0) = 2 − 2βf[xn,wn],
∣
∣
∣L(4)(0)

∣
∣
∣ < ∞,

(2.11)

and (ii) this solution reads the error equation

en+1 = xn+1 − α

= − 1
24c71

(
c2
(
2c22 − c1c3

)(−1 + c1β
)2

×
(
12
(−1 + c1β

)2
(
− 2
(
7c42 − 8c1c22c3 + c21c

2
3 + c21c2c4

)

+
(
−2c22 + c1c3

)2
G′′(0)

)
+ c42L

(4)(0)
))

e8n +O
(
e9n

)
.

(2.12)

Proof. The proof of this theorem is similar to the proof of Theorem 2.1. It is hence omitted.

Now, by using (2.10)-(2.11), we can have some other efficient optimal eighth-order
without memory derivative-free methods, such as

yn = xn −
f(xn)

f[xn,wn]
, wn = xn − f(xn),

zn = yn −
f
(
yn

)
f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

] ,

xn+1 = zn −
f(zn)f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

]

×
⎧
⎨

⎩

(

1 +
f(zn)
f
(
yn

)

)(
1 +
(
2 − f[xn,wn]

)
(

f(zn)
f(wn)

))

×
(

1 +
(
f(zn)
f(xn)

)2
)⎛

⎝1 +
(
1 − f[xn,wn]

)
(

f
(
yn

)

f(wn)

)2
⎞

⎠

⎫
⎬

⎭
,

(2.13)
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where its error equation is as follows:

en+1 =
(−1 + c1)4c2

(
2c22 − c1c3

)(
7c42 − 8c1c22c3 + c21c

2
3 + c21c2c4

)

c71
e8n +O

(
e9n

)
. (2.14)

Another example from the new class of optimal iterations (2.10)-(2.11) can be

yn = xn −
f(xn)

f[xn,wn]
, wn = xn − f(xn),

zn = yn −
f
(
yn

)
f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

] ,

xn+1 = zn −
f(zn)f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

]{W1},

(2.15)

where

W1 =

⎛

⎝1 +
f(zn)
f
(
yn

) +

(
f(zn)
f
(
yn

)

)2
⎞

⎠

×
(
1 +
(
2 − f[xn,wn]

)
(

f(zn)
f(wn)

))

×
(

1 +
(
f(zn)
f(xn)

)2
)⎛

⎝1 +
(
1 − f[xn,wn]

)
(

f
(
yn

)

f(wn)

)2
⎞

⎠,

(2.16)

by the following error equation

en+1 =
(−1 + c1)4c22

(
2c22 − c1c3

)(
3c32 − 4c1c2c3 + c21c4

)

c71
e8n +O

(
e9n

)
. (2.17)

3. A Brief Look at the Literature

In this section, we shortly present some of the well-known high-order derivative-free
techniques to find the simple zeros of nonlinear equations for the sake of comparison. Kung
and Traub in [4] introduced the following without memory two-step iteration

yn = xn −
f(xn)

f[xn,wn]
, wn = xn + βf(xn),

xn+1 = yn −
f
(
yn

)
f(wn)

(
f(wn) − f

(
yn

))
f
[
xn, yn

] ,

(3.1)
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where β ∈ R \ {0}, and it was in fact the first two steps of our novel class (2.2)-(2.3) in this
paper. They moreover gave the following four-point eighth-order iterative scheme

yn = xn + βf(xn),

zn = yn − β
f(xn)f

(
yn

)

f
(
yn

) − f(xn)
,

wn = zn −
f(xn)f

(
yn

)

f(zn) − f(xn)

[
1

f
[
yn, xn

] − 1
f
[
zn, yn

]

]

,

xn+1 = wn −
f(xn)f

(
yn

)
f(zn)

f(wn) − f(xn)

×
[

1
f(wn) − f

(
yn

)

{
1

f[wn, zn]
− 1
f
[
zn, yn

]

}

− 1
f(zn) − f(xn)

{
1

f
[
zn, yn

] − 1
f
[
yn, xn

]

}]

,

(3.2)

wherein β ∈ R \ {0}. Soleymani in [6] suggested the following three-step derivative-free
seventh-order method

yn = xn −
f(xn)

f[xn,wn]
, wn = xn + f(xn),

zn = yn −
f
(
yn

)

f[xn,wn]

{

1 +
2 + f[xn,wn]
1 + f[xn,wn]

f
(
yn

)

f(xn)

}

,

xn+1 = zn −
f(zn)

f
[
yn, zn

]

⎧
⎨

⎩
1 +

1
1 + f[xn,wn]

(
f
(
yn

)

f(xn)

)2
⎫
⎬

⎭
.

(3.3)

For further reading, one should consult the papers [7–10] and the references therein.

Remark 3.1. In terms of computational point of view, the efficiency index of our classes of
derivative-free without memory methods (2.2)-(2.3) (and the class (2.10)-(2.11)) is greater
than that of Newton’s and Steffensen’s, that is, 1.414, 1.565 of the sixth-order derivative-free
technique given in [11], 1.587 of (3.1), 1.626 of (3.3), and is equal to 1.682 of the family (3.2).

4. Numerical Experiments

We now check the effectiveness of the novel derivative-free classes of iterative methods. In
order to do this, we choose (2.8) as the representative from our class (2.2)-(2.3). Note that the
derived methods from the class (2.10)-(2.11) can also be used.

We have compared (2.8) with Steffensen’s method (1.1), the fourth-order family of
Kung and Traub (3.1) with β = 0.01, the seventh-order technique of Soleymani (3.3), and the
optimal eighth-order family of Kung and Traub (3.2) with β = 1, using the examples listed
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Table 1: The examples considered in this study.

Test functions Zeros
f1(x) = (sinx)2 + x α1 = 0
f2(x) = (1 + x) + cos

(πx
2

)
−
√
1 − x2 α2 ≈ −0.728584046444826 · · ·

f3(x) = (sinx)2 − x2 + 1 α3 ≈ 1.404491648215341 · · ·
f4(x) = e−x + sin(x) − 2 α4 ≈ −1.0541271240912128 · · ·
f5(x) = xe−x − 0.1 α5 ≈ 0.111832559158963 · · ·
f6(x) =

√
x4 + 8 sin

(
π

x2 + 2

)
+

x3

x4 + 1
− √

6 +
8
17

α6 = −2
f7(x) =

√
x2 + 2x + 5 − 2 sin(x) − x2 + 3 α7 ≈ 2.331967655883964 · · ·

f8(x) = sin−1(x2 − 1
) − x

2
+ 1 α8 ≈ 0.594810968398369 · · ·

f9(x) =

(

sin(x) −
√
2
2

)

(x + 1) α9 ≈ 0.785398163397448 · · ·

f10(x) = x5 + x4 + 4x2 − 15 α10 ≈ 1.347428098968304 · · ·
f11(x) = x − sin(cos(x)) + 1 α11 ≈ −0.1660390510510295 · · ·
f12(x) = x5 − 10 cos

(
tan−1(x)

)
α12 ≈ 1.419315939421532 · · ·

f13(x) = x5 − 10 cos
(
tan−1(x4)) + 17x α13 ≈ 0.580593457809920 · · ·

f14(x) = sin
(
cos
(
tan−1(2xsin(x)))) − 2x α14 ≈ 0.273402731005321 · · ·

f15(x) = x3 − x2 − 2x − cos(x) + 2 α15 ≈ 0.498542523582153 · · ·
f16(x) =

√
x3 + sin(x) − 30 α16 ≈ 9.716501993365200 · · ·

f17(x) = tan−1(x2 − x
)

α17 = 1
f18(x) = sin−1(x2) − 2x α18 = 0
f19(x) = sin

(−3x cos
(√

x
))

α19 ≈ −0.74886062246711 · · ·
f20(x) = x2 −√cos(x) α20 ≈ 0.89055270972295 · · ·

in Table 1. The results of comparisons are given in Table 2 in terms of the number significant
digits for each test function after the specified number of iterations, that is, for example, 0.1e−
207 shows that the absolute value of the given nonlinear function (f1) after nine iterations
(corresponding to iteration (1.1)) is zero up to 207 decimal places.

It is important to review the proof of convergence for our proposed classes of methods
(or the compared methods in Table 2) before implementing them. Specifically, one should
review the assumptions made in the proofs, when the result of the iterations become
divergent. For situations, where the method fails to converge, it is because the assumptions
made in the proofs are not met. For this reason in the long run, we give aMathematica 8. code
to extract initial approximations for all the zeros of a nonlinear function in an interval.

It can be observed from Table 2, that almost in most cases our contributed method
from the class (2.2)-(2.3) is superior in solving nonlinear equations. Generally speaking,
iterative methods of the same order and efficiency, and also with the same background, that
is, Newton-type or Steffensen-type methods, have similar numerical outputs due to their
similar characters. Note also that experimental results show that whatever the value of β /= 0
is smaller, then the output results of solving nonlinear equations will be more accurate.

We have completed Table 2 for two different initial guesses. In Table 2, IT and TNE
stand for number of iterations, and total number of (functional) evaluations. To have a
fair comparison, we used high number of iterations for (1.1). The numerical results for the
test functions support the theoretical discussions given in Section 2. We also point out that
the procedure of applying the new iterative methods for nonsmooth functions is similar to
those recently illustrated in [12]. And for multiple zeros, we must first take into account
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Table 2: Results of convergence for different derivative-free methods.

f Guess (1.1) (3.1) (3.3) (3.2) (2.8)

f1

IT 9 4 3 3 3
TNE 18 12 12 12 12

0.3
∣∣f
∣∣ 0.1e − 207 0.3e − 143 0.1e − 126 0.1e − 210 0.4e − 257

0.2
∣∣f
∣∣ 0.3e − 264 0.5e − 177 0.7e − 161 0.1e − 267 0.1e − 323

f2

IT 9 4 3 3 3
TNE 18 12 12 12 12

−0.9 ∣∣f
∣∣ 0.3e − 29 0.8e − 61 0.5e − 29 0.8e − 60 0.7e − 54

−0.4 ∣∣f
∣∣ 0.6e − 156 0.1e − 216 0.6e − 107 0.1e − 178 0.1e − 341

f3

IT 9 4 3 3 3
TNE 18 12 12 12 12

1.25
∣∣f
∣∣ 0.7e − 411 0.2e − 199 0.2e − 322 0.3e − 381 0.2e − 373

1.6
∣∣f
∣∣ 0.1e − 298 0.1e − 203 0.5e − 229 0.4e − 258 0.3e − 378

f4

IT 9 4 3 3 3
TNE 18 12 12 12 12

−1.3 ∣∣f
∣∣ 0.6e − 259 0.4e − 182 0.2e − 211 0.5e − 110 0.4e − 339

−1 ∣∣f
∣∣ 0.9e − 640 0.2e − 330 0.6e − 483 0.4e − 618 0.1e − 636

f5

IT 10 5 3 3 3
TNE 20 15 12 12 12

0
∣∣f
∣∣ 0.1e − 714 0.4e − 917 0.5e − 220 0.2e − 375 0.3e − 435

−0.7 ∣∣f
∣∣ 0.1e − 64 0.4e − 220 0.7e − 20 0.4e − 53 0.1e − 95

f6

IT 8 4 3 3 3
TNE 16 12 12 12 12

−2.2 ∣∣f
∣∣ 0.9e − 362 0.2e − 327 0.4e − 348 0.8e − 518 0.3e − 449

−1.7 ∣∣f
∣∣ 0.4e − 221 0.3e − 186 0.2e − 119 0.5e − 231 0.1e − 156

f7

IT 9 4 3 3 3
TNE 18 12 12 12 12

3
∣∣f
∣∣ 0.2e − 528 0.2e − 232 0.3e − 294 0.8e − 429 0.3e − 411

0.6
∣
∣f
∣
∣ 0.1e − 259 0.1e − 232 0.2e − 154 0.3e − 232 0.5e − 362

f8

IT 9 4 3 3 3
TNE 18 12 12 12 12

1.3
∣∣f
∣∣ Div. 0.1e − 172 0.3e − 52 0.1e − 38 0.7e − 300

0.3
∣
∣f
∣
∣ 0.2e − 487 0.6e − 275 0.1e − 316 0.3e − 466 0.5e − 555

f9

IT 9 4 3 3 3
TNE 18 12 12 12 12

0.6
∣∣f
∣∣ 0.1e − 682 0.4e − 277 0.1e − 236 0.9e − 396 0.4e − 483

0.4
∣
∣f
∣
∣ 0.1e − 169 0.5e − 168 Div. 0.1e − 144 0.2e − 271

f10

IT 8 4 3 3 3
TNE 16 12 12 12 12

1.36
∣∣f
∣∣ 0.3e − 90 0.4e − 442 0.1e − 206 0.5e − 490 0.8e − 873

1.32
∣
∣f
∣
∣ 0.8e − 3 0.5e − 353 0.8e − 5 0.6e − 229 0.5e − 696

f11

IT 9 4 3 3 3
TNE 18 12 12 12 12

−1 ∣∣f
∣∣ 0.1e − 5 0.1e − 44 0.2e − 34 Div. 0.1e − 53

0.3
∣
∣f
∣
∣ 0.3e − 313 0.9e − 209 0.1e − 192 0.5e − 314 0.4e − 376

f12

IT 9 4 3 5 3
TNE 18 12 12 20 12

1.4
∣∣f
∣∣ 0.2e − 122 0.2e − 388 0.3e − 133 0.1e − 378 0.2e − 766

1.3
∣
∣f
∣
∣ Div. 0.4e − 181 Div. 0.2e − 221 0.1e − 357
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Table 2: Continued.

f Guess (1.1) (3.1) (3.3) (3.2) (2.8)

f13

IT 18 4 3 3 3
TNE 36 12 12 12 12

0.3
∣∣f
∣∣ 0.5e − 750 0.9e − 138 0.2e − 63 0.9e − 3 0.3e − 411

0.8
∣∣f
∣∣ 0.1 0.5e − 245 0.6e − 35 0.1e − 194 0.1e − 384

f14

IT 8 4 3 3 3
TNE 16 12 12 12 12

0.2
∣∣f
∣∣ 0.2e − 42 0.9e − 334 0.1e − 519 0.1e − 214 0.3e − 604

0.5
∣∣f
∣∣ 0.2e − 283 0.5e − 263 0.1e − 306 0.8e − 364 0.3e − 468

f15

IT 8 4 3 3 3
TNE 16 12 12 12 12

0.3
∣∣f
∣∣ 0.1e − 269 0.2e − 332 0.1e − 386 0.6e − 666 0.2e − 417

0.4
∣∣f
∣∣ 0.6e − 352 0.7e − 295 0.8e − 446 0.3e − 552 0.6e − 544

f16

IT 9 4 3 3 3
TNE 18 12 12 12 12

9
∣∣f
∣∣ 0.9e − 391 0.1e − 310 0.1e − 246 0.4e − 346 0.6e − 528

9.2
∣∣f
∣∣ 0.1e − 474 0.3e − 314 0.5e − 281 0.2e − 448 0.6e − 573

f17

IT 9 4 3 3 3
TNE 18 12 12 12 12

0.1
∣∣f
∣∣ Div. 0.1e − 209 0.2e − 652 0.9e − 850 0.1e − 388

0.8
∣∣f
∣∣ 0.3e − 166 0.3e − 115 0.3e − 36 0.6e − 106 0.2e − 200

f18

IT 9 4 3 3 3
TNE 18 12 12 12 12

0.3
∣
∣f
∣
∣ 0.2e − 457 0.1e − 162 0.6e − 406 0.3e − 377 0.2e − 294

0.2
∣
∣f
∣
∣ 0.1e − 534 0.4e − 216 0.7e − 490 0.2e − 458 0.4e − 401

f19

IT 10 4 3 3 3
TNE 20 12 12 12 12

−0.7 ∣∣f
∣∣ 0.4e − 294 0.2e − 282 0.2e − 56 0.1e − 202 0.1e − 504

−0.9 ∣∣f
∣∣ Div. 0.2e − 116 Div. Div. 0.3e − 182

f20

IT 8 4 3 3 3
TNE 16 12 12 12 12

0.9
∣∣f
∣∣ 0.5e − 445 0.5e − 552 0.1e − 588 0.2e − 937 0.4e − 1074

0.7
∣∣f
∣∣ 0.1e − 89 0.5e − 202 0.4e − 72 0.2e − 203 0.1e − 375

a transformation to convert the multiple zero into a simple one and then employ our iterative
methods on the transformed equation. Moreover, for applying on functions with inexact
coefficients, one remedy is to rationalize the coefficients first and then apply the desired
scheme for obtaining the solutions with high accuracy.

An important aspect of implementing high-order nonlinear solvers is in finding
very robust initial guesses to start the process, when high precision computing is needed.
As discussed in Section 1, the convergence of our iterative methods is locally. To resolve
this shortcoming, the best way is to rely on hybrid algorithms, in which the first item
produces a robust initial point and the second item employs the new iterative methods
when high precision is required. There are some ways in the literature to find robust starting
points, mostly based on interval mathematics see for example, [13]. But herein we take
into consideration the programming package Mathematica 8 [14] which could be efficiently
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f[x ]:=Sin[x]Cot[x]+Cos[x∧2]+0.5;
a=-2.; b=12.;
zeros=Reap[soln=y[x]/.First[NDSolve[{y′[x]==Evaluate[D[f[x],x]],y[b]==
(f[b])},y[x],{x,a,b},

Method->{"EventLocator","Event"->y[x],
"EventAction":>Sow[{x,y[x]}]}]]][[2,1]];
initialPoints=Sort[Flatten[Take[zeros,Length[zeros],1]]]

Algorithm 1

−2 2 4 6 8 10 12

−1

1

2

Figure 1: The graph of the function f with finitely many zeros in an interval.

applied on lists for high precision computing. In fact using [15], we could build a list of initial
guesses enough close with good accuracy to start the procedure of our optimal derivative-free
eighth-order methods. The procedure of finding such a robust list is based on the powerful
command of NDSolve for the nonlinear function on the interval D = [a, b]. Such a way can
be written in the following piece of Mathematica code by considering an oscillatory function
as the input test function on the domain D = [−2., 12.], see Algorithm 1.

Thus now, we have an efficient list of initial approximations for the zeros of a nonlinear
once differentiable function with finitely many zeros in an interval. The number of zeros and
the graph of the function including the positions of the zeros can be given by the following
commands (see Figure 1), see Algorithm 2.

For this test, there are 33 zeros in the considered interval which can easily be used as
the starting points for our proposed high-order derivative-free methods. Note that the output
of the vector “initialPoints” contains the initial approximations. In this test problem,
the list of zeros are {−1.48293, 1.48293, 2.18909, 2.72517, 3.38886, 3.71339, 4.15977, 4.55782,
4.7902, 7.67254, 7.78846, 8.04476, 8.20923, 8.40603, 8.60286, 8.75671, 8.9734, 9.09881, 9.32263,
9.43461, 9.65251, 9.76525, 9.9662, 10.0901, 10.2669, 10.4082, 10.557, 10.719, 10.8379, 11.023,
11.11, 11.3224, 11.3721}. Note that we end this section by mentioning that for very oscillatory
functions, it is better to first divide the interval into some smaller subintervals and then
obtain the solutions. The command NDSolve uses Maximum number of 10000 steps, if it
is needed this could be changed. In cases when NDSolve fails, this algorithm might fail
too.
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Length[initialPoints]
Plot[f[x],{x,a,b}, Epilog->{PointSize[Medium], Red, Point[zeros]},
PlotRange->All, PerformanceGoal->"Quality", PlotStyle->{Thick, Brown}]

Algorithm 2

5. Concluding Remarks and Future Works

The importance and application of nonlinear solvers made the construction of new methods
by the beginning of the new century. On the other hand, when the cost of derivative
evaluation is expensive or in some cases not available, the need for higher-order methods
with high efficiency index, which do not require derivative evaluations per full cycle, are
more and more felt in the scientific computing.

Hence, this paper has recommended two wide classes of optimal eighth-order
methods without memory to solve nonlinear scalar equations numerically. The merits of
the produced methods from our classes were high efficiency index, being totally free from
derivative, high accuracy in numerical examples and also consistency with the conjecture of
Kung and Traub. The analytical proof of the main contribution was given in Section 2 and its
stability and efficiency were tested in Section 4. The numerical results attested the theoretical
aspects as well as the high efficiency index by as small as possible of number of evaluations to
achieve the highest possible order. We have also pointed out some notes regarding multiple
zeros and how to extract initial approximations for the nonlinear functions with finitely many
zeros in an interval.

Providing with memory iterations using the classes (2.2)-(2.3) and (2.10)-(2.11) can be
of researchers’ interests for future works.
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