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A class of difference equations which include discrete nonlinear Schrödinger equations as special
cases are considered. New sufficient conditions of the existence and multiplicity results of
homoclinic solutions for the difference equations are obtained by making use of the mountain pass
theorem and the fountain theorem, respectively. Recent results in the literature are generalized and
greatly improved.

1. Introduction

Assume that m is a positive integer. Consider the following difference equation in infinite m
dimensional lattices,

Lun + vnun −ωun = σf(n, un), n ∈ Z
m, (1.1)

where σ = ±1, n = (n1, n2, . . . , nm) ∈ Z
m, {un} is a real valued sequence, ω ∈ R, L is a Jacobi

operator [1] given by

Lun = a1(n1,n2,...,nm)u(n1+1,n2,...,nm) + a1(n1−1,n2,...,nm)u(n1−1,n2,...,nm)

+ a2(n1,n2,...,nm)u(n1,n2+1,...,nm) + a2(n1,n2−1,...,nm)u(n1,n2−1,...,nm)
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+ · · · + am(n1,n2,...,nm)u(n1,n2,...,nm+1) + am(n1,n2,...,nm−1)u(n1,n2,...,nm−1)

+ b(n1,n2,...,nm)u(n1,n2,...,nm),

(1.2)

where {ain} (i = 1, 2, . . . , m) and {bn} are real valued and bounded sequences.
We assume that f(n, 0) = 0 for n ∈ Z

m, then un = 0 is a solution of (1.1), which is called
the trivial solution. As usual, we say that a solution u = {un} of (1.1) is homoclinic (to 0) if

lim
|n|→∞

un = 0, (1.3)

where |n| = |n1| + |n2| + · · · + |nm| is the length of multiindex n. In addition, if un /≡ 0, then u
is called a nontrivial homoclinic solution. We are interested in the existence and multiplicity
of the nontrivial homoclinic solutions for (1.1). This problem appears when we look for the
discrete solitons of the following Discrete Nonlinear Schrödinger (DNLS) equation:

iψ̇n + Δψn − vnψn + σf
(
n, ψn

)
= 0, n ∈ Z

m, (1.4)

where

Δψn = ψ(n1+1,n2,...,nm) + ψ(n1,n2+1,...,nm) + · · · + ψ(n1,n2,...,nm+1) − 2mψ(n1,n2,...,nm)

+ ψ(n1−1,n2,...,nm) + ψ(n1,n2−1,...,nm) + · · · + ψ(n1,n2,...,nm−1)
(1.5)

is the discrete Laplacian in m spatial dimension. Moreover, assume that the nonlinearity
f(n, u) is gauge invariant, that is,

f
(
n, eiθu

)
= eiθf(n, u), θ ∈ R. (1.6)

Since solitons are spatially localized time-periodic solutions and decay to zero at infinity.
Thus ψn has the form

ψn = une−iωt,

lim
|n|→∞

ψn = 0,
(1.7)

where {un} is a real-valued sequence, and ω ∈ R is the temporal frequency. Then (1.4)
becomes

−Δun + vnun −ωun = σf(n, un), n ∈ Z
m, (1.8)

and (1.3) holds. Naturally, if we look for solitary solutions of (1.4), we just need to get the
homoclinic solutions of (1.8). Obviously, (1.8) is a special case of (1.1) with ain ≡ −1 (i =
1, 2, . . . , m), bn ≡ 2m.
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DNLS equation is one of the most important inherently discrete models, which models
many phenomena in various areas of applications (see [2–4] and reference therein). For
example, in nonlinear optics, DNLS equation appears as a model of infinite wave guide
arrays. In the past decade, the existence and properties of mobile discrete solitons/breathers
in DNLS equations have been considered in a number of studies [5–9].

When m = 1, vn ≡ 0, and {an}, {bn}, and f(n, u) are T -periodic in n, the existence
of homoclinic solutions for the (1.1) have been studied in [5, 6, 10] for the case where f
is with superlinear nonlinearity (kerr or cubic), in [9, 11–14] for the case where f is with
saturable nonlinearity, respectively. When {an}, {bn}, and f(n, u) are not periodic in n, the
existence of homoclinic solutions for some special case of (1.1) can be found in [7, 8, 15, 16].
Especially, in [17, 18], the authors obtained sufficient conditions for the existence of at least a
pair of nontrivial homoclinic solutions for the special case of (1.1) when {vn} is unbounded
by Nehari manifold method. It is worth pointing out that the so-called global Ambrosetti-
Rabinowitz condition of f plays a crucial role in [17, 18]. One aim of this paper is to replace
the global Ambrosetti-Rabinowitz condition by a general one. The other aim of this paper
is to obtain sufficient conditions for the existence of infinitely many nontrivial homoclinic
solutions of (1.1). We will see that in Section 2, our results greatly improves those in [17, 18].
Our proofs of the main results are based on Mountain Pass Lemma and Fountain theorem.
Our main ideas come from the papers [19–22].

This paper is organized as follows: in Section 2, we will first define some basic spaces.
Then, we give the main results of this paper, and a comparison with the existing results is
stated. Third, we establish the variational framework associated with (1.1) and transfer the
problem of the existence and multiplicity of solutions in E (defined in Section 2) of (1.1)
into that of the existence and multiplicity of critical points of the corresponding functional.
We also recall some basic results from critical point theory. Last, in Section 3, we present the
proofs of our main results.

2. Preliminaries and Main Results

Let

lp ≡ lp(Zm) =

⎧
⎨

⎩
u = {un}n∈Zm : ∀n ∈ Z

m, un ∈ R, ‖u‖lp =
(
∑

n∈Zm

|un|p
)1/p

<∞
⎫
⎬

⎭
. (2.1)

Then the following embedding between lp spaces holds:

lq ⊂ lp, ‖u‖lp ≤ ‖u‖lq , 1 ≤ q ≤ p ≤ ∞. (2.2)

Assume the following condition on {vn} holds.
(V1) the discrete potential V = {vn}n∈Zm satisfies

lim
|n|→∞

vn = ∞. (2.3)
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Let

H = L + V. (2.4)

Since the operator L is bounded and self-adjoint in the space l2(Zm) with the norm ‖L‖ (see
[1]), and by the condition (V1), we know that the potential V is bounded below, without loss
of generality, we suppose vn > ‖L‖ for all n ∈ Z

m. Then the operator H is an unbounded
positive self-adjoint operator in l2(Zm).

Define the space

E :=
{
u ∈ l2(Zm) : H1/2u ∈ l2(Zm)

}
. (2.5)

Then E is a Hilbert space equipped with the norm

‖u‖ =
∥∥∥H1/2u

∥∥∥
l2(Zm)

. (2.6)

Since (V1) holds, we see that the spectrum σ(H) is discrete and let λ1 be the smallest
eigenvalue ofH, that is

λ1 = inf σ(H). (2.7)

Now, we present the following basic hypotheses in order to establish the main results
in this paper:

(f1) f ∈ C(Zm × R,R), and there exists a > 0, p ∈ (2,∞) such that

∣∣f(n, u)
∣∣ ≤ a

(
1 + |u|p−1

)
, ∀n ∈ Z

m, u ∈ R. (2.8)

(f2) lim|u|→ 0f(n, u)/u = 0 uniformly for n ∈ Z
m.

(f3) lim|u|→∞F(n, u)/u2 = +∞ uniformly for n ∈ Z
m, where F(n, u) is the primitive

function of f(n, u), that is,

F(n, u) =
∫u

0
f(n, t)dt. (2.9)

(f4) f(n, u)/u is increasing in u > 0 and decreasing in u < 0, for all n ∈ Z
m.

Under the above hypotheses, our results can be stated as follows.

Theorem 2.1. Assume that conditions (V1), (f1)–(f4) hold. Then, we have the following conclusions.

(1) If σ = −1, ω ≤ λ1, (1.1) has no nontrivial solution in E.

(2) If σ = 1, ω < λ1, (1.1) has at least one nontrivial solution u in E.

(3) The solutions obtained in case (2) exponentially decay at infinity, that is, there exist two
positive constants C and α such that

|un| ≤ Ce−α|n|, n ∈ Z
m. (2.10)
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Theorem 2.2. Assume f(n, u) is odd in u for each n ∈ Z
m, and that conditions (V1), (f1)–(f4) hold.

Then we have the following conclusions.

(1) If σ = −1, ω ≤ λ1, (1.1) has no nontrivial solution in E.

(2) If σ = 1, ω < λ1, (1.1) has infinitely many solutions {u(k)}∞k=1 in E satisfying

1
2

(
Hu(k), u(k)

)
− 1
2
ω
(
u(k), u(k)

)
−
∑

n∈Zm

F
(
n, u

(k)
n

)
−→ ∞, as k −→ ∞. (2.11)

(3) The solutions obtained in case (2) exponentially decay at infinity, that is, (2.10) holds.

We notice that, in [17, 18], the authors consider the following DNLS equation

Hun −ωun − σγnf(un) = 0, (2.12)

which is a special case of (1.1), whereH = −Δ + V . They obtain the following results.

Theorem A. Assume that the DNLS (2.12) satisfies (V1) and
(A1) there exist two positive constants γ and γ , such that for any n ∈ Z

m,

γ ≤ γn ≤ γ. (2.13)

The nonlinearity f is odd and satisfies
(A2) there are two positive constants C1, C2, and 2 < p <∞ such that

∣∣f(u)
∣∣ ≤ C1

(
1 + |u|p−1

)
, (2.14)

∣∣f(u) − f(v)∣∣ ≤ C2

(
1 + |u|p−2 + |v|p−2

)
|u − v|. (2.15)

(A3) limu→ 0(f(u)/|u|) = 0.
(A4) there is a 2 < q <∞ such that

0 <
(
q − 1

)
f(u)u ≤ f ′(u)u2, ∀u/= 0. (2.16)

Then we have the following conclusions.

(1) If σ = −1, ω ≤ λ1, (2.12) has no nontrivial solution.
(2) If σ = 1, ω < λ1, (2.12) has at least a pair of nontrivial solutions ±u in l2(Zm).

(3) The solutions obtained in case (2) exponentially decay at infinity, that is, (2.10) holds.

Remark 2.3. Clearly, (2.12) corresponds (1.1) if we let

L = −Δ, f(n, u) = γnf(u). (2.17)
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Equations (2.13) and (2.14) imply (f1), conditions (A1) and (A3) imply (f2), and conditions
(A1), (A4) imply (f3) and (f4). Equation (2.15) is unnecessary in Theorem 2.2. Thus, our
Theorem 2.2 greatly improves Theorem A.

Remark 2.4. In (2.12), we define f by

f(u) =

⎧
⎪⎪⎨

⎪⎪⎩

0, u = 0,
u

1 − ln|u| , 0 < |u| ≤ 1,

u(1 + ln|u|), |u| > 1,

(2.18)

then f does not satisfy (A4). However, if we let f(n, u) = γnf(u) in (1.1), where {γn} satisfies
(A1), then f(n, u) satisfies all conditions in Theorem 2.2.

Now, we will make some preparations for the proofs of our main results. Since the
operator L is bounded in l2(Zm), the following two norms are equivalent in the Hilbert space
E

‖u‖ ∼
∥∥∥V 1/2u

∥∥∥
l2(Zm)

. (2.19)

The following theorem plays an important role in this paper, which gives a discrete version
of compact embedding theorem [16–18].

Lemma 2.5. If V satisfies the condition (V1), then for any 2 ≤ p ≤ ∞, the embedding map from E
into lp(Zm) is compact, denote the best embedding constant cp = max‖u‖lp=11/‖u‖.

Consider the function J defined on E by

J(u) =
1
2
((H −ω)u, u) − σ

∑

n∈Zm

F(n, un). (2.20)

Standard arguments show that the functional J is well-defined C1 functional on E and (1.1) is
easily recognized as the corresponding Euler-Lagrange equation for J . Thus, to find nontrivial
solutions of (1.1), we need only to look for nonzero critical points of J .

For the derivative of J we have the following formula:

(
J ′(u), v

)
= ((H −ω)u, v) − σ

∑

n∈Zm

f(n, un)vn, ∀v ∈ E. (2.21)

Definition 2.6 (see [22, 23]). Let E be a real Banach Space and J ∈ C1(E,R). For some c ∈ R,
we say J satisfies the so-called (C)c condition if any sequence {un} ⊂ E such that J(un) → c
and ‖J ′(un)‖(1 + ‖un‖) → 0 as n → ∞, has a convergent subsequence.

Let Br be the open ball inH with radius r and center 0, and let ∂Br denote its boundary.
In order to obtain the existence of critical points of J on E, we cite some basic lemmas from
[24], which will be used in the proof of Theorem 2.1. The first is the following Mountain Pass
Lemma.
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Lemma 2.7. Let E be a real Banach Space, J ∈ C1(E,R) satisfies the (C)c condition for any c >
0, J(0) = 0, and

(J1) There exist ρ, σ > 0 such that J |∂Bρ ≥ α.
(J2) There exist e ∈ E \ Bρ such that J(e) ≤ 0.

Then J has a critical value c ≥ α.

In order to prove Theorem 2.2, we shall use the following fountain theorem [23, 25, 26].
Let E be a real Banach Space with the norm ‖ · ‖ and E =

⊕
j∈N

Xj with dim Xj < ∞ for any

j ∈ N. Set Yk =
⊕k

j=0Xj and Zk =
⊕∞

j=kXj .

Lemma 2.8. Let J ∈ C1(E,R) be even. If, for each sufficiently large k ∈ N, there exists ρk > γk > 0
such that

(B1) ak := maxu∈Yk,‖u‖=ρk J(u) ≤ 0.
(B2) bk := infu∈Zk,‖u‖=γk J(u) → ∞, k → ∞.
(B3) J satisfies the (C)c condition for every c > 0.

Then J has an unbounded sequence of critical values.

3. Proofs of Main Results

Lemma 3.1. Suppose that σ = 1, ω < λ1, (V1) and (f1)–(f4) hold, then we have
(i) there exists ρ, α > 0 such that J |∂Bρ ≥ α;
(ii) there exists e ∈ E such that J(te) → −∞ as |t| → ∞.

Proof. (i) Let ε = (λ1 − ω)/2. According to (f1) and (f2), it is easy to show that, there exists
c1 > 0, such that,

∣∣f(n, u)
∣∣ ≤ ε|u| + c1|u|p−1 (3.1)

for all n ∈ Z
m and u ∈ R. This, together with the mean value theorem, leads to

|F(n, u)| = |F(n, u) − F(n, 0)| =
∣
∣∣∣∣

∫1

0
f(n, su)uds

∣∣∣∣∣
≤ ε

2
|u|2 + c1

p
|u|p. (3.2)

By (3.2) and the Hölder inquality, it follows that

J(u) =
1
2
((H −ω)u, u) −

∑

n∈Zm

F(n, un)

≥ 1
2
(λ1 −ω)‖u‖22 −

(
ε

2

∑

n∈Zm

|un|2 + c1
p

∑

n∈Zm

|un|p
)

≥ 1
4
(λ1 −ω)‖u‖22 −

c1
p
‖u‖p2 .

(3.3)
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Noting that p > 2, we obtain the following estimate:

J(u) ≥ 1
8
(λ1 −ω)ρ2 ≡ α > 0, ∀‖u‖ = ρ, (3.4)

with ρ = [(p/8c1)(λ1 −ω)]1/(p−2).
(ii) It follows from (f3) that for anyM > 0, there exists δ = δ(M) > 0 such that for all

n ∈ R
m, |u| ≥ δ, we have

F(n, u) ≥M|u|2. (3.5)

Notice that, from (f2) and (f4), it is easy to get that

F(n, u) > 0, ∀u/= 0. (3.6)

Let e ∈ E be the eigenvector ofH corresponding to the smallest eigenvalue λ1, that is
to sayHe = λ1e. Then, there existsN > 0, such that

∑

|n|≤N
e2n ≥ 1

2
‖e‖22. (3.7)

Let

A∗ = {n ∈ Z
m : |n| ≤N, en /= 0}. (3.8)

Taking t large enough, such that |ten| > δ for all n ∈ A∗, then, in view of (3.5)–(3.7), we have

J(te) =
1
2
(λ1 −ω)t2‖e‖22 −

∑

n∈Zm

F(n, ten)

≤ 1
2
(λ1 −ω)t2‖e‖22 −

∑

n∈A∗
F(n, ten)

≤ 1
2
(λ1 −ω)t2‖e‖22 −Mt2

∑

n∈A∗
e2n

≤ 1
2
(λ1 −ω −M)t2‖e‖22.

(3.9)

TakingM sufficiently large, for example,M ≥ 2(λ1 −ω), we see that J(te) → −∞ as |t| → ∞.
The proof is completed.

Lemma 3.2. Suppose that σ = 1, ω < λ1, (V1), (f1)–(f4) hold. Then the functional J satisfies the
(C)c condition for any c ∈ R.
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Proof. Let {u(k)} ⊂ E be a (C)c sequence of J , that is,

J
(
u(k)
)
−→ c,

∥
∥
∥J ′
(
u(k)
)∥∥
∥
(
1 +
∥
∥
∥u(k)

∥
∥
∥
)
−→ 0, as k −→ ∞. (3.10)

To prove the functional J satisfies the (C)c condition, first, we prove that {u(k)} is bounded
in E. In fact, if not, we may assume by contradiction that ‖u(k)‖ → ∞ as k → ∞. Set α(k) :=
u(k)/‖u(k)‖. Up to a sequence, we have

α(k) ⇀ α in E, (3.11)

α(k) −→ α, in lq(Zm), for q ≥ 2. (3.12)

Case 1 (α/= 0). By J(u(k)) = c + o(1), where o(1) → 0 as k → ∞, we have

c + o(1) = J
(
u(k)
)
=

1
2

∥∥∥u(k)
∥∥∥
2 − 1

2
ω
∥∥∥u(k)

∥∥∥
2

2
−
∑

n∈Zm

F
(
n, u

(k)
n

)
. (3.13)

Noticing that ‖u‖2 = (Hu, u) ≥ λ1‖u‖22, we divide both sides of (3.13) by ‖u(k)‖2 and get

∑

n∈Zm

F
(
n, u

(k)
n

)

∥∥u(k)
∥∥2

≤
(
1
2
+

|ω|
2λ1

)
− c + o(1)
∥∥u(k)

∥∥2
< +∞. (3.14)

Let Ω = {n ∈ Z
m : α(n)/= 0}, then it follows from (3.12) that

u
(k)
n = α(k)n

∥∥∥u(k)
∥∥∥ −→ +∞, as k −→ ∞, for n ∈ Ω. (3.15)

In view of (f3), we have

lim
k→∞

F
(
n, u

(k)
n

)

∥∥u(k)
∥∥2

= lim
k→∞

F
(
n, u

(k)
n

)

∣∣∣u(k)n

∣∣∣
2

∣
∣∣α(k)n

∣
∣∣
2 −→ +∞, for n ∈ Ω. (3.16)

Therefore,

∑

n∈Zm

F
(
n, u

(k)
n

)

∥∥u(k)
∥∥2

=

(
∑

n∈Ω
+
∑

n/∈Ω

)
F
(
n, u

(k)
n

)

∥∥u(k)
∥∥2

≥
∑

n∈Ω

F
(
n, u

(k)
n

)

∥∥u(k)
∥∥2

−→ +∞. (3.17)

This contradicts (3.14).

Case 2 (α = 0). We define

J
(
tku

(k)
)
:= max

t∈[0,1]
J
(
tu(k)

)
. (3.18)
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For any M > 4, let k be large enough such that ‖u(k)‖ > M and α(k) := 2M1/2u(k)/‖u(k)‖ =
2M1/2α(k).

By (3.2), (3.12), and α = 0, it is clear that

∑

n∈Zm

F
(
n, αkn

)
≤ ε

2
‖α‖22 +

c1
p
‖α‖p2 −→ 0, as k −→ ∞. (3.19)

Thus, for k large enough

J
(
tku

(k)
)
≥ J
(
α(k)n

)

=
1
2

∥
∥∥α(k)

∥
∥∥
2 − 1

2
ω
∥
∥∥α(k)

∥
∥∥
2

2
−
∑

n∈Zm

F
(
n, α(k)n

)

≥ 1
2

∥∥∥α(k)
∥∥∥
2 − 1

2
ω0

∥∥∥α(k)
∥∥∥
2

2
−
∑

n∈Zm

F
(
n, α(k)n

)

≥ 1
2

(
1 − ω0

λ1

)∥∥∥α(k)
∥∥∥
2 −
∑

n∈Zm

F
(
n, α(k)n

)

≥
(
1 − ω0

λ1

)
M,

(3.20)

where ω0 = max{ω, 0} < λ1.
This implies that limk→∞J(tku(k)) = ∞. Since J(0) = 0 and J(u(k)) → c as k → ∞,

J(tu(k)) attains its maximum at tk ∈ (0, 1) for large k. Thus, (J ′(tku(k)), u(k)) = 0.
On the other hand, from (f4), we have that

G(n, s) ≤ G(n, t), ∀0 ≤ s < t or t < s ≤ 0, n ∈ Z
m, (3.21)

where G(n, t) = f(n, t)t/2 − F(n, t). In fact, for 0 < s < t or t < s < 0, we have

G(n, t) −G(n, s) = tf(n, t)
2

− sf(n, s)
2

−
∫ t

s

f(n, τ)dτ

≥ tf(n, t)
2

− sf(n, s)
2

− f(n, t)
t

∫ t

s

τdτ

≥ s2

2

(
f(n, t)
t

− f(n, s)
s

)
> 0.

(3.22)

If s = 0, (3.21) is obvious.
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By (3.10) and (3.21), we have

J
(
tku

(k)
)
− 1
2

(
J ′
(
tku

(k)
)
, tku

(k)
)
=
∑

n∈Zm

(
1
2
f
(
n, tku

(k)
n

)
tku

(k)
n − F

(
n, tku

(k)
n

))

≤
∑

n∈Zm

(
1
2
f
(
n, u

(k)
n

)
u
(k)
n − F

(
n, u

(k)
n

))

= J
(
u(k)
)
− 1
2

(
J ′
(
u(k)
)
, u(k)

)
−→ c, as k −→ ∞.

(3.23)

But (3.20) implies that

J
(
tku

(k)
)
− 1
2

(
J ′
(
tku

(k)
)
, tku

(k)
)
= J
(
tku

(k)
)
−→ ∞. (3.24)

Thus, we get a contradiction. Combining the above arguments, we know that {u(k)} is
bounded in E.

Second, we show that there is a convergent subsequence of {u(k)}. Actually, there exists
a subsequence, still denoted by the same notation, such that u(k) weakly converges to some
u ∈ E. Applying Lemma 2.5, we see that that, for any 2 ≤ q ≤ ∞,

u(k) −→ u, in lq(Zm). (3.25)

By a straightforward calculation, we have

∥∥∥u(k) − u
∥∥∥
2 −ω

∥∥∥u(k) − u
∥∥∥
2

2

=
(
J ′
(
u(k)
)
− J ′(u),

(
u(k) − u

))
+
∑

n∈Zm

(
f
(
n, u

(k)
n

)
− f(n, un)

)(
u
(k)
n − un

)
.

(3.26)

Due to the weak convergence, it is clear that the first term (J ′(u(k)) − J ′(u), (u(k) − u)) →
0 as k → ∞. It remains to show the second term in the right hand of equality (3.26) also
tends to zero as k → ∞.

Indeed, according to (2.2) and Hölder inequality, we have

∑

n∈Zm

(
f
(
n, u

(k)
n

)
− f(n, un)

)(
u
(k)
n − un

)

≤
∑

n∈Zm

[
ε
(∣∣∣u(k)n

∣∣∣ + |un|
)
+ c1
(∣∣∣u(k)n

∣∣∣
p−1

+ |un|p−1
)](

u
(k)
n − un

)

≤ ε
(∥∥∥u(k)

∥∥∥
2
+ ‖u‖2

)∥∥∥u(k) − u
∥∥∥
2
+ c1
(∥∥∥u(k)

∥∥∥
p−1

p
+ ‖u‖p−1p

)∥∥∥u(k) − u
∥∥∥
p
.

(3.27)
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Therefore, combining (3.25) and the boundedness of {u(k)}, the above inequality implies

∑

n∈Zm

(
f
(
n, u

(k)
n

)
− f(n, un)

)(
u
(k)
n − un

)
−→ 0, as k −→ ∞. (3.28)

So, from (3.26) we can conclude that {u(k)} → u in E, and this means J satisfies (C)c
condition. The proof is completed.

Proof of Theorem 2.1. (1) By way of contradiction, assume that (1.1) has a nontrivial solution
u ∈ E. Then u is a nonzero critical point of J in E. Thus, J ′(u) = 0. But

(
J ′(u), u

)
= ((H −ω)u, u) − σ

∑

n∈Zm

f(n, un)un ≥
∑

n∈Zm

f(n, un)un > 0. (3.29)

This is a contradiction, so the conclusion holds.
(2) By Lemma 3.1, the functional J satisfies (J1) and (J2) of themountain pass theorem.

Lemma 3.2 implies that J satisfies (C)c condition for any c ∈ R. It follows from Lemma 2.7
that J has a critical value c ≥ α > 0. Hence, (1.1) has at least one nontrivial solution u ∈ E.

(3) Assume w is a nontrivial solution obtained in (2). Similar to [17], let Θ = {θn ≡
−σf(n,wn)/wn} and the operator G defined by (Gu)n = (Hu)n + θnun for u ∈ E, then (1.1) is
equivalent to

Gu = ωu. (3.30)

Sincew ∈ E, we have lim|n|→∞θn = 0. The multiplication operatorΘ is compact in E ⊂ l2(Zm),
and this implies that

σess(G) = σess(H) = φ. (3.31)

Equation (2.10) follows from the standard theorem on exponential decay for the eigenfunc-
tion of Jacobi operator (see [1] for details).

This completes the proof of Theorem 2.1.

Assume that i ∈ Z
m. Define e(i) = {e(i)n } by

e
(i)
n =

{
1, n = i,
0, n /= i.

(3.32)

Let Xj = span{e(n) : |n| = j} for j ∈ N = {0, 1, 2, . . .}, Yk =
⊕k

j=0Xj , and Zk =
⊕∞

j=k Xj ,
then we have

Lemma 3.3. Suppose that σ = 1, ω < λ1, (V1), (f1)–(f3) hold. Then there exists ρk > γk > 0 such
that

(i) bk := infu∈Zk,‖u‖=γk J(u) → ∞, as k → ∞,

(ii) ak := maxu∈Yk,‖u‖=ρk J(u) ≤ 0.
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Proof. (i) It follows from (3.2) that, for any u ∈ Zk

J(u) =
1
2
(Hu, u) − 1

2
ω(u, u) −

∑

n∈Zm

F(n, un)

≥ 1
2
‖u‖2 − 1

2
(ω + ε)‖u‖22 −

c1
p
‖u‖pp

≥ 1
2

[
1 − (|ω| + ε)β2k

]
‖u‖2 − c1

p
β
p

k‖u‖p,

(3.33)

where βk = supu∈Zk,‖u‖=1‖u‖2. Since for u ∈ Zk,

‖u‖2 = (Hu, u) = (Lu, u) + (Vu, u) ≥ −‖L‖‖u‖22 +
∑

|n|≥k
vnu

2
n ≥ inf

|n|≥k
(vn − ‖L‖)‖u‖22, (3.34)

we see that βk → 0 as k → ∞. Thus,

bk := inf
u∈Zk,‖u‖=γk

J(u)

≥ inf
u∈Zk,‖u‖=γk

1
2

[
1 − (|ω| + ε)β2k

]
‖u‖2 − c1

p
β
p

k‖u‖p

=
1
4

[
1 − (|ω| + ε)β2k

]
γ2k ,

(3.35)

where γk = [p(1 − |ω|β2k − εβ2k)/4c1β
p

k]
1/(p−2)

. Notice that p > 2 and βk → 0 as k → ∞, so we
have bk → ∞, as k → ∞.

(ii) For any k ∈ N, let the dimension of Yk be χk and v∗
k
= max|j|≤k{vj}. Assume that

M = ‖L‖ + v∗
k −ω, then from (3.5), there exists a δk > 0 such that F(n, u) ≥ M|u|2 for |u| ≥ δk.

Thus, for u ∈ Yk,

J(u) =
1
2
((H −ω)u, u) −

∑

|n|≤k
F(n, un)

=
1
2
((L + V −ω)u, u) −

∑

|un|≤δk
F(n, un) −

∑

|un|>δk
F(n, un)

≤ 1
2
(‖L‖ + v∗

k −ω
)‖u‖22 −M

∑

|un|>δk
u2n

≤ 1
2
(‖L‖ + v∗

k −ω
)‖u‖22 −M

∑

|n|≤k
u2n +M

∑

|un|≤δk
u2n

≤ 1
2
(‖L‖ + v∗

k −ω − 2M
)‖u‖22 +Mδ2kχk

= −1
2
(‖L‖ + v∗

k −ω
)‖u‖22 +

(‖L‖ + v∗
k −ω

)
δ2kχk.

(3.36)
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Taking ρk sufficiently large, we have,

ak := max
u∈Yk,‖u‖=ρk

J(u) ≤ 0. (3.37)

The proof is completed.

Proof of Theorem 2.2. The proofs for (1) and (3) are similar to that of (1) and (3) in Theorem 2.1,
and we omit them. Nowwe give the proof of (2). By Lemma 3.3, the functional J satisfies (B1)
and (B2) of Lemma 2.8. Lemma 3.2 implies that J satisfies (C)c condition for any c ∈ R. f is
odd implies that J(u) is even. It follows from Lemma 2.8 that J has a sequence of critical
points {u(k)} ⊂ E, such that J(u(k)) → ∞. Hence, (1.1) has infinitely many high-energy
solutions in l2(Zm). This completes the proof.
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