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We investigate a type of the Sturm-Liouville difference equations with almost periodic coefficients.
We prove that there exists a constant, which is the borderline between the oscillation and the
nonoscillation of these equations. We compute this oscillation constant explicitly. If the almost
periodic coefficients are replaced by constants, our result reduces to the well-known result about
the discrete Euler equation.

1. Introduction

In this paper, we analyse the second-order Sturm-Liouville equation

Δ
(
rkΔyk

)
+ qkyk+1 = 0, rk > 0, (∗)

whose oscillation properties are widely studied over the last few decades. We begin with
a short literature overview concerning the (non)oscillation of (∗) and of some direct
generalizations (including half-linear equations and dynamic equations on time scales).

Basic necessary and sufficient conditions for (∗) in order to be oscillatory are derived
in [1–3]. In [4] (see also [5]), the concept of a phase is established to obtain other oscillation
criteria. For the matrix difference equations of the form of (∗), we refer to [6]. Several
oscillation criteria for slightly more general equations are presented in [7, 8]. The oscillation
theory for the corresponding higher-order two-term Sturm-Liouville difference equations can
be found in [9–11] (for differential case, see [12]).

Fundamental aspects of Sturmian theory (and some oscillation criteria) for second-
order Sturm-Liouville equations on arbitrary time scales are formulated in [13]. Oscillation
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criteria for second-order difference equations can be obtained from oscillation criteria
for more general dynamic equations. The oscillation properties of second-order linear
dynamic equations, which have the Sturm-Liouville difference equations as special cases,
are considered, for example, in [14].

As an illustration, we mention a particular Sturm-Liouville equation of which the
complete oscillation classification is done as a consequence of general results on time scales.
Using the comparison theorem for second-order linear dynamic equations, it is shown in [15]
that the difference equation

Δ2yk + b
(−1)k
kc

yk+1 = 0 (1.1)

is oscillatory for any c < 1 and b /= 0. Further, it is obtained in [16] (based on results of [17, 18])
that the equation

Δ2yk +

[
a

k2
+ b

(−1)k
k

]

yk+1 = 0 (1.2)

is oscillatory if and only if 4a > 1 − b2. Finally in [16], applying the Willett-Wong-type
theorems for second-order linear dynamic equations, there is given the full oscillation
analysis of (∗) for

rk = 1, qk =
a

kc+1
+ b

(−1)k
kc

(1.3)

with regard to arbitrary a, b, c ∈ R.
The importance of the oscillation results about second-order equations lies among

others in the fact that such results can be used to study the oscillation and nonoscillation
properties of solutions of different equations. For example (see [19] and also [20]), all
solutions of the delay equation Δyk + pkyk−n = 0 oscillate if and only if all solutions of a
certain type of (∗) with rk = 1 oscillate.

The main aim of this paper is to present a sharp oscillation constant for the Euler-type
difference equation

Δ
(
rkΔyk

)
+

γsk
(k + 1)k

yk+1 = 0, (∗∗)

where γ ∈ R, inf{rk} > 0, and {rk}, {sk} are positive almost periodic sequences. More
precisely, we show that (∗∗) is the so-called conditionally oscillatory; that is, we prove that
there exists a positive constant K (the oscillation constant) such that (∗∗) is oscillatory for
γ > K and non-oscillatory for γ < K.

Our research is motivated by the continuous case. It is a famous result due to Kneser
[21] that the differential Euler equation

y′′(t) +
γ

t2
y(t) = 0 (1.4)
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is conditionally oscillatory with the oscillation constant K = 1/4. It is known (see [22]) that
the equation

[
r(t)y′(t)

]′ +
γs(t)
t2

y(t) = 0, (1.5)

where r, s are positive periodic continuous functions, is conditionally oscillatory as well. We
also refer to [23] and [24–29] which generalize [23] (for the discrete case, see [30]). Since the
Euler difference equation

Δ2yk +
γ

(k + 1)k
yk+1 = 0 (1.6)

is conditionally oscillatory with the oscillation constant K = 1/4 (see [31]), it is natural
to analyse the conditional oscillation of (∗∗). Note that the announced result is more
general than the results known in the continuous case, because (∗∗) has almost periodic
coefficients. The conditional oscillation of discrete equations with constant coefficients can
be generalized in other ways. Point out [32], where an oscillation constant is characterized.
The constant from [32] coincides with our oscillation constant if the considered coefficients
are asymptotically constant.

Solutions of the second-order Sturm-Liouville difference equations with periodic
coefficients are studied in [33] (see also [34, 35]). In [36], the half-linear differential equations
of the second order with the Besicovitch almost periodic coefficients are considered and an
oscillation theorem for these equations is obtained.

In the last years, many results dealing with the conditional oscillation of second-order
equations and two-term equations of even order appeared. The two-term difference equation
of even order

(−1)n+1Δn

(
Γ(k + 1)

Γ(k − α + 1)
Δnyk

)
+ qkyk+n = 0, (1.7)

where Γ denotes the gamma function, is studied in [9, 10]. Results concerning the half-linear
difference equation

Δ
[
rkΦ
(
Δyk

)]
+ qkΦ

(
yk+1
)
= 0, (1.8)

where

rk > 0, Φ
(
y
)
=
∣∣y
∣∣α−1 sgny, α > 1, (1.9)

can be found in [37] for rk = 1, qk = γ(k + 1)−α and also in [38, 39] (for dynamic half-linear
equations on time scales, see [40–42]).

The paper is organized as follows. In Section 2, we mention only necessary
preliminaries and an auxiliary result. Our main result is proved in Section 3, where the
particular case concerning the equation with periodic coefficients is formulated as well. The
paper is finished by concluding remarks and simple examples.
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2. Preliminaries

We begin this section recalling some elements of the oscillation theory of the Sturm-Liouville
difference equation

Δ
(
rkΔyk

)
+ qkyk+1 = 0, rk > 0, k ∈ N. (2.1)

For more details, we can refer to books [43, 44] and references cited therein.
We recall that an interval (a, a + 1], a ∈ N, contains the generalized zero of a solution

{yk} of (2.1) if ya /= 0 and yaya+1 ≤ 0. Equation (2.1) is said to be conjugate on {a, . . . , a + n},
n ∈ N, if there exists a solution which has at least two generalized zeros on (a, . . . , a + n + 1]
or if the solution {ỹk} satisfying ỹa = 0 has at least one generalized zero on (a, . . . , a + n + 1].
Otherwise, (2.1) is said to be disconjugate on {a, . . . , a + n}. Since Sturmian theory is valid
for difference equations, all solutions of (2.1) have either a finite or an infinite number of
generalized zeros on N. Hence, we can categorize these equations as oscillatory and non-
oscillatory.

Definition 2.1. Equation (2.1) is called non-oscillatory provided a solution of (2.1) is
disconjugate at infinity, that is, there exists N ∈ N such that (2.1) is disconjugate on any
set [N,N +m] ∩ N, m ∈ N. Otherwise, we say that (2.1) is oscillatory.

Since we study a special case of (2.1), when the coefficients are almost periodic, we
also mention the basics of the theory of almost periodic sequences. Here, we refer to each one
of books [45, 46].

Definition 2.2. A real sequence {fk}k∈Z
is called almost periodic if, for any ε > 0, there exists a

positive integer p(ε) such that any set consisting of p(ε) consecutive integers contains at least
one integer l with the property that

∣∣fk+l − fk
∣∣ < ε, k ∈ Z. (2.2)

We say that a sequence {gk}∞k=1 is almost periodic if there exists an almost periodic sequence
{fk}k∈Z

for which fk = gk, k ∈ N.

The above definition of almost periodicity is based on the Bohr concept. Now we
formulate a necessary and sufficient condition for a sequence to be almost periodic. The
following theorem is often used as an equivalent definition (the Bochner one) of almost
periodicity for k ∈ Z.

Theorem 2.3. A sequence {fk}k∈Z
⊂ R is almost periodic if and only if any sequence of the form

{fk+h(n)}, where h(n) ∈ Z, n ∈ N, has a uniformly convergent subsequence with respect to k.

Proof. See [45, Theorem 1.26].

Corollary 2.4. Let {fk} be almost periodic. The sequence {1/fk} is almost periodic if and only if

inf
{∣∣fk
∣∣; k ∈ N

}
> 0. (2.3)
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Proof. The corollary follows from [45, Theorem 1.27] and [47, Theorem 1.9] (or directly from
Theorem 2.3). It suffices to use that (2.3) implies inf{|fk|} > 0 for any almost periodic
sequence {fk} if k ∈ Z.

Note that there exist nonzero almost periodic sequences {fk} for which (2.3) is not
satisfied (see, e.g., [48, Theorem 3]).

Theorem 2.5. If {fk} is an almost periodic sequence, then the limit

M
({
fk
})

:= lim
n→∞

fk + fk+1 + · · · + fk+n
n + 1

(2.4)

exists uniformly with respect to k.

Proof. See [45, Theorem 1.28].

Definition 2.6. Let {fk} be almost periodic. The number M({fk}) introduced in (2.4) is called
the mean value of {fk}.

Remark 2.7. For any positive almost periodic sequence {fk}, we have M({fk}) > 0. Indeed, if
we put ε = f1/2 and find a corresponding p(ε) in Definition 2.2, then we obtain

M
({
fk
}) ≥ f1

2p(ε)
> 0. (2.5)

In the proof of our main result, we use an adapted Riccati technique. The classical
Riccati technique deals with the so-called Riccati difference equation, which we obtain from
(2.1) using the substitution wk = rk(Δyk/yk), that is, we obtain the equation

Δwk + qk +
w2

k

wk + rk
= 0, k ∈ N. (2.6)

Putting ζk = −kwk, we adapt (2.6) to our purposes. A direct calculation leads to the equation

Δζk =
1
k

[

k(k + 1)qk + ζk +
(k + 1)ζ2k
krk − ζk

]

, k ∈ N. (2.7)

We also mention two lemmas which we use to prove the main result.

Lemma 2.8. Let the equation

Δ
(
rkΔyk

)
+ qkyk+1 = 0, k ∈ N, (2.8)

where sup{rk; k ∈ N} < ∞ and rk, qk > 0, k ∈ N, be non-oscillatory. For any solution {ζk} of the
associated equation (2.7), there exists k0 ∈ N such that, if ζk0+m < 0 for some m ∈ N, then ζk+m < 0,
k ≥ k0.



6 Abstract and Applied Analysis

Proof. Let {yk} be a solution of the non-oscillatory equation (2.8) for which ykyk+1 > 0, k ≥
k0. From [43, Lemma 6.6.1] it follows that the sequence {wk}∞k=k0 , where wk = rk(Δyk/yk),
is decreasing. Further, [43, Theorem 6.6.2] implies that limk→∞wk = 0. Thus, the sequence
{wk}∞k=k0 is positive, that is, ζk = −kwk < 0, k ≥ k0.

Lemma 2.9. If there exists a solution {ζk} of the associated equation (2.7) satisfying ζk < 0 for all
k ≥ k0, then (2.8) is non-oscillatory.

Proof. The statement of the lemma follows from [44, Theorem 6.16].

3. Oscillation Constant

This section is devoted to the main result of our paper. After its proof, within the concluding
remarks, we formulate as a corollary the result which deals with periodic equations. This
corollary is the discrete counterpart of the main result of [49].

Theorem 3.1. Let the equation

Δ(rkΔxk) +
γsk

(k + 1)k
xk+1 = 0, k ∈ N, (3.1)

where γ ∈ R and {rk} and {sk} are positive almost periodic sequences satisfying

inf{rk; k ∈ N} > 0, (3.2)

be arbitrarily given. Let

K :=
[
4M
({

r−1k
})

M({sk})
]−1

. (3.3)

Then, (3.1) is oscillatory for γ > K and non-oscillatory for γ < K.

Proof. At first, let us prepare several estimates which we will use to prove the theorem.
Henceforth, for given γ /=K, we will consider α ∈ N and ϑ > 0 such that

1
α

k+α−1∑

i=k

si > 2ϑ, k ∈ N, (3.4)

8

∣∣∣∣∣
1
α

k+α−1∑

i=k

1
ri

− 1
α

l+α−1∑

i=l

1
ri

∣∣∣∣∣
<

(
1
α

α∑

i=1

1
ri

)2
∣∣γ −K

∣∣ϑ, k, l ∈ N, (3.5)

2

∣∣∣∣∣∣
K −
(

4
α2

k+α−1∑

i=k

1
ri

l+α−1∑

i=l

si

)−1∣∣∣∣∣∣
<
∣∣γ −K

∣∣, k, l ∈ N. (3.6)
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The fact that such numbers α, ϑ exist follows from Theorem 2.5 and Remark 2.7 (consider
also Corollary 2.4 with (3.2)). We put

r− := inf{rk; k ∈ N}, r+ := sup{rk; k ∈ N}, s+ := sup{sk; k ∈ N}. (3.7)

The adapted Riccati equation associated to (3.1) has the form (see (2.7))

Δζk =
1
k

[

γsk + ζk +
(k + 1)ζ2k
krk − ζk

]

. (3.8)

Since one can express

ζk +
(k + 1)ζ2k
krk − ζk

=
kζk(rk + ζk)
krk + | ζk | if ζk < 0 for some k ∈ N, (3.9)

it is valid that

Δζk >
γsk
k

> 0 if ζk < −r+ for some k ∈ N, (3.10)

and that (C > 0 is arbitrarily given)

|Δζk| ≤ 1
k

[
γs+ +

k|ζk|(rk + |ζk|)
krk + |ζk|

]

<
γs+r− + C(r+ + C)

kr−
if ζk ∈ (−C, 0) for some k ∈ N.

(3.11)

Particularly, if ζk < 0 for all sufficiently large k, then there exists δ < 0 such that

ζk > δ for considered k. (3.12)

Indeed, it follows directly from (3.10) and (3.11).
Similarly, applying (3.10) and (3.11), it is seen that there exists k = k(δ, α) ∈ N for any

δ < 0 and α ∈ N with the property that the solution {ζk}∞k=k+m of the Cauchy problem

Δζk =
1
k

[

γsk + ζk +
(k + 1)ζ2k
krk − ζk

]

, ζk+m = ζ0 ∈ (2δ, δ], (3.13)

where m ∈ N, satisfies

{ζk}∞k=k+m ⊆ (min{2ζ0,−2r+},∞), {ζk}k+m+α−1
k=k+m

⊆ (min{2ζ0,−2r+}, 0), (3.14)
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and hence there exists Θ > 0 (consider again (3.11)) for which

∣
∣
∣ζk+m − ζk+m+j

∣
∣
∣ <

Θ

k
, j ∈ {1, . . . , α − 1}, m ∈ N. (3.15)

Now we can proceed to the oscillatory part of the theorem. By contradiction, we
suppose that γ > K and that (3.1) is non-oscillatory. According to Lemma 2.8, any solution
{ζk}∞k=k0 of the associated adapted Riccati equation (3.8) for which ζk0 < 0 satisfies ζk < 0,
k ≥ k0, if k0 is enough large. Further, (3.12) gives the existence of δ < 0 with the property that
ζk ∈ (δ, 0) for all k ≥ k0. Using (3.11), we obtain

|Δζk| <
γs+r− − δ(r+ − δ)

kr−
, k ≥ k0. (3.16)

Our goal is to achieve a contradiction with ζk ∈ (δ, 0) by estimating the arithmetic
mean of α subsequent values of ζk. We denote

ξk :=
1
α

k+α−1∑

i=k

ζi ∈ (δ, 0), k ≥ k0, (3.17)

and compute (for Δξk > 0)

Δξk =
1
α

k+α−1∑

i=k

Δζi =
1
α

k+α−1∑

i=k

1
i

[

γsi + ζi +
(i + 1)ζ2i
iri − ζi

]

≥ 1
k + α − 1

[
γ

α

k+α−1∑

i=k

si + ξk +
1
α

k+α−1∑

i=k

(i + 1)ζ2i
iri − ζi

]

=
1

k + α − 1

{
γ

α

k+α−1∑

i=k

si −
A2

k

2
+
1
α

k+α−1∑

i=k

[
(i + 1)ζ2i
iri − ζi

− ζ2i
ri

]

+ ξk +
A2

k

2
+
B2
k

2
+
1
α

k+α−1∑

i=k

ζ2i
ri

− B2
k

2

}

(3.18)

or (for Δξk < 0)

Δξk =
1
α

k+α−1∑

i=k

Δζi ≥ 1
k

{
γ

α

k+α−1∑

i=k

si −
A2

k

2
+
1
α

k+α−1∑

i=k

[
(i + 1)ζ2i
iri − ζi

− ζ2i
ri

]

+ξk +
A2

k

2
+
B2
k

2
+
1
α

k+α−1∑

i=k

ζ2i
ri

− B2
k

2

}

,

(3.19)

where

Ak :=

(
2
α

k+α−1∑

i=k

1
ri

)−1/2
, Bk := |ξk|

(
2
α

k+α−1∑

i=k

1
ri

)1/2

, k ≥ k0. (3.20)

Note that we can choose k0 ≥ α. For reader’s convenience, we will estimate Δξk stepwise.
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Step 1. We show that there exist k1 ≥ k0 and Γ > 0 such that

γ

α

k+α−1∑

i=k

si −
A2

k

2
+
1
α

k+α−1∑

i=k

[
(i + 1)ζ2i
iri − ζi

− ζ2i
ri

]

≥ Γ, k ≥ k1. (3.21)

Applying ζk ∈ (δ, 0) for k ≥ k0, we have (see (3.4) and (3.6))

γ

α

k+α−1∑

i=k

si −
A2

k

2
+
1
α

k+α−1∑

i=k

[
(i + 1)ζ2i
iri − ζi

− ζ2i
ri

]

=
γ

α

k+α−1∑

i=k

si − 1
2

(
2
α

k+α−1∑

i=k

1
ri

)−1
+
1
α

k+α−1∑

i=k

[
ζ2i ri + ζ3i
ri(iri − ζi)

]

≥ γ

α

k+α−1∑

i=k

si − 1
4

(
1
α

k+α−1∑

i=k

1
ri

)−1
− 1
α

k+α−1∑

i=k

δ2 r+ − δ

r−(ir−)

≥
(

1
α

k+α−1∑

i=k

si

)⎡

⎣γ − 1
4

(
1
α

k+α−1∑

i=k

1
ri

)−1(
1
α

k+α−1∑

i=k

si

)−1⎤

⎦

− 1
αk

k+α−1∑

i=k

δ2(r+ − δ)

(r−)2
> ϑ
(
γ −K

) − 1
k

(
δ2(r+ − δ)

(r−)2

)

, k ≥ k0.

(3.22)

Thus, there exist Γ > 0 and k1 with the property that (3.21) is satisfied for all k ≥ k1.

Step 2. It holds (see (3.17) and (3.20))

ξk +
A2

k

2
+
B2
k

2
=

A2
k

2
− | ξk | + B2

k

2
=

1
2
(Ak − Bk)2 ≥ 0, k ≥ k0. (3.23)

Step 3. We prove that there exists k2 ≥ k1 satisfying

1
α

k+α−1∑

i=k

ζ2i
ri

− B2
k

2
≥ −Γ

2
, k ≥ k2, (3.24)

where Γ is taken from Step 1. Considering (3.16), we obtain

|ζm − ζn| ≤
k+α−1∑

i=k

|Δζi| <
k+α−1∑

i=k

γs+r− − δ(r+ − δ)
ir−

≤ 1
k

k+α−1∑

i=k

γs+r− − δ(r+ − δ)
r−

(3.25)

for each m,n ∈ {k, . . . , k + α − 1}, k ≥ k0. Thus, it is true

|ζm − ζn| < D

k
, m, n ∈ {k, . . . , k + α − 1}, k ≥ k0, (3.26)
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where

D := α
γs+r− − δ(r+ − δ)

r−
. (3.27)

Now we can calculate (see (3.17))

1
α

k+α−1∑

i=k

ζ2i
ri

− B2
k

2
=

1
α

k+α−1∑

i=k

ζ2i
ri

− 1
2

(
2
α

k+α−1∑

i=k

1
ri

)

ξ2k

=
1
α

k+α−1∑

i=k

ζ2i − ξ2k
ri

= − 1
α

k+α−1∑

i=k

(|ξk| + |ζi|)(|ξk| − |ζi|)
ri

>
2δ
α

k+α−1∑

i=k

|ξk − ζi|
ri

>
2δD
αk

k+α−1∑

i=k

1
ri

≥ 2δD
kr−

, k ≥ k0.

(3.28)

Let us discuss the inequality before the final one in more detail. If we denote

ζ̂k− := max
{
ζj ; ζj ≤ ξk, j ∈ {k, . . . , k + α − 1}},

ζ̂k+ := min
{
ζj ; ζj ≥ ξk, j ∈ {k, . . . , k + α − 1}},

(3.29)

then we easily get (applying (3.26))

|ζi − ξk| ≤ max
{∣∣∣ζi − ζ̂k−

∣∣∣,
∣∣∣ζi − ζ̂k+

∣∣∣
}
<

D

k
, i ∈ {k, . . . , k + α − 1}, k ≥ k0. (3.30)

Of course, (3.28) implies the existence of k2 ≥ k1 such that (3.24) is satisfied.
Using the previous steps, it is possible to prove the following result. If l tends to

infinity, then so do ξl. Combining (3.21), (3.23), and (3.24), we obtain

Δξk ≥ 1
k + α − 1

(
Γ + 0 − Γ

2

)
=

Γ
2(k + α − 1)

, k ≥ k2. (3.31)

We use the estimate (3.18) because Δξk > 0. Summing inequality (3.31) from k2 to an integer
(l − 1) ≥ k2, we have

ξl ≥ ξk2 +
Γ
2

l−1∑

i=k2

1
i + α − 1

. (3.32)

This estimate implies that

lim inf
l→∞

ξl ≥ ξk2 +
Γ
2

∞∑

i=k2

1
i + α − 1

= ∞. (3.33)
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Particularly, ξk > 0 for sufficiently large k which means that ζk > 0 for infinitely many k. This
contradiction gives that (3.1) is oscillatory for γ > K.

To prove the non-oscillatory part of Theorem 3.1, we will consider the initial value
problem

Δζk =
1
k

[

γsk + ζk +
(k + 1)ζ2k
krk − ζk

]

, ζk̃ = −
(

2
α

α∑

i=1

1
ri

)−1
(3.34)

for some integer

k̃ > k

⎛

⎝−
(

2
α

α∑

i=1

1
ri

)−1
, α

⎞

⎠, (3.35)

where k satisfies (3.14) and (3.15). Let γ < K. Analogously as in the first part of the proof, we
put

ξk̃ :=
1
α

k̃+α−1∑

i=k̃

ζi < 0 (3.36)

and we express (for Δξk̃ > 0)

Δξk̃ =
1
α

k̃+α−1∑

i=k̃

Δζi =
1
α

k̃+α−1∑

i=k̃

1
i

[

γsi + ζi +
(i + 1)ζ2i
iri − ζi

]

≤ 1

k̃

⎡

⎣ γ
α

k̃+α−1∑

i=k̃

si + ξk̃ +
1
α

k̃+α−1∑

i=k̃

(i + 1)ζ2i
iri − ζi

⎤

⎦

=
1

k̃

⎡

⎣ γ
α

k̃+α−1∑

i=k̃

si − 1
4

(
1
α

α∑

i=1

1
ri

)−1
+
1
4

(
1
α

α∑

i=1

1
ri

)−1

+ξk̃ +
1
α

k̃+α−1∑

i=k̃

ζ2i
ri

− 1
α

k̃+α−1∑

i=k̃

ζ2i
ri

+
1
α

k̃+α−1∑

i=k̃

(i + 1)ζ2i
iri − ζi

⎤

⎦

(3.37)

or (for Δξk̃ < 0)

Δξk̃ =
1
α

k̃+α−1∑

i=k̃

Δζi ≤ 1

k̃ + α − 1

⎡

⎣ γ
α

k̃+α−1∑

i=k̃

si − 1
4

(
1
α

α∑

i=1

1
ri

)−1
+
1
4

(
1
α

α∑

i=1

1
ri

)−1

+ξk̃ +
1
α

k̃+α−1∑

i=k̃

ζ2i
ri

− 1
α

k̃+α−1∑

i=k̃

ζ2i
ri

+
1
α

k̃+α−1∑

i=k̃

(i + 1)ζ2i
iri − ζi

⎤

⎦.

(3.38)
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Again, we estimate Δξk̃ stepwise. Using (3.14) and

−r+ < −r
+

2
≤ −
(

2
α

α∑

i=1

1
ri

)−1
, (3.39)

we have

ζk > −2r+, k ≥ k̃, ζk̃, . . . , ζk̃+α−1 < 0. (3.40)

Similarly to the first part of the proof, we can show that

γ

α

k̃+α−1∑

i=k̃

si − 1
4

(
1
α

α∑

i=1

1
ri

)−1
+
1
α

k̃+α−1∑

i=k̃

(i + 1)ζ2i
iri − ζi

− 1
α

k̃+α−1∑

i=k̃

ζ2i
ri

=

⎛

⎝ 1
α

k̃+α−1∑

i=k̃

si

⎞

⎠

⎡

⎢
⎣γ − 1

4

(
1
α

α∑

i=1

1
ri

)−1⎛

⎝ 1
α

k̃+α−1∑

i=k̃

si

⎞

⎠

−1⎤

⎥
⎦ +

1
α

k̃+α−1∑

i=k̃

riζ
2
i + ζ3i

ir2i − ζiri

≤
⎛

⎝ 1
α

k̃+α−1∑

i=k̃

si

⎞

⎠γ −K

2
+
1
α

k̃+α−1∑

i=k̃

r+(2r+)2 + (2r+)3

i(r−)2

≤
⎛

⎝ 1
α

k̃+α−1∑

i=k̃

si

⎞

⎠γ −K

2
+
12(r+)3

k̃(r−)2
.

(3.41)

Thus (consider (3.4)), there exist k̂ ∈ N and

Γ̂ >
K − γ

2
ϑ (3.42)

such that

γ

α

k̃+α−1∑

i=k̃

si − 1
4

(
1
α

α∑

i=1

1
ri

)−1
+
1
α

k̃+α−1∑

i=k̃

(i + 1)ζ2i
iri − ζi

− 1
α

k̃+α−1∑

i=k̃

ζ2i
ri

≤ −Γ̂ (3.43)

for k̃ ≥ k̂. Henceforth, let k̃ ≥ k̂.
Now we want to estimate

Y :=
1
4

(
1
α

α∑

i=1

1
ri

)−1
+ ξk̃ +

1
α

k̃+α−1∑

i=k̃

ζ2i
ri
. (3.44)
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Firstly, consider that, for ζi = ζk̃, i ∈ {k̃, . . . , k̃ + α − 1}, it is valid

Y =
1
4

(
1
α

α∑

i=1

1
ri

)−1
−
(

2
α

α∑

i=1

1
ri

)−1
+

(
2
α

α∑

i=1

1
ri

)−2
1
α

k̃+α−1∑

i=k̃

1
ri
, (3.45)

and hence (see (3.5) and (3.42))

| Y − 0 | =
∣
∣
∣
∣
∣
∣

(
2
α

α∑

i=1

1
ri

)−2⎡

⎣ 1
α

k̃+α−1∑

i=k̃

1
ri

− 1
α

α∑

i=1

1
ri

⎤

⎦

∣
∣
∣
∣
∣
∣
<

1
8
(
K − γ

)
ϑ <

Γ̂
4

(3.46)

because

1
4

(
1
α

α∑

i=1

1
ri

)−1
−
(

2
α

α∑

i=1

1
ri

)−1
+

(
2
α

α∑

i=1

1
ri

)−2
1
α

α∑

i=1

1
ri

= 0. (3.47)

We repeat that (see (3.15))

∣∣∣ζk̃ − ζk̃+j

∣∣∣ <
Θ

k̃
, j ∈ {1, . . . , α − 1}, (3.48)

which gives

∣∣ζk̃ − ξk̃
∣∣ <

Θ

k̃
. (3.49)

Considering (3.40), (3.46), (3.48), and (3.49) together for general Y , we have

|Y | ≤ Γ̂
4
+
∣∣ξk̃ − ζk̃

∣∣ +
1
α

α−1∑

i=0

∣∣∣ζ2
k̃+i

− ζ2
k̃

∣∣∣

rk̃+i

=
Γ̂
4
+
∣∣ξk̃ − ζk̃

∣∣ +
1
α

α−1∑

i=0

∣∣ζk̃+i + ζk̃
∣∣ · ∣∣ζk̃+i − ζk̃

∣∣

rk̃+i
<

Γ̂
4
+
(
1 +

4r+

r−

)
Θ

k̃
.

(3.50)

Since it suffices to consider very large k̃, we can assume that |Y | < 2Γ̂/3.
Altogether, we obtain

Δξk̃ ≤ 1

k̃ + α − 1

(

−Γ̂ +
2Γ̂
3

)

< 0. (3.51)
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The resulting inequality (3.51) implies

Δξk̃ =
1
α

k̃+α−1∑

i=k̃

Δζi =
ζk̃+α − ζk̃

α
< 0, i.e., ζk̃+α < ζk̃. (3.52)

Partially, if

ζk = −
(

2
α

α∑

i=1

1
ri

)−1
for some k ≥ k̃, (3.53)

then from (3.14) it follows

ζk, ζk+1, . . . , ζk+α < 0, ζk+α < ζk. (3.54)

In fact (see the below given), this result remains true also if

ζk ∈
⎛

⎝−η −
(

2
α

α∑

i=1

1
ri

)−1
,−
(

2
α

α∑

i=1

1
ri

)−1⎞

⎠ (3.55)

for a number η > 0 which depends only on γ and K. Considering (3.15) for large k, it is seen
that the solution of the Cauchy problem (3.34) satisfies

ζk̃, ζk̃+α, . . . , ζk̃+nα, . . . < −
(

2
α

α∑

i=1

1
ri

)−1
, (3.56)

and hence (see (3.54))

ζk̃+n < 0, n ∈ N. (3.57)

Therefore, (3.57) and Lemma 2.9 say that (3.1) is non-oscillatory for γ < K.
It means that, to complete the proof, it suffices to find η > 0 which guaranties the

above-mentioned generalization, that is, we need to prove (3.51) for (3.55) with k = k̃. The
concrete initial value was not used in the proof of (3.43). Thus, Γ̂ depends only on γ and K.
Let

η := min

⎧
⎨

⎩

(
2
α

α∑

i=1

1
ri

)−1
,

(
1 +

3r+

r−

)−1 Γ̂
4

⎫
⎬

⎭
. (3.58)
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In the estimate of Y , since (3.14) and (3.15) remain true, we have (consider also (3.39), (3.48),
and (3.49))

ζk̃+j ∈ (−2r+, 0),
∣
∣
∣
∣
∣
∣
ζk̃+j +

(
2
α

α∑

i=1

1
ri

)−1∣∣
∣
∣
∣
∣
<

Θ

k̃
+ η,

∣
∣
∣
∣
∣
∣
ξk̃ +

(
2
α

α∑

i=1

1
ri

)−1∣∣
∣
∣
∣
∣
<

Θ

k̃
+ η,

(3.59)

where j ∈ {0, 1, . . . , α − 1}, and (see again (3.39))

|Y | ≤ Γ̂
4
+

∣
∣
∣
∣
∣
∣
ξk̃ +

(
2
α

α∑

i=1

1
ri

)−1∣∣
∣
∣
∣
∣
+
1
α

α−1∑

j=0

⎡

⎣ 1
rk̃+j

∣
∣
∣
∣
∣
∣
ζ2
k̃+j

−
(

2
α

α∑

i=1

1
ri

)−2∣∣
∣
∣
∣
∣

⎤

⎦

<
Γ̂
4
+
Θ

k̃
+ η +

1
α

α−1∑

j=0

⎡

⎣ 1
rk̃+j

∣
∣
∣∣∣∣
ζk̃+j −

(
2
α

α∑

i=1

1
ri

)−1∣∣
∣∣∣∣
·
∣
∣
∣∣∣∣
ζk̃+j +

(
2
α

α∑

i=1

1
ri

)−1∣∣
∣∣∣∣

⎤

⎦

<
Γ̂
4
+
Θ

k̃
+ η +

1
r−

(
Θ

k̃
+ η

)
(2r+ + r+)

=
Γ̂
4
+
[
1 +

3r+

r−

](
Θ

k̃
+ η

)
≤
[
1 +

3r+

r−

]
Θ

k̃
+
Γ̂
2
,

(3.60)

which confirms |Y | < 2Γ̂/3 and then the validity of (3.51).

Remark 3.2. Let us point out that the constant K arises from the calculations in Step 1.

Remark 3.3. If rk = sk = 1, k ∈ N, then K = 1/4 (see (3.3)); that is, Theorem 3.1 reduces to the
result about the discrete Euler equation.

Example 3.4. For arbitrarily given continuous function f : [−1, 1] → R
+ and a > 1, b, c ∈ R,

let us consider

Δ
(

Δxk

a + sin(bk) cos(ck)

)
+
γf(sin k)
k(k + 1)

xk+1 = 0, k ∈ N. (3.61)

The almost periodicity of {rk} = {[a + sin(bk) cos(ck)]−1}k∈N
and {sk} = {f(sin k)}k∈N

follows
from Corollary 2.4 and from, for example, [45, Theorem 1.27] and [47, Theorem 1.9]. It is seen
that

M
({

r−1k
})

= a, M({sk}) = 1
2π

∫π

−π
f(sinx)dx. (3.62)

Thus, (3.61) is oscillatory if

γ > K =
π

2a
∫π
−π f(sinx)dx

, (3.63)

and non-oscillatory if γ < K.
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Analogously, under the additional condition b /= 0, the oscillation constant for the
equation

Δ([a + sin(bk) cos(bk)]Δxk) +
γf(cos k)
k(k + 1)

xk+1 = 0, k ∈ N, (3.64)

is

K =
π2

b
∫π
−π f(cosx)dx

∫π/b
−π/b dy/

(
a + sin

(
by
)
cos
(
by
)) =

π
√
4a2 − 1

4
∫π
−π f(cosx)dx

. (3.65)

Evidently, any periodic sequence is almost periodic. Thus, we also obtain this new
result.

Corollary 3.5. The equation

Δ(rkΔxk) +
γsk

(k + 1)k
xk+1 = 0, k ∈ N, (3.66)

where γ ∈ R and {rk} and {sk} are positive sequences with period n ∈ N, is oscillatory if

γ > K :=

[(
2
n

n∑

i=1

1
ri

)(
2
n

n∑

i=1

si

)]−1
, (3.67)

and non-oscillatory if γ < K.

Remark 3.6. The border case given by γ = K remains open. Nevertheless, based on the
corresponding continuous case (see [23]) and other cases which generalize the discrete
equationwith constant coefficients (see, e.g., [10]with references cited therein), we conjecture
that (3.66) (with periodic coefficients) is non-oscillatory even for γ = K.

Example 3.7. Let an odd integer m ≥ 3 be given. We can use Corollary 3.5 for the equation

Δ
(∣∣∣∣sin

(2k − 1)π
12

∣∣∣∣Δxk

)
+

γ

k(k + 1)

(
1 + cos

2kπ
m

)
xk+1 = 0, k ∈ N. (3.68)

Since we can choose n = 6m, we obtain

M
({

r−1k
})

=
1
6m

6m∑

i=1

1
ri

=
1
6

6∑

i=1

∣∣∣∣sin
(2i − 1)π

12

∣∣∣∣

−1
=

√
2
3

(
1 + 2

√
3
)
,

M({sk}) = 1
6m

6m∑

i=1

si =
1
m

m∑

i=1

(
1 + cos

2iπ
m

)
= 1.

(3.69)
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Hence, the oscillation constant for (3.68) is

K =
3

4
√
2
(
1 + 2

√
3
) ≈ 2

17
. (3.70)

We add that we can use Theorem 3.1 also in the case when one of the sequences {rk}
and {sk} in (3.1) changes its sign. If the sequence {rk} in (3.71) changes its sign, then we have
to generalize the definition of the generalized zeros as follows. An interval (a, a + 1], a ∈ N,
contains the generalized zero of a solution {xk} of (3.71) if xa /= 0 and raxaxa+1 ≤ 0.

Corollary 3.8. Let the equation

Δ(rkΔxk) +
γsk

(k + 1)k
xk+1 = 0, k ∈ N, (3.71)

where γ ∈ R and {rk} and {sk} are nonzero almost periodic sequences, be given.

(i) If inf{rk; k ∈ N} > 0 and γ < [4M({r−1
k
})M({|sk|})]−1, then (3.71) is non-oscillatory.

(ii) If inf{|rk|; k ∈ N} > 0, {sk} is positive and γ > [4M({|rk|−1})M({sk})]−1, then (3.71)
is oscillatory.

Proof. Since the almost periodicity of {fk} implies the almost periodicity of {|fk|}, it suffices
to apply the discrete Sturm comparison theorem and Theorem 3.1.

At the end we remark that it is possible to find several definitions of almost periodicity
for k ∈ N in the literature. For example, concerning almost periodic sequences with indices
k ∈ N, we refer to [50]. There is proved that, for any precompact sequence {xk}k∈N

, there exists
a permutation P of the set of positive integers such that the sequence {xP(k)}k∈N

is almost
periodic. In fact, the so-called asymptotically almost periodic sequences are considered in [50]
(based on the Bochner concept), where a bounded sequence {xk}k∈N

is called asymptotically
almost periodic if the set of sequences {xk+p}k∈N

, p ∈ N, is precompact in the space of all
bounded sequences. We add that a sequence {xk}k∈N

is asymptotically almost periodic if and
only if it is the sum of an almost periodic sequence and a sequence which approaches zero as
k → ∞. One finds that this representation is unique. See, for example, [51, 52].

We consider difference equations with almost periodic coefficients given by the
limitation of almost periodic sequences on Z because this approach is the standard one. But
we conjecture that the main result can be similarly proved for almost periodic coefficients
defined in other ways (e.g., for the above-mentioned asymptotically almost periodic
sequences).
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[5] O. Došlý and Š. Pechancová, “Generalized zeros of 2 × 2 symplectic difference system and of its
reciprocal system,” Advances in Difference Equations, vol. 2011, Article ID 571935, 23 pages, 2011.

[6] S. Z. Chen and L. H. Erbe, “Oscillation and nonoscillation for systems of self-adjoint second-order
difference equations,” SIAM Journal on Mathematical Analysis, vol. 20, no. 4, pp. 939–949, 1989.

[7] R. Koplatadze, G. Kvinikadze, and I. P. Stavroulakis, “Oscillation of second-order linear difference
equations with deviating arguments,” Advances in Mathematical Sciences and Applications, vol. 12, no.
1, pp. 217–226, 2002.

[8] S. H. Saker and S. S. Cheng, “Kamenev type oscillation criteria for nonlinear difference equations,”
Czechoslovak Mathematical Journal, vol. 54, no. 4, pp. 955–967, 2004.
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[22] F. Gesztesy and M. Ünal, “Perturbative oscillation criteria and Hardy-type inequalities,” Mathematis-
che Nachrichten, vol. 189, pp. 121–144, 1998.

[23] K. M. Schmidt, “Critical coupling constants and eigenvalue asymptotics of perturbed periodic Sturm-
Liouville operators,” Communications in Mathematical Physics, vol. 211, no. 2, pp. 465–485, 2000.
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