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Pulsatile flow of blood in narrow tapered arteries with mild overlapping stenosis in the presence
of periodic body acceleration is analyzed mathematically, treating it as two-fluid model with the
suspension of all the erythrocytes in the core region as non-Newtonian fluid with yield stress and
the plasma in the peripheral layer region as Newtonian. The non-Newtonian fluid with yield stress
in the core region is assumed as (i)Herschel-Bulkley fluid and (ii)Casson fluid. The expressions for
the shear stress, velocity, flow rate, wall shear stress, plug core radius, and longitudinal impedance
to flow obtained by Sankar (2010) for two-fluidHerschel-Bulkleymodel and Sankar and Lee (2011)
for two-fluid Casson model are used to compute the data for comparing these fluid models. It
is observed that the plug core radius, wall shear stress, and longitudinal impedance to flow are
lower for the two-fluid H-B model compared to the corresponding flow quantities of the two-fluid
Casson model. It is noted that the plug core radius and longitudinal impedance to flow increases
with the increase of the maximum depth of the stenosis. The mean velocity and mean flow rate of
two-fluid H-B model are higher than those of the two-fluid Casson model.

1. Introduction

Atherosclerosis is an arterial disease in humans, which leads to the malfunctioning of
the cardiovascular system [1]. The intimal thickening of an artery is the initial stage in
the progression of atherosclerosis [2–4]. The lumen of the arteries is narrowed by the
development of atherosclerotic plaques that protrude into the lumen, resulting in stenosed
arteries. The wall of the artery is stiffened by the growth of plaque with a lipid core and
a fibromuscular cap and narrowing of lumen of the artery by the deposit of fats, lipids,
cholesterol, and so forth [5]. Stenoses in different shapes are formed in the arterial lumen
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and some of the stenoses shape are axisymmetric, asymmetric, overlapping, and multiple
[1, 6–8]. When a stenosis is developed in an artery, its serious consequences are the increased
resistance and the associated reduction of blood flow in the downstream [9, 10]. Thus, the
development of a stenosis in the lumen of an artery leads to the serious circulatory disorder.
Chakravarty et al. [11] pointed out that the blood vessels bifurcate at frequent intervals and
although the individual segments of arteries may be treated as uniform between bifurcations,
the diameter of the artery reduces considerably at each bifurcation. How and Black [12]
pronounced that the study of blood flow in tapered arteries is useful in the design of
prosthetic blood vessels as the use of grafts of tapered lumen has the surgical advantage.
Hence, it is important to mathematically analyze the blood flow in tapered arteries with
stenosis.

In many situations of our routine life such as traveling in vehicles, aircrafts, ships,
swinging in a cradle, subjecting to vibration therapy as a treatment for some disease,
sudden movements of body in sports activities, our body is exposed to body accelerations
or vibrations [8, 13–15]. In some situations like traveling in a bus/train, the whole of the
body is subjected to vibrations, while in some other occasions such as when operating jack
hammer or lathe machine, driving a car, applying vibration therapy as a medical treatment,
some specific part of our body is forced to vibrations [16, 17]. Exposure of our body to high
level unintended external body accelerations for a long period causes serious health hazards
due to the abnormal functioning of the cardiovascular system [18], and this leads to serious
cardiovascular diseases which show some symptoms like headache, abdominal pain, increase
in pulse rate, venous pooling of blood in the extremities, loss of vision, and hemorrhage in
the face, neck, eye sockets, lungs, and brain [16, 18–20]. Thus, it is useful to investigate the
effect of periodic body accelerations on the physiologically important flow measurements of
blood flow in arteries of different diameters.

Blood exhibits anomalous viscous properties. Blood, when it flows in larger diameter
arteries at high shear rates, it behaves like Newtonian fluid, but when it flows through narrow
diameter arteries at low shear rates, it shows notable non-Newtonian behavior [21]. Several
researchers investigated blood flow properties in constricted narrow arteries in the absence
and presence of externally imposed periodic body accelerations [22–27].

Several researchers [11, 28, 29] mentioned that when blood flows in smaller diameter
blood vessels at low shear rates, there is erythrocyte-free plasma layer adjacent to the vessel
wall and core layer of suspension of all erythrocytes and thus it is not realistic to model blood
as simply a single fluid non-Newtonian model. Hence, it is appropriate to model blood as a
two-fluid model when it flows through narrow diameter arteries at low shear rates (diameter
up to 1300μm) [30], treating the suspension of all the erythrocytes in the core region as a non-
Newtonian fluid and the cell free plasma in the peripheral layer region as Newtonian fluid.
Herschel-Bulkley (H-B) fluid model and Casson fluid model are some of the non-Newtonian
fluid models with yield stress which are commonly used as the non-Newtonian fluids to
represent the suspension of all the erythrocytes in the core region of blood flow in narrow
arteries [21, 28]. Some advantages of using H-B fluid rather than Casson fluid to model the
suspension of all the erythrocytes in the core region of the two-fluid flow modeling of blood
in narrow arteries are mentioned below.

Iida [31] reports “the velocity profiles of blood when it flows in the arterioles having
diameter less than 0.1mm are generally explained fairly by both Casson andH-B fluidmodels.
However, the velocity profiles of blood flow in the arterioles whose diameters are less than
0.065mm do not conform to the Casson fluid, but can still be explained by H-B fluid.”
Tu and Deville [22] reported that blood obeys Casson fluid’s constitutive equation only at
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moderate shear rates, whereas H-B fluid’s constitutive equation can be used still at low shear
rates and represents fairly closely what is occurring in blood. Chaturani and Palanisamy [6]
propounded that when blood flows in arteries of diameter 0.095mm, it behaves like H-B fluid
rather than other non-Newtonian fluids. Moreover, Casson fluid’s constitutive equation has
only one parameter namely the yield stress, whereas the H-B fluid’s constitutive equation
has one more parameter, namely, the power law index “n”, and thus one can obtain more
detailed information about the blood flow characteristics by using the H-B fluid model rather
than Casson fluid model [32]. Hence, it is appropriate to represent the suspension of all the
erythrocytes in the core region of the two-fluid model of blood (when it flows in narrow
diameter arteries at low shear rates) by H-B fluid rather than Casson fluid.

Sankar [33] and Sankar and Lee [34] studied the two-fluid H-B model and two-
fluid Casson model, respectively, for blood flow in a narrow artery with mild axisymmetric
stenosis under body accelerations. The pulsatile flow of two-fluid H-B fluid model and
two-fluid Casson fluid model for blood flow through narrow tapered arteries with mild
overlapping stenosis under periodic body acceleration has not been studied so far, to the
knowledge of the authors. Hence, in this study, a comparative study is performed for
the pulsatile flow of two-fluid H-B and Casson models for blood flow in narrow tapered
arteries with mild overlapping stenoses in the presence of periodic body acceleration. For
the two-fluid H-B model, the expressions obtained in Sankar [33] for shear stress, velocity
distribution, wall shear stress, and flow rate are used to compute the data for the present
comparative study. The aforesaid flow quantities obtained by Sankar and Lee [34] for two-
fluid Casson model are also used to compute the data for this comparative study. The layout
of the paper is as follows.

Section 2 mathematically formulates the two-fluid H-B and Casson models for blood
flow and applies the perturbation method of solution. In Section 3, the results of two-fluid
H-B model and two-fluid Casson model for blood flow in narrow tapered arteries with mild
overlapping stenosis are compared. Some possible clinical applications to the present study
are also given in Section 3. The main results are summarized in the concluding Section 4.

2. Mathematical Formulation

Consider an axially symmetric, laminar, pulsatile, and fully developed flow of blood
(assumed to be incompressible) in the axial (z) direction through a narrow tapered artery
with mild overlapping stenosis. Geometry of the segment of a narrow artery with mild
overlapping stenosis is shown in Figure 1(a). For different angles of tapering, the geometry
of the stenosed artery is depicted in Figure 1(b). The geometry of the stenosed tapered artery
at a cross-section in a time cycle is sketched in Figure 1(c). The segment of the artery under
study is considered to be long enough so that the entrance, end, and special wall effects can be
neglected. Since, the stenosis developed in the lumen of the segment of artery, it is appropriate
to treat the segment of the stenosed artery under study as rigid walled. Assume that there is
periodical body acceleration in the region of blood flow. Blood is modeled as a two-fluid
model, treating the suspension of all the erythrocytes in the core region as non-Newtonian
fluid with yield stress and the plasma in the peripheral layer region as Newtonian fluid. The
non-Newtonian fluid in the core region is represented by (i) Herschel-Bulkley (H-B) fluid
model and (ii) Casson fluid model. Cylindrical polar coordinate system (r, ψ, z) is used to
analyze the blood flow.
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Figure 1: Pictorial description of segment of the artery with overlapping stenosis.

2.1. Two-Fluid Herschel-Bulkley (H-B) Model

2.1.1. Governing Equations and Boundary Conditions

The geometry of the artery as shown in Figure 1 is mathematically defined as follows [29, 35]:

(
R,R1

)(
z, t
)

=

⎧
⎪⎪⎨
⎪⎪⎩

[
(mz + r0)(1, α) −

(
δP , δC

)(cosψ

L0

)(
z − d

)
g(z)

]
a1
(
t
)

if d ≤ z ≤ d +

(
3L0

2

)
,

(1, α)(mz + r0)a1
(
t
)

otherwise,

(2.1)
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where

g(z) =

⎧
⎨
⎩11 −

(
94

3L0

)(
z − d

)
+

⎛
⎝32

L
2
0

⎞
⎠(z − d

)2 −
⎛
⎝ 32

3L
3
0

⎞
⎠(z − d

)3
⎫
⎬
⎭,

a1
(
t
)
= 1 − b

(
cosωPt − 1

)
e−bωpt,

(2.2)

where R(z, t), R1(z, t) are the radius of the tapered stenosed arterial segment in the
peripheral layer region and core region, respectively; r0 is the radius of the artery in the
normal region; ψ and m(= tanψ) are the angle of tapering and slope of the tapered vessel
respectively; d is the location of the stenosis; 3L0/2 is the length of the stenosis; δP cosψ,
δC cosψ are the critical heights of the overlapping stenosis in the peripheral layer region
and core region, respectively; δC = αδP , a1(t) is the time variant parameter; b is a constant;
ω(= 2πfP ) is the angular frequency with fP as the pulse frequency. Length of the arterial
segment is taken to be of finite length L. It has been reported that the radial velocity is
negligibly small and can be neglected for a low Reynolds number flow in a narrow artery
withmild stenosis. Themomentum equations governing the blood flow in the axial and radial
directions simplify respectively to [33] as follows:

ρH
∂uH

∂t
= −∂p

∂z
− 1
r

∂

∂r
(rτH) + F

(
t
)

in 0 ≤ r ≤ R1(z),

ρN
∂uN

∂t
= −∂p

∂z
− 1
r

∂

∂r
(rτN) + F

(
t
)

in R1(z) ≤ r ≤ R(z),
(2.3)

0 = −∂p
∂r
, (2.4)

where the shear stress τ = |τrz| = −τrz (since τ = τH or τ = τN). The constitutive equations
of the fluids in motion in the core region (for H-B fluid) and in the peripheral region (for
Newtonian fluid) are given by

τH = n

√
μH

(
∂uH
∂r

)
+ τy if τH ≥ τy, Rp ≤ r ≤ R1(z), (2.5)

∂uH
∂r

= 0 if τH ≤ τy, 0 ≤ r ≤ Rp, (2.6)

τN = μN

(
−∂uN
∂r

)
if R1(z) ≤ r ≤ R(z), (2.7)

where uH, uN are the axial component of the fluid’s velocity in the core region and peripheral
region; τH, τN are the shear stress of the fluid in the core region (H-B fluid) and peripheral
layer region (Newtonian fluid); μH, μN are the viscosities of the H-B fluid and Newtonian
fluid with respective dimensions [ML−1T−2]nT andML−1T−1; ρH, ρN are the densities of the
H-B fluid and Newtonian fluid; p is the pressure; t is the time; τy is the yield stress of the fluid
in the core region. From (2.6), it is clear that the velocity gradient vanishes in the region where
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the shear stress is less than the yield stress which implies a plug flow whenever τH ≤ τy and
normal flow otherwise. The boundary conditions are

τH is finite,
∂uH
∂r

= 0 at r = 0,

τH = τN at r = R1(z),

uH = uN at r = R1(z),

uN = 0 at r = R(z).

(2.8)

Since the blood flow in arteries is due to the applied pressure gradient (due to the pumping
action of the heart) and is highly pulsatile, it is appropriate to assume the pressure gradient
as the following periodic function of z and t [16, 20].

−∂p
∂z

(
z, t
)
= A0 +A1 cos

(
ωpt

)
, (2.9)

where A0 is the steady component of the pressure gradient, A1 is the amplitude of the
pulsatile component of the pressure gradient, and ωp = 2πfp, fp is the pulse frequency
in Hz. Both A0 and A1 are functions of z [16]. The periodic body acceleration in the axial
direction is given by

F
(
t
)
= a0 cos

(
ωbt + φ

)
, (2.10)

where a0 is the amplitude, ωb = 2πfb, fb is the frequency in Hz and is assumed to be small
so that the wave effect can be neglected [20], and φ is the lead angle of F(t) with respect to
the heart action.

2.1.2. Nondimensionalization

Let us introduce the following nondimensional variables:

z =
z

R 0

, R(z) =
R(z)

R0

, R1(z) =
R1(z)

R0

, r =
r

R0

, t = ωP t,

d =
d

R0

, L0 =
L0

R0

, ω =
ωb

ωP
, uH =

uH

A0R
2
0 /4μ0

, uN =
uN

A0R
2
0/4μN

,

τH =
τH

A0R0/2
, τN =

τN

A0R0/2
, θ =

τy

A0 R0/2
, α2H =

R
2
0ωρH
μ0

,

α2N =
R

2
0 ωρN
μN

, Rp =
Rp

R0

, δp =
δp

R0

, δC =
δC

R0

, e =
A 1

A0
, B =

a0
A0

,

(2.11)
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where μ0 = μH(2/A0R0)
n−1

, which has the dimension as that of the Newtonian fluid’s
viscosity, αH is the pulsatile Reynolds number or generalized Wormersly frequency
parameter, and when n = 1, we get the Wormersly frequency parameter αN of the Newtonian
fluid. Applying (2.11) into (2.1)-(2.2), one can get the nondimensional form of the equations
for the geometry of the tapered stenosed arterial segment as follows:

(R,R1)(z, t)

=

⎧
⎨
⎩

[
(mz + r0)(1, α) − (δP , δC)

(
cosψ
L0

)
(z − d) g(z)

]
a1(t) if d ≤ z ≤ d +

(
3L0

2

)
,

(1, α)(mz + r0)a1(t) otherwise,

(2.12)

where

g(z) =

{
11 −

(
94
3L0

)
(z − d) +

(
32
L2
0

)
(z − d)2 −

(
32
3L3

0

)
(z − d)3

}
,

a1(t) = 1 − b(cos t − 1)e−bt.

(2.13)

Using the above nondimensional variables in (2.3) and (2.5)–(2.7), we obtain

α2H
∂uH
∂t

= 4(1 + e cos t) + 4B cos
(
ωt + φ

) − 2
r

∂

∂r
(rτH) if 0 ≤ r ≤ R1(z), (2.14)

α2N
∂uN
∂t

= 4(1 + e cos t) + 4B cos
(
ωt + φ

) − 2
r

∂

∂r
(rτN) if R1(z) ≤ r ≤ R(z), (2.15)

τH = n

√
−1
2
∂uH
∂r

+ θ if τH ≥ θ, Rp ≤ r ≤ R1(z), (2.16)

∂uH
∂r

= 0 if τH ≤ θ, 0 ≤ r ≤ Rp, (2.17)

τN = −1
2
∂uN
∂r

if R1(z) ≤ r ≤ R(z). (2.18)

The boundary conditions (in dimensionless form) are

τH is finite at r = 0,

∂uH
∂r

= 0 at r = 0,

τH = τN at r = R1(z),
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uH = uN at r = R1(z),

uN = 0 at r = R(z).

(2.19)

The volumetric flow rate Q (in nondimensional) is given by

Q = 4
∫R(z)
0

u(r, z, t)r dr, (2.20)

where Q = Q/[πR
4
0A0/8μ0] and Q is the volume flow rate.

2.1.3. Perturbation Method of Solution

As (2.14)–(2.18) form a system of nonlinear partial differential equations, it is not possible
to obtain the exact solution to it. Perturbation method is applied to solve this system of
differential equations with the boundary conditions (2.19). Since, the present study deals
with the slow flow of blood (low Reynolds number flow) where the effect of pulsatile
Reynolds numbers αH and αN are negligibly small and also they occur naturally in the
nondimensional form of the momentum equation, it is more appropriate to expand the
unknowns uH, uN, τH , and τN in (2.14) and (2.18) in the perturbation series about α2H and
α2N . The plug core velocity up and the velocity in the core region uH are expanded in the
perturbation series of powers of α2H (where α2H << 1) as follows:

uP (z, t) = u0P (z, t) + α2Hu1P (z, t) + · · · ,

uH(r, z, t) = u0H(r, z, t) + α2Hu1H(r, z, t) + · · · .
(2.21)

Similarly, we can expand τP , τH and RP in powers of α2H and un and τn in powers of α2N .
Applying the perturbation series expansions of uH and τH in (2.14) and then equating the
constant terms and α2H terms, we obtain

∂

∂r
(rτ0H) = 2

[
(1 + e sin t) + B cos

(
ωt + φ

)]
r,

∂u0H
∂t

= −2
r

∂

∂r
(rτ1H).

(2.22)

Approximating (2.16) using binomial series and then applying the perturbation series
expansions of uH and τH in (2.16) and thereafter equating the constant terms and α2H terms,
one can get

−∂u0H
∂r

= 2τ0Hn−1[τ0H − nθ],

−∂u1H
∂r

= 2nτ0Hn−2τ1H[τ0H − (n − 1)θ].

(2.23)
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Substituting the perturbation series expansions of uN and τN in (2.15) and then equating the
constant terms and α2N terms, one can obtain

∂

∂r
(rτ0N) = 2

[
(1 + e sin t) + B cos

(
ωt + φ

)]
r,

∂u0N
∂t

= −2
r

∂

∂r
(rτ1N).

(2.24)

On applying the perturbation series expansions of uN and τN in (2.18) and then equating the
constant terms and α2N terms, we can easily get

−∂u0N
∂r

= 2τ0N,

−∂u1N
∂r

= 2τ1N.

(2.25)

Use of the perturbation series expansion of uH, τH, uN , and τN in (2.19) and then equating
the constant terms and α2H and α2N terms, the boundary conditions decomposes respectively
to

τ0P and τ1P are finite at r = 0,

∂u0P
∂r

= 0,
∂u1P
∂r

= 0 at r = 0,

τ0H = τ0N, τ1H = τ1N at r = R1(z),

u0H = u0N, u1H = u1N at r = R1(z),

u0N = 0, u1N = 0 at r = R(z).

(2.26)

On solving the system of differential equations (2.22)–(2.25) with the help of bound-
ary conditions (2.26)–(45), one can get the following expressions for the unknowns
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τ0P , τ1P , u0P , u1P , u0H, u1H, τ0H, τ1H, u0N, u1N, τ0N , and τ1N (detail of obtaining these
expressions is given in Sankar [33]):

τ0P = g(t)R0P ,

τ0H = g(t)r,

τ0N = g(t)r,

u0N = g(t)R2
[
1 −

( r
R

)2]
,

u0H =
[
g(t)R

]
R

{
1−
(
R1

R

)2
}
+2
[
g(t)R1

]n
R1

[
1

(n + 1)

{
1−
(
r

R1

)n+1
}
− q

2

R1

{
1−
(
r

R1

)n}]
,

u0P =
[
g(t)R

]
R

{
1−
(
R1

R

)2
}
+2
[
g(t)R1

]n
R1

[
1

(n + 1)

{
1−
(
R0p

R1

)n+1}
− q

2

R1

{
1−
(
R0p

R1

)n
}]

,

τ1P = − 1
4
[
g(t)R

]
DR2

(
q2

R

){
1 −

(
R1

R

)2
}
− [g(t)R1

]n
DR2

1

×
⎡
⎣ n

2(n + 1)

(
q2

R1

)
− (n − 1)

2

(
q2

R1

)2

− n

2(n + 1)

(
q2

R1

)n+2
⎤
⎦,

τ1H = − 1
4
[
g(t)R

]
DR2

( r
R

){
1 −

(
R1

R

)2
}
− [g(t)R1

]n
DR2

1

×
[

n

(n + 1)(n + 3)

{(
n + 3
2

)(
r

R1

)
−
(
r

R1

)n+2
}
− (n − 1)
(n + 2)

(
q2

R1

)

×
{(

n + 2
2

)(
r

R1

)
−
(
r

R1

)n+1
}
− 3

(
n2 + 2n − 2

)

2(n + 2)(n + 3)

(
q2

R1

)n+3(
R1

r

)⎤
⎦,

τ1N = − [g(t)R]DRR1

[
1
4

(
r

R1

)
− 1
8

(
R1

R

)2(R1

r

)
− 1
8

(
R1

R

)2( r

R1

)3
]
− [g(t)R1

]n
DR2

1

×
⎡
⎣ n

2(n + 3)

(
R1

r

)
− n(n − 1)
2(n + 2)

(
q2

R1

)(
R1

r

)
− 3

(
n2 + 2n − 2

)

2(n + 2)(n + 3)

(
q2

R1

)n+3(
R1

r

)⎤
⎦,

u1N = − 2
[
g(t)R

]
DR2R1

[
1
8

(
R

R1

){
1−
( r
R

)2}
− 1
8

(
R1

R

)3

log
(
R

r

)
− 1
32

(
R

R1

){
1−
( r
R

)4}]

− 2
[
g(t)R1

]n
DR3

1 log
(
R

r

)⎡
⎣ n

2(n + 3)
−n(n − 1)
2(n + 2)

(
q2

R1

)
− 3
(
n2 + 2n − 2

)

2(n + 2)(n + 3)

(
q2

R1

)n+3
⎤
⎦,

u1H = − 2
[
g(t)R

]
DR2R1

[
3
32

(
R

R1

)
− 1
8

(
R1

R

)
+

1
32

(
R1

R

)3

+
1
8

(
R1

R

)3

log
(
R1

R

)]



Abstract and Applied Analysis 11

+ 2
[
g(t)R1

]n
DR3

1 log
(
R1

R

)⎡
⎣ n

2(n + 3)
− n(n − 1)
2(n + 2)

(
q2

R1

)
− 3

(
n2 + 2n − 2

)

2(n + 2)(n + 3)

(
q2

R1

)n+3
⎤
⎦

− n[g(t)R1
]n
DR1R

2

{
1 −

(
R1

R

)2
}[

1
2(n + 1)

{
1 −

(
r

R1

)n+1
}
− (n − 1)

2n

(
q2

R1

)

×
{
1 −

(
r

R1

)n}]

− 2n
[
g(t)R1

]2n−1
DR3

1

[
n

2(n + 1)2

{
1 −

(
r

R1

)n+1
}
− (n − 1)
2(n + 1)

(
q2

R1

){
1 −

(
r

R1

)n}

− n

2(n + 1)2(n + 3)

{
1 −

(
r

R1

)2n+2
}

+
(n − 1)

(
2n2 + 6n + 3

)

(n + 1)(n + 2)(n + 3)(2n + 1)

(
q2

R1

){
1 −

(
r

R1

)2n+1
}

− (n − 1)
2(n + 1)

(
q2

R1

){
1 −

(
r

R1

)n+1
}
+
(n − 1)2

2n

(
q2

R1

)2

×
{
1 −

(
r

R1

)n}
− (n − 1)2

2n(n + 2)

(
q2

R1

)2{
1 −

(
r

R1

)2n
}

− 3
(
n2 + 2n − 2

)

2(n − 1)(n + 2)(n + 3)

(
q2

R1

)n+3{
1 −

(
r

R1

)n−1}

+
3(n − 1)

(
n2 + 2n − 2

)

2(n − 2)(n + 2)(n + 3)

(
q2

R1

)n+4{
1 −

(
r

R1

)n−2}⎤
⎦,

u1P = − 2
[
g(t)R

]
DR2R1

[
3
32

(
R

R1

)
− 1
8

(
R1

R

)
+

1
32

(
R1

R

)3

+
1
8

(
R1

R

)3

log
(
R1

R

)]

+ 2
[
g(t)R1

]n
DR3

1 log
(
R1

R

)⎡
⎣ n

2(n + 3)
− n(n − 1)
2(n + 2)

(
q2

R1

)
− 3

(
n2 + 2n − 2

)

2(n + 2)(n + 3)

(
q2

R1

)n+3
⎤
⎦

− n[g(t)R1
]n
DR1R

2

{
1 −

(
R1

R

)2
}⎡
⎣ 1
2(n + 1)

⎧
⎨
⎩1 −

(
q2

R1

)n+1
⎫
⎬
⎭

− (n − 1)
2n

(
k2

R1

){
1 −

(
q2

R1

)n}⎤
⎦
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− 2n
[
g(t)R1

]2n−1
DR3

1

⎡
⎣ n

2(n + 1)2

⎧
⎨
⎩1 −

(
q2

R1

)n+1
⎫
⎬
⎭ − (n − 1)

2(n + 1)

(
q2

R1

){
1 −

(
q2

R1

)n}
−
2

+
(n − 1)

(
2n2 + 6n + 3

)

(n + 1)(n + 2)(n + 3)(2n + 1)

(
q2

R1

)⎧⎨
⎩1 −

(
q2

R1

)2n+1
⎫
⎬
⎭

− (n − 1)
2(n + 1)

(
q2

R1

)⎧⎨
⎩1 −

(
q2

R1

)n+1
⎫
⎬
⎭ +

(n − 1)2

2n

(
q2

R1

)2

×
{
1 −

(
q2

R1

)n}
− (n − 1)2

2n(n + 2)

(
q2

R1

)2
⎧
⎨
⎩1 −

(
q2

R1

)2n
⎫
⎬
⎭

− 3
(
n2 + 2n − 2

)

2(n − 1)(n + 2)(n + 3)

(
q2

R1

)n+3
⎧
⎨
⎩1 −

(
q2

R1

)n−1⎫⎬
⎭

+
3(n − 1)

(
n2 + 2n − 2

)

2(n − 2)(n + 2)(n + 3)

(
q2

R1

)n+4
⎧
⎨
⎩1 −

(
q2

R1

)n−2⎫⎬
⎭

⎤
⎦,

(2.27)

where g(t) = (1 + e cos t) + B cos(ωt + φ), D = [1/g(t)](dg(t)/dt), and q2 = θ/g(t). The
expression for wall shear stress τw is obtained as follows (see [33] for detail):

τw =
[
g(t)R

]
+ α2N

{
−1
8
[
g(t)R

]
DR2

[
1 −

(
R1

R

)4
]}

+ α2N

{
−

[
g(t)R1

]n
2(n + 2)(n + 3)

DR2
1

(
R1

R

)

×
⎡
⎣n(n + 2) − n(n − 1)(n + 3)

(
q2

R1

)
− 3
(
n2 + 2n − 2

)( q2

R1

)n+3
⎤
⎦
⎫
⎬
⎭.

(2.28)

The expression for the volume flow rate is obtained as follows (for detail see [33]):

Q = 4
[
g(t)R

]
R3

{
1 −

(
R1

R

)2
}⎡
⎣
(
q2

R1

)2

+
1
4

{
1 −

(
R1

R

)2
}⎤
⎦

+
4
[
g(t)R

]
R3

1

(n+2)(n+3)

⎡
⎣(n+2)−n(n+3)

(
q2

R1

)
+
(
n2+2n−2

)( q2

R1

)n+3
⎤
⎦
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+ 4α2H

⎡
⎣− [g(t)R]DR2R3

1

{
3
32

(
R

R1

)
− 1
8

(
R1

R

)
+

1
32

(
R1

R

)3

+
1
8

(
R1

R

)3

log
(
R1

R

)}

+
[
g(t)R1

]n
DR5

1 log
(
R1

R

)⎧⎨
⎩

n

2(n + 3)
−n(n − 1)
2(n + 2)

(
q2

R1

)
− 3
(
n2 + 2n − 2

)

2(n + 2)(n + 3)

(
q2

R1

)n+3
⎫
⎬
⎭

− n[g(t)R1
]n
DR2R3

1

{
1 −

(
R1

R

)2
}{

1
4(n + 3)

− (n − 1)
4(n + 2)

(
q2

R1

)

+

(
n2 + n − 5

)

4(n + 2)(n + 3)

(
q2

R1

)n+3
⎫
⎬
⎭

− n[g(t)R1
]2n−1

DR5
1

⎧
⎨
⎩

n

2(n + 2)(n + 3)
− n(n − 1)

(
4n2 + 12n + 5

)

(n + 2)(n + 3)(2n + 1)(2n + 3)

(
q2

R1

)

+
n(n − 1)2

2(n + 1)(n + 2)

(
q2

R1

)2

+

(
n3−2n2−11n+6)

2(n+1)(n+2)(n+3)

(
q2

R1

)n+3

− (n − 1)
(
n3 − 2n2 − 11n + 6

)

2n(n + 2)(n + 3)

(
q2

R1

)n+4

−
(
4n5 + 14n4 − 8n3 − 45n2 − 3n + 18

)

2n(n + 1)(n + 2)(n + 3)(2n + 3)

(
q2

R1

)2n+4
⎫
⎬
⎭

⎤
⎦

+ 4α2N

⎡
⎣− [g(t)R]DR4R1

{
1
24

(
R

R1

)
− 3
32

(
R1

R

)
+

5
96

(
R1

R

)5

−1
8

(
R1

R

)3(
logR1

){
1 −

(
R1

R

)2
}}

− [g(t)R1
]nDR2R3

1

{
1 −

(
R1

R

)2
}(

1 + 2 logR1
)

×
⎧
⎨
⎩

n

4(n + 3)
− n(n − 1)
4(n + 2)

(
q2

R1

)
− 3

(
n2 + 2n − 2

)

4(n + 2)(n + 3)

(
q2

R1

)n+3
⎫
⎬
⎭

⎤
⎦.

(2.29)

The expression for plug core radius is obtained as follows (detail of obtaining this expression
is given in [33]):

RP = k2 +

(
Dα2HR

2

4

)[
g(t)R

](q2

R

){
1 −

(
R1

R

)2
}

+
nDα2HR

2
1

2(n + 1)
[
g(t)R1

]n
⎧
⎨
⎩

(
q2

R1

)
−
(
n2 − 1

)

n

(
q2

R1

)2

−
(
q2

R1

)n+2
⎫
⎬
⎭.

(2.30)
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The resistance to flow in the artery is given by

Λ =
[1 + e cos t]

Q
, (2.31)

when R1 = R; the present model reduces to the single-fluid H-B model and in this case, the
expressions obtained in the present model for velocity, shear stress, wall shear stress, flow
rate, and plug core radius are in good agreement with those of Sankar and Ismail [14].

2.2. Two-Fluid Casson Fluid Model

2.2.1. Governing Equations and Boundary Conditions

Equations (2.1)-(2.2) which mathematically define the geometry of the tapered artery with
overlapping stenosis are assumed in this subsection. The momentum equations governing
the flow in the core region and peripheral layer region simplify to [34]

ρC
∂uC

∂t
= −∂p

∂z
− 1
r

∂

∂r
(rτC) + F

(
t
)

in 0 ≤ r ≤ R1(z), (2.32)

ρN
∂uN

∂t
= −∂p

∂z
− 1
r

∂

∂r
(rτN) + F

(
t
)

in R1(z) ≤ r ≤ R(z), (2.33)

0 = −∂p
∂r
, (2.34)

where the shear stress τ = |τrz| = −τrz (since τ = τC or τ = τN); τC and τN are the shear
stress of the fluid in the core region (Casson fluid) and peripheral layer region (Newtonian
fluid), respectively; uC and uN are the axial velocity of the fluid in the core region and
peripheral layer region, respectively; ρC and ρN are the densities of the Casson fluid and
Newtonian fluid, respectively; p is the pressure; t is the time. Equations (2.9) and (2.10)which
define mathematically the body acceleration term F(t) and pressure gradient −(∂p/∂z) are
assumed in this subsection. The constitutive equations of the fluids in motion in the core
region (Casson fluid) and peripheral layer region (Newtonian fluid) are

√
τC =

√
−μC

∂uC
∂r

+
√
τy if τC ≥ τy, Rp ≤ r ≤ R1(z),

∂uC
∂r

= 0 if τC ≤ τy, 0 ≤ r ≤ Rp,

τN = −μN
(
∂uN
∂r

)
if R1(z) ≤ r ≤ R(z),

(2.35)
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where τy is the yield stress; RP is the plug core radius; μC and μN are the viscosities of the
Casson fluid and Newtonian fluid, respectively. The appropriate boundary conditions of the
two-fluid flow are

τC is finite,
∂uC
∂r

= 0 at r = 0,

uN = 0 at r = R,

τC = τN, uC = uN at r = R1.

(2.36)

2.2.2. Nondimensionalization

Let us introduce the following nondimensional variables:

z =
z

R0

, R(z) =
R(z)

R0

, R1(z) =
R1(z)

R0

, r =
r

R0

, uC =
uC

A0R
2
0/4μC

,

uN =
uN

A0R
2
0/4μN

, τC =
τC

A0R0/2
, α2C =

R
2
0ωpρC
μC

, τN =
τN

A0R0/2
,

θ =
τy

A0R0/2
, α2N =

R
2
0ωpρN
μN

, Rp =
Rp

R0

, δp =
δp

R0

, δC =
δC

R0

,

e =
A1

A0
, B =

a0
A0

, ω =
ωb

ωp
, t = ωpt,

(2.37)

where αC and αN are the pulsatile Reynolds numbers of the Casson fluid and Newtonian
fluid, respectively. Using the nondimensional variables in the momentum equations (2.32)
and (2.33) and the constitutive equations (2.35), the simplified form of these equations can
be obtained respectively as follows:

α2C
∂uC
∂t

= 4(1 + e cos t) + 4B cos
(
ωt + φ

) − 2
r

∂

∂r
(rτC) if 0 ≤ r ≤ R1(z), (2.38)

α2N
∂uN
∂t

= 4(1 + e cos t) + 4B cos
(
ωt + φ

) − 2
r

∂

∂r
(rτN) if R1(z) ≤ r ≤ R(z), (2.39)

√
τC =

√
−1
2
∂uC
∂r

+
√
θ if τC ≥ θ, Rp ≤ r ≤ R1(z), (2.40)

∂uC
∂r

= 0 if τC ≤ θ, 0 ≤ r ≤ Rp, (2.41)

τN = −1
2
∂uN
∂r

if R1(z) ≤ r ≤ R(z). (2.42)
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Using the nondimensional variables, the boundary conditions become

τC is finite,
∂uC
∂r

= 0 at r = 0,

τC = τN, uC = uN at r = R,

uN = 0 at r = R.

(2.43)

Equations (2.12)-(2.13) which mathematically defines the nondimensional form of the
geometry of the segment of the tapered artery with overlapping stenosis is assumed in this
subsection.

The nondimensional volume flow rate Q is given by

Q = 4
∫R(z)
0

u(r, z, t)r dr, (2.44)

where Q = Q/[πR
4
0A0/8μC]; Q is the volume flow rate.

2.2.3. Perturbation Method of Solution

As it is not possible to find an exact solution to the system of nonlinear partial differential
equations (2.38)–(2.42), perturbation method is applied to obtain the asymptotic solution to
the unknowns uC, uN, τC, and τN . Since, the present study deals with the slow flow of blood
(low Reynolds number flow) where the effect of pulsatile Reynolds numbers αC and αN are
negligibly small and also they occur naturally in the nondimensional form of the momentum
equation, it is appropriate to expand (2.38)–(2.42) in the perturbation series about α2C and
α2N . The plug core velocity up and the velocity in the core region uC are expanded in the
perturbation series of α2C as follows (where α2C << 1):

up(z, t) = u0p(z, t) + α2Cu1p(z, t) + · · · ,

uC(r, z, t) = u0C(r, z, t) + α2Cu1C(r, z, t) + · · · .
(2.45)

Similarly, one may expand uN, τP , τC, τN , and the plug core radius RP in the
perturbation series about α2C and α2N , where α2N << 1. Using the perturbation series
expansions of uC and τC in (2.38) and then equating the constant terms and α2C terms, the
momentum equation of the core region decomposes to

∂

∂r
(rτ0C) = 2

[
1 + e sin t + B cos

(
ωt + φ

)]
r,

∂u0C
∂t

= −2
r

∂

∂r
(rτ1C).

(2.46)
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Applying the perturbation series expansions of uC and τC in (2.40) and then equating the
constant terms and α2C terms, the constitutive equation of the core region simplifies to

−∂u0C
∂r

= 2
(
τ0C − 2

√
θτ0C + θ

)
,

−∂u1C
∂r

= 2τ1C

⎛
⎝1 −

√
θ

τ0C

⎞
⎠.

(2.47)

Similarly, substituting the perturbation series expansions of uN and τN in (2.39) and then
equating the constant terms and α2N terms, the momentum equation of the peripheral region
decomposes to

∂

∂r
(rτ0N) = 2

[
1 + e sin t + B cos

(
ωt + φ

)]
r,

∂u0N
∂t

= −2
r

∂

∂r
(rτ1N).

(2.48)

Applying the perturbation series expansions of uN and τN in (2.42) and then equating the
constant terms and α2N terms, the constitutive equation of the peripheral region reduces to

−∂u0N
∂r

= 2τ0N,

−∂u1N
∂r

= 2τ1N.

(2.49)

Using the perturbation series expansions of uC, uN, τC, and τN in (2.43) and then equating
the constant terms and α2C and α2N terms, one can obtain

τ0P and τ1P are finite at r = 0,

∂u0P
∂r

= 0,
∂u1P
∂r

= 0 at r = 0,

τ0C = τ0N, τ1C = τ1N at r = R1(z),

u0C = u0N, u1C = u1N at r = R1(z),

u0N = 0, u1N = 0 at r = R(z).

(2.50)
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Solving the system of (2.46)–(2.49) using the boundary conditions (2.50), one can obtain the
following expressions for the unknowns u0P , u1P , τ0P , τ1P , u0C, u1C, τ0C, τ1C, u0N , u1N , τ0N ,
and τ1N :

τ0p = g(t)R0p,

τ0C = g(t)r,

τ0N = g(t)r,

u0N = g(t)R2
[
1 −

( r
R

)2]
,

u0C = g(t)R2

⎛
⎝
{
1 −

(
R1

R

)2
}
+
(
R1

R

)2

×
⎡
⎣1 −

(
r

R1

)2

− 8
3

√
q2

R1

{
1 −

(
r

R1

)3/2
}
+ 2

(
q2

R1

){
1 −

(
r

R1

)}⎤
⎦
⎞
⎠,

u0P = g(t)R2

⎛
⎝
{
1 −

(
R1

R

)2
}
+
(
R1

R

)2

×
⎡
⎣1 −

(
R0P

R1

)2

− 8
3

√
q2

R1

{
1 −

(
R0P

R1

)3/2
}
+ 2

(
q2

R1

){
1 −

(
R0P

R1

)}⎤
⎦
⎞
⎠

τ1p = −g(t)DR3

⎧
⎨
⎩

1
4

(
q2

R

)[
1 −

(
R1

R

)2
]
+
(
R1

R

)3
(
q2

R1

)⎡
⎣1
4
− 1
3

√
q2

R1
+

1
12

(
q2

R1

)2
⎤
⎦
⎫
⎬
⎭,

τ1C = − g(t)DR3

{
1
4

( r
R

)[
1 −

(
R1

R

)2
]
− 1
8

(
R1

R

)3

×
⎡
⎣2
(
r

R1

)
−
(
r

R1

)3

−
(
q2

R1

)4(
r

R1

)−1
− 8
21

√
q2

R1

×
⎛
⎝7

(
r

R1

)
− 4
(
r

R1

)5/2

− 3

(
q2

R1

)7/2(
r

R1

)−1
⎞
⎠
⎤
⎦
⎫
⎬
⎭,

τ1N = − g(t)DR2R1

⎧
⎨
⎩

[
1
4

(
r

R1

)
− 1
8

(
R1

R

)2( r

R1

)−1
− 1
8

(
R1

R

)2( r

R1

)3
]

+
(
r

R1

)−1(R1

R

)2
⎡
⎣1
8
− 1
7

√
q2

R1
+

1
56

(
q2

R1

)4
⎤
⎦
⎫
⎬
⎭,
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u1N = − g(t)DR3R1

⎧
⎨
⎩

[
1
4

(
R1

R

)−1{
1−
( r
R

)2}
− 1
4

(
R1

R

)3

log
( r
R

)−1
− 1
16

(
R1

R

)−1{
1−
( r
R

)4}]

−
(
R1

R

)3

log
( r
R

)
⎡
⎣1
4
− 2
7

√
q2

R1
+

1
28

(
q2

R1

)4
⎤
⎦
⎫
⎬
⎭,

u1C = − g(t)DR3R1

⎛
⎝
[
3
16

(
R1

R

)−1
− 1
4

(
R1

R

)
+

1
16

(
R1

R

)3

+
1
4

(
R1

R

)3

log
(
R1

R

)]

−
(
R1

R

)3

log
(
R1

R

)⎡
⎣1
4
− 2
7

√
q2

R1
+

1
28

(
q2

R1

)4
⎤
⎦

+
(
R1

R

){
1 −

(
R1

R

)2
}⎡
⎣1
4

{
1 −

(
r

R1

)}
− 1
3

√
q2

R1

{
1 −

(
r

R1

)3/2
}⎤
⎦

+
(
R1

R

)3
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where g(t) = (1 + e cos t) + B cos(ωt + φ), q2 = r|τ0P=θ = R0p = θ/g(t); D = [1/g(t)](dg(t)/dt).
The expression for wall shear stress τw can be obtained as follows (for detail, see [34]):
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The expression for volume flow rate is obtained as follows (see [34] for detail):

Q = g(t)R4
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The expression for the plug core radius RP can be obtained as follows (see [34] for details):
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The longitudinal impedance to flow is given by

Λ =
[1 + e cos t]

Q
. (2.55)

When R1 = R, the present model reduces to the single-fluid Casson model and in this case,
the expressions obtained in the present model for velocity, shear stress, wall shear stress, flow
rate, and plug core radius are identical with those of Nagarani and Sarojamma [16].

3. Numerical Simulation of the Results

The objective of the present mathematical analysis is to compare the two-fluid H-B and
Casson models for blood flow in narrow tapered arteries with mild overlapping stenosis
and bring out the advantageous of using the two-fluid H-B fluid model rather than the two-
fluid Casson fluid. It is also aimed to bring out the effects of body acceleration, tapering of
the artery, depth of the stenosis, yield stress, power law index, lead angle, frequency ratio,
and pressure gradient on the physiologically important flow quantities such as plug core
radius, plug flow velocity, velocity distribution, flow rate, wall shear stress, and longitudinal
impedance to flow. Range of the values of various parameters used in this mathematical
analysis is grouped below [33–36].

Angle of tapering ψ: −0.1–0.1; amplitude parameter of the artery radius (involved
in the time dependent term) b: 0–0.5; yield stress θ: 0–0.2; power law index n: 0.95–1.05;
pressure gradient e: 0–1; body acceleration B: 0–2; frequency parameter ω: 0–1; pulsatile
Reynolds numbers αH and αC: 0.2; lead angle φ: 0.2–0.5; maximum depth of the stenosis
in the peripheral layer region δP : 0–0.15. Stenosis location in axial direction z: 2–3.5.

The pulsatile Reynolds number ratio α is defined as α = αN/αH or α = αN/αC and its
value is taken as the same as those of αH or αC [29]. The value of αN is computed from these
relations. The value of the ratio β of central core radius βR0 to the normal artery radius R0 in
the unobstructed artery is taken in the range 0.925–0.975 [30]. Following Shukla et al. [37],
relations R1 = βR and δc = βδp are used to compute R1 and δc. The time for one complete
cardiac cycle is 0.85 second [36] and in our numerical simulations, the time range of 0–0.85
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Figure 2: Variation of plug core radius with axial distance for two-fluid H-B and Casson models and
different angle of tapering with b = 0.1, t = 60◦, δP = θ = 0.1, e = 0.5, B = 1, ω = 1, φ = αH = αC = 0.2,
and β = n = 0.95.

second is converted into one time cycle in degree measure ranging 0◦–360◦. From Figure 1(b),
it is noted that the angles of tapering ψ = −0.1 and ψ = 0.1 correspond to the converging and
diverging of the arterial diameter in the downstream of the flow, respectively, while ψ = 0
corresponds to the nontapered artery.

3.1. Plug Core Radius

Figure 2 depicts the variation of the plug core radius with axial distance for different angles
of tapering and two-fluid H-B and Casson models with b = 0.1, t = 60◦, δP = θ = 0.1, e =
0.5, B = 1, φ = αH = αC = 0.2, β = n = 0.95, and ω = 1. It is observed that the plug core
radius of the artery decreases rapidly with the increases of the axial variable z from 0 to 2.3
and then it increases slowly with the increase of z from 2.3 to 2.8 and then it decreases slowly
with the increase of z from 2.8 to 3.2 and then it increases rapidly when z increases further
from 3.2 to 3.5. One can see that for a given set of values of the parameters and for any angle
of tapering ψ, the plug core radius of the two-fluid H-B model is considerably lower than that
of the two-fluid Casson model. The variation of plug core radius with maximum depth of the
stenosis for different values of the amplitude parameter b of the time dependent radius of the
artery and two-fluid H-B and Casson fluid models with ψ = −0.1, t = 45◦, δP = θ = 0.1, B =
1, e = 0.5, φ = αH = αC = 0.2, ω = 1, z = 2.3, and β = n = 0.95 is illustrated in Figure 3. It
is noted that for both of the two-fluid models, the plug core radius decreases slowly with the
increase of the maximum depth of the stenosis. Figures 2 and 3 bring out the effect of angle
of tapering, depth of the stenosis, and amplitude of the time dependent artery radius on the
plug core radius of blood flow in a tapered artery with overlapping stenosis.

3.2. Plug Flow Velocity

Figure 4 shows the variation of plug flow velocity with yield stress for two-fluid H-B and
Casson models and different values of B and ψ with b = 0.1, β = 0.95, t = 60◦, δP = 0.1,
ω = 1, e = 0.5, φ = αH = αC = 0.2, z = 2.3, and β = n = 0.95. It is seen that for two-fluid H-B
model, the plug flow velocity of blood decreases very slowly with the increase of yield stress
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θ of the blood, whereas for two-fluid Casson model, it decreases rapidly with the increase
of the yield stress θ from 0 to 0.025 and then it decreases linearly when the yield stress θ
increases further from 0.025 to 0.2. It is also found that for a given set of values of all the
parameters, the plug flow velocity of blood is significantly higher when it is modeled by the
two-fluid model rather than by the two-fluid Casson model, which means that the plug flow
velocity of blood is linear and considerably higher when it is modeled by the two-fluid H-B
model. It is noted that the plug flow velocity of blood increases considerably when the body
acceleration parameter B increases and marginally when the angle of tapering ψ of the artery
increases when all the other parameters were held constant.

The plug flow velocity in a time cycle for the two-fluid H-B and Casson models and
different values of the parameters n, b, and β with t = 60◦, δP = θ = 0.1, e = 0.5, z = 2.3,
φ = αH = αC = 0.2,ω = 1, and ψ = −0.1 is depicted in Figure 5. It is found that for the two-fluid
H-B model, the plug flow velocity decreases very rapidly when the time variable t increases
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values of n, b and β with t = 60◦, δP = θ = 0.1, e = 0.5, z = 2.3, ω = 1, φ = αH = αC = 0.2, and ψ = −0.1.

from 0◦ to 120◦ and then it increases slowly when t increases from 120◦ to 180◦ and then it
decreases slowly when t increases from 180◦ to 210◦ and then it increases very rapidly when t
increases further from 210◦ to 360◦. But, for the two-fluid Casson model, its plug flow velocity
decreases rapidly when the time variable t increases from 0◦ to 90◦ and then it increases very
slowly when t increases from 90◦ to 120◦ and then it decreases very slowly when t increases
from 120◦ to 180◦ and then it increases very slowlywhen t increases from 180◦ to 210◦ and then
it decreases very slowly when t increases from 210◦ to 240◦ then it increases rapidly when t
increases further from 240◦ to 360◦. It is observed that for the fixed value of the parameter b of
the time dependent artery radius, the plug flow velocity decreases slightly with the increase
of either the power law index n or the peripheral layer thickness. On the other hand, the plug
flow velocity decreases considerably with the increase of the amplitude parameter b of the
time-dependent artery radius when all the other parameters are kept as invariables. Figures
4 and 5 bring out the effect of body acceleration, angle of tapering, peripheral layer thickness,
yield stress and power law index on the plug flow velocity of blood in a tapered narrow
artery with mild overlapping stenosis.

3.3. Velocity Distribution

Figure 6 shows the velocity distributions for two-fluid and single-fluid non-Newtonian
models andNewtonian fluidmodel and different values of the body acceleration parameter B
with n = β = 0.95, t = 210◦, b = 0.1, δP = θ = 0.1, e = 0.5, φ = α = αH = αC = 0.2, ω = 1, z = 2.3,
and ψ = −0.05. It is found that the velocity is higher for fluids without yield stress than that
of the fluids with yield stress. It is also seen that the highest velocity distribution is attained
for the power law fluid model with n = 0.95. The velocity distribution of the Newtonian fluid
model is slightly lower than that of the power law fluid model with n = 0.95 and the velocity
distributions of the two-fluid models are considerably higher than those of the respective
single-fluid models. For a given set of values of the parameters, the velocity of two-fluid H-B
model is significantly higher than that of the two-fluid Casson model. It is also found that the
velocity of two-fluid H-B and Casson models (or single-fluid H-B and Casson models) with
body acceleration is significantly higher than those of the respective fluid models without
body acceleration. It means that the presence of the body acceleration influences the velocity
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of blood flow by increasing its magnitude significantly. It is of interest to note that the plot
of the velocity distribution of the Newtonian fluid model (without body acceleration) is in
good agreement with the corresponding plot in Figure 2(b) of Mekheimer and El Kot [36].

3.4. Flow Rate

The variation of flow rate with pressure gradient ratio for two-fluid H-B and Casson models
and different values of B and ψ with t = 45◦, b = 0.1, β = n = 0.95, δP = θ = 0.1, ω = 1,
φ = αH = αC = 0.2, and z = 2.3 is sketched in Figure 7. It is clear that the flow rate of
blood increases linearly with the increase of the pressure gradient when blood is modeled
by either of these two-fluid models. But, for a given set of values of the parameters, the flow
rate of two-fluid H-B model is significantly higher than that of the two-fluid Casson model.
It is also noticed that for a given set of values of the parameters, the flow rate increases with
the increase of either the body acceleration B or angle of tapering ψ. But, the increase in the
flow rate is significant when the body acceleration parameter B increases and marginal when
the angle of tapering ψ increases. Figure 8 illustrates the variation of flow rate with yield



26 Abstract and Applied Analysis

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0 0.05 0.1 0.15 0.2

Fl
ow

 r
at

e
Q

Yield stress θ

Two-fluid H-B model withβ = 0.925, b = 0.5

Two-fluid H-B model withβ = 0.975, b = 0.5

Two-fluid H-B model withβ = 0.925, b = 0.1

Two-fluid Casson model
with β = 0.925, b = 0.1

Two-fluid Casson model
with β = 0.925, b = 0.5

Two-fluid Casson model withβ = 0.975, b = 0.5

Figure 8: Variation of flow arte with yield stress for two-fluid H-B and Casson models and different values
of b and β with t = 60◦, B = 1, ψ = −0.1, n = 0.95, δP = 0.1, φ = α = αH = αC = 0.2, ω = 1, and z = 2.3.

stress for two-fluid H-B and Casson models and different values of b and β with t = 60◦,
B = 1, ω = 1, ψ = −0.1, n = 0.95, δP = 0.1, φ = α = αH = αC = 0.2, and z = 2.3. It is
seen that the flow rate of blood decreases very slowly with the increase of the yield stress θ
when blood is represented by two-fluid H-B model, whereas the flow rate of blood decreases
significantly with the increase of the yield stress θ from 0 to 0.025 and then it decreases slowly
with the increase of the yield stress from 0.025 to 0.2. Also, it is observed that the flow rate
of blood increases considerably with the increase of the peripheral layer thickness and the
amplitude parameter b of the time dependent artery radius. Figures 7 and 8 spell out the
effect of peripheral layer thickness, angle of tapering, and body acceleration on the flow rate
of blood when it is flowing through a tapered artery with mild constriction.

3.5. Wall Shear Stress

Figure 9 depicts the variation of wall shear stress with frequency ratio for two-fluid H-B and
Casson models and different values of φ and b with t = 60◦, B = 1, ψ = −0.1, β = n = 0.95,
δP = 0.1, α = αH = αC = 0.2, and z = 2.3. It is found that the wall shear stress decreases slowly
when the frequency ratioω increases from 0 to 0.2 and then it decreases rapidly (nonlinearly)
when the frequency ratio ω increases further from 0.2 to 1. It is also clear that the wall shear
stress in blood flow increases considerably with the increase of the amplitude b of the time
dependent artery radius when the lead angle is fixed. On the other hand, the wall shear stress
in blood flow decreases significantly with the increase of the lead angle φ when all the other
parameters were held constant. One can observe that the wall shear stress of two-fluid H-B
model is slightly lower than that of the two-fluid Casson model.

3.6. Longitudinal Impedance to Flow

The variation of the longitudinal impedance to flow with axial distance for two-fluid H-B
and Casson models and different values of B and ψ with β = n = 0.95, θ = δP = 0.1,
t = 60◦, φ = α = αH = αC = 0.2, and b = 0.1 is illustrated in Figure 10. It is observed
that the longitudinal impedance to blood flow increases rapidly when the axial variable z
increases from 2 to 2.3 and then it decreases slowly with the increase of z from 2.3 to 2.8
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Figure 9: Variation of wall shear stress with frequency ratio for two-fluid H-B and Casson fluid models
and different values of φ and b with t = 60◦, B = 1, ψ = −0.1, β = n = 0.95, δP = 0.1, α = αH = αC = 0.2, and
z = 2.3.
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Figure 10: Variation of longitudinal impedance to flow with axial distance for two-fluid H-B and Casson
models and different values of B and ψ with β = n = 0.95, θ = δP = 0.1, φ = α = αH = αC = 0.2, t = 60◦, and
b = 0.1.

and then it increases slowly when z increases from 2.8 to 3.2 and then it decreases rapidly
when the axial variable z increases further from 3.2 to 3.5. One can notice that for a given
set of values of the parameters, the longitudinal impedance to flow of the two-fluid H-B
model is significantly lower than that of the two-fluid Casson model. It is also found that
the longitudinal impedance of the blood flow with body acceleration is considerably lower
when compared to the longitudinal impedance of the blood flow without body acceleration,
meaning that the presence of body acceleration in blood flow considerably reduces the
impedance to flow. It is clear that the longitudinal impedance to blood flowdecreases with the
increase of the angle of tapering of the artery. Figure 11 sketches the variation of longitudinal
impedance to flowwithmaximumdepth of the stenosis for two-fluidH-B and Cassonmodels
and different values of b with B = 1, ψ = −0.1, t = 60◦, β = n = 0.95, θ = δP = 0.1,
φ = α = αH = αC = 0.2, and b = 0.1. It is seen that the longitudinal impedance to blood flow
increases slowly with the increase of the maximum depth of the stenosis δP form 0 to 0.1 and
then it increases considerably when the stenosis depth δP increases further from 0.1 to 0.15. It
is also noted that the longitudinal impedance to blood flow decreases considerably with the
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Figure 11: Variation of longitudinal impedance to flow with maximum depth of the stenosis for two-fluid
H-B and Casson models and different values of b with B = 1, ψ = −0.1, t = 60◦, β = n = 0.95, θ = δP = 0.1,
φ = α = αH = αC = 0.2, and b = 0.1.

increase of the amplitude parameter b of the time-dependent radius of the artery. One can
observe that the longitudinal impedance to flow of the two-fluid H-B model is considerably
lower than that of the two-fluid Casson model. Figures 10 and 11 spell out the effects of non-
Newtonian nature of blood, body acceleration, time dependent radius, and angle of tapering
of the artery on the longitudinal impedance to blood flow in a constricted narrow tapered
artery.

The increase in the longitudinal impedance to blood flow due to the increase in the
maximum depth of the stenosis is defined as the ratio between the longitudinal impedance
to flow of a fluid model for a given set of values of the parameters in an artery with stenosis
and the longitudinal impedance of the same fluid model and for the same set of values of the
parameters in the normal artery. The estimates of the increase in the longitudinal impedance
to flow due to the increase in the maximum depth of the stenosis for two-fluid H-B and
Casson models and for different angles of tapering with B = 1, t = 60◦, β = n = 0.95, ω = 1,
e = 0.5, θ = 0.1, φ = α = αH = αC = 0.2, z = 2.3, and b = 0.1 are computed in Table 1. It
is observed that the estimates of the increase in the longitudinal impedance to blood flow
increase slowly with the increase of the maximum depth of the stenosis and they decrease
very slowly with the increase of the angle of tapering of the artery. It is also recorded that the
estimates of the increase in the longitudinal impedance to flow of the two-fluid H-B model
are marginally lower than those of the two-fluid Casson model.

3.7. Some Possible Clinical Applications

To discuss on some possible clinical applications of this study, the physiological data (for
different types of arteries, their corresponding radii, and steady and pulsatile pressure
gradient values) reported by Chaturani and Issac [20] are given in Table 2 and are used in this
part of study. For this clinical data (given in Table 2), the estimates of the mean velocity for
two-fluid H-B and Casson models and different values ofm and B with t = 60◦, β = n = 0.95,
z = 2.3, θ = δP = 0.1, φ = α = αH = αC = 0.2, e = 0.5, ω = 1, and b = 0.1 are computed in
Table 3. It is noted that the mean velocity of blood decreases significantly with the increase of
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Table 1: Estimates of the increase in the longitudinal impedance to flowdue to the increase in themaximum
depth of the stenosis for two-fluid H-B and Casson models and for different angles of tapering with B = 1,
t= 60◦, β = n = 0.95, θ = 0.1, φ = α = αH = αC = 0.2, z = 2.3, e = 0.5, ω = 1, and b = 0.1.

δP
Two-fluid H-B model Two-fluid Casson model

ψ = −0.1 ψ = 0 ψ = 0.1 ψ = −0.1 ψ = 0 ψ = 0.1
0.025 1.1398 1.1392 1.1386 1.1440 1.1433 1.1627
0.05 1.3049 1.3034 1.3020 1.3147 1.3132 1.3354
0.075 1.5009 1.4983 1.4957 1.5183 1.5155 1.5412
0.1 1.7350 1.7308 1.7267 1.7626 1.7582 1.7880
0.125 2.0165 2.0103 2.0041 2.0577 2.0511 2.0858
0.15 2.3574 2.3483 2.3393 2.4170 2.4072 2.4480

Table 2: Physiological data for different arteries.

Serial number Artery Radius (×10−2 m) A0 (×10Kgm−2 s−1) A1 (×10Kgm−2 s−1)
1 Aorta 1.0 7.3 1.46
2 Femoral 0.5 32.0 6.4
3 Carotid 0.4 50.0 10.0
4 Coronary 0.15 698.65 139.74
5 Arteriole 0.008 2000.0 400

Table 3: Estimates of mean velocity of two-fluid H-B and Casson models for different values ofm and B in
arteries with different radii with t = 60◦, β = n = 0.95, θ = δP = 0.1, φ = α = αH = αC = 0.2, z = 2.3, e = 0.5,
ω = 1, and b = 0.1.

(a) Two-fluid H-B model (×10−2 m s−1)

Serial number Artery type B = 0 B = 2
ψ = −0.1 ψ = 0 ψ = 0.1 ψ = −0.1 ψ = 0 ψ = 0.1

1 Aorta 41.41 44.35 47.25 46.34 49.62 53.25
2 Femoral 47.73 50.07 53.82 51.38 54.67 57.49
3 Carotid 47.73 52.07 55.82 51.38 54.67 57.49
4 Coronary 90.43 93.85 96.61 93.41 96.33 99.75
5 Arteriole 0.63 0.72 0.78 0.69 0.79 0.91

(b) Two-fluid Casson model (×10−2 m s−1)

Serial number Artery type B = 0 B = 2
ψ = −0.1 ψ = 0 ψ = 0.1 ψ = −0.1 ψ = 0 ψ = 0.1

1 Aorta 37.41 40.89 44.72 42.49 46.01 50.76
2 Femoral 42.95 46.05 50.65 48.79 51.98 55.14
3 Carotid 42.95 46.05 50.65 49.79 51.98 55.14
4 Coronary 84.63 87.67 92.77 89.36 92.57 95.85
5 Arteriole 0.52 0.64 0.77 0.65 0.77 0.90

the artery radius except in the arterioles and it increases considerably with the increase of the
angle of tapering. It is also observed that the mean velocity of blood increases significantly
with the increase of the body acceleration. From Tables 3(a) and 3(b), it is recorded that the
estimates mean velocity of the two-fluid H-B model are significantly higher than those of the
two-fluid Casson model.
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Table 4: Estimates of mean flow rate of two-fluid H-B and Casson models for different values of m and B
in arteries with different radii with t = 60◦, β = n = 0.95, θ = δP = 0.1, φ = α = αH = αC = 0.2, z = 2.3,
e = 0.5, ω = 1, and b = 0.1.

(a) Two-fluid H-B model (×10−2 m s−1)

Serial number Artery type B = 0 B = 2
ψ = −0.1 ψ = 0 ψ = 0.1 ψ = −0.1 ψ = 0 ψ = 0.1

1 Aorta 68.16 72.58 76.57 74.63 80.28 86.48
2 Femoral 15.28 18.23 21.26 20.54 26.41 30.27
3 Carotid 10.69 12.27 14.72 13.66 15.64 18.27
4 Coronary 4.25 4.89 5.11 4.57 4.93 5.28
5 Arteriole 72.5E−6 77.2E−6 82.4E−6 74.6E−6 80.6E−6 85.6E−6

(b) Two-fluid Casson model (×10−2 m s−1)

Serial number Artery type B = 0 B = 2
ψ = −0.1 ψ = 0 ψ = 0.1 ψ = −0.1 ψ = 0 ψ = 0.1

1 Aorta 63.35 68.54 73.17 69.46 75.39 81.81
2 Femoral 12.85 15.63 18.83 16.53 21.18 26.44
3 Carotid 8.21 10.87 13.16 11.43 13.95 15.73
4 Coronary 3.16 3.57 3.95 3.45 3.99 4.36
5 Arteriole 66.7E−6 71.6E−6 77.2E−6 70.1E−6 75.4E−6 81.1E−6

For the clinical data given in Table 2, the estimates of mean flow rate for the two-fluid
H-B and Casson models and different values of m and B with t = 60◦, β = n = 0.95, z = 2.3,
θ = δP = 0.1, φ = α = αH = αC = 0.2, e = 0.5, ω = 1, and b = 0.1 are computed in Table 4. It
is found that the mean flow rate of blood increases very significantly with the increase of the
artery radius and it increases considerably with the increase of the angle of tapering. One can
also note that the mean flow rate of blood increases significantly with the increase of the body
acceleration. From Tables 4(a) and 4(b), it is observed that the estimates of the mean flow rate
of the two-fluid H-Bmodel are considerably higher than those of the two-fluid Cassonmodel.

4. Conclusions

The present comparative analysis brings out several useful rheological properties of blood
when it flows through narrow tapered arteries with mild overlapping time-dependent
stenosis in the presence of external periodic body acceleration, treating it as (i) two-fluid H-B
model and (ii) two-fluid Casson model. Some major findings of this mathematical analysis
which reveal in blood flow modeling, the advantages of treating blood as two-fluid H-B
model rather than two-fluid Casson model, are summarized below.

(i) The plug core radius, wall shear stress, and longitudinal impedance to flow are
marginally lower for the two-fluid H-B model compared to the corresponding flow
quantities of the two-fluid Casson fluid model.

(ii) The plug flow velocity, velocity distribution, and flow rate of blood are considerably
higher for the two-fluid H-B fluid model than to those of the two-fluid Casson fluid
model.

(iii) The estimates of the mean velocity and mean flow rate of the two-fluid H-B model
are considerably higher than those of the two-fluid Casson model. On the other
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hand, the following similarities are noticed when modeling blood by either of these
two models.

(iv) The plug core radius and longitudinal impedance to flow increases with the
increase of the maximum depth of the stenosis.

(v) When the angle of tapering increases, the plug flow velocity and flow rate increase
and the longitudinal impedance to flow decreases.

(vi) The estimates of the mean velocity and mean flow rate increase considerably
with the increase of the body acceleration and this behavior is reversed when the
maximum depth of the overlapping stenosis increases.

From the results discussed, one can observe that there is substantial difference
between the flow quantities of two-fluid H-B model and two-fluid Casson model, and
thus it is expected that the use of two-fluid H-B fluid for blood flow in diseased artery
may provide better results which may be useful to physicians in predicting the effects
of periodic body accelerations and maximum depth of the stenosis in the artery on the
physiologically important flow quantities. Also, the results of this study may provide some
useful information to surgeons to take some crucial decisions regarding the treatment of
patients, whether the cardiovascular disease can be treated with medicines or should the
patient undergo a surgery. Hence, it is concluded that the present study can be considered as
an improvement in the mathematical modeling of blood flow in narrow tapered arteries with
mild overlapping stenosis under periodic body accelerations.

Nomenclature

r: Radial distance
r: Dimensionless radial distance
z: Axial distance
z: Dimensionless axial distance
n: Power law index
p: Pressure
p: Dimensionless pressure
P : Dimensionless pressure gradient
Q: Flow rate
Q: Dimensionless flow rate
R0: Radius of the normal artery
R(z): Radius of the artery in the stenosed region
R(z): Dimensionless radius of the artery in the stenosed region
F(t): Body acceleration function
a0: Amplitude of the body acceleration
RP : Plug core radius
RP : Dimensionless plug core radius
uH : Axial velocity of Herschel-Bulkley fluid
uH : Dimensionless axial velocity of Herschel-Bulkley fluid
uC: Axial velocity of Casson fluid
uC: Dimensionless axial velocity of Casson fluid
A0: Steady component of the pressure gradient
A1: Amplitude of the pulsatile component of the pressure gradient
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L: Length of the normal artery
d: Location of the stenosis
d: Dimensionless location of the stenosis
t: Time
t: Dimensionless time.

Greek Letters

Λ: Dimensionless longitudinal impedance to flow
φ: Azimuthal angle
γ̇ : Shear rate
τy: Yield stress
θ: Dimensionless yield stress
τH : Shear stress of the Herschel-Bulkley fluid
τH : Dimensionless shear stress of Herschel-Bulkley fluid
τC: Shear stress for Casson fluid
τC: Dimensionless shear stress of Casson fluid
τw: Dimensionless wall shear stress
ρH : Density of Herschel-Bulkley fluid
ρC: Density of Casson fluid
μH : Viscosity of Herschel-Bulkley fluid
μC: Viscosity of the Casson fluid
αH : Pulsatile Reynolds number of Herschel-Bulkley fluid
αC: Pulsatile Reynolds number of Casson fluid
α: Pulsatile Reynolds number ratio
δP : Depth of the stenosis in the peripheral layer region
δP : Dimensionless depth of the stenosis in the peripheral layer region
ω: Angular frequency of the blood flow
φ: Lead angle.

Subscripts

w: Wall shear stress (used for τ)
H: Herschel-Bulkley fluid (used for u, u, τ, τ)
C: Newtonian fluid (used for u, u, τ, τ)
P : Plug core region.
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