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The spectral properties for n order differential operators are considered.When given a spectral gap
(a, b) of the minimal operator T0 with deficiency index r, arbitrary m points βi (i = 1, 2, . . . , m) in
(a, b), and a positive integer function p such that

∑m
i=1 p(βi) ≤ r, T0 has a self-adjoint extension T̃

such that each βi (i = 1, 2, . . . , m) is an eigenvalue of T̃ with multiplicity at least p(βi).

1. Introduction

In this paper, we consider the following nth-order formal symmetric differential expression:

τy = w−1

⎧
⎨

⎩

[n/2]∑

j=0
(−1)j

(
pjy

(j)
)(j)

+
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]
⎫
⎬

⎭
, (1.1)

on (α, β), where −∞ ≤ α < β ≤ +∞, y = y(t) is a complex-valued m-vector function,
pj(t), qj(t) and w(t) are measurable and locally integrable m × m matrices, pj(t), w(t) are
Hermitian, and w(t) > 0. a.e. t ∈ (α, β).

The spectral properties of nth-order differential expression, particularly the distribu-
tion of eigenvalues, have been widely researched in these years (see [1–8] and references
cited therein).

Let us recall some known results due to Neumann [1], Stone [2], Friedrichs [3] and
Krein [4]. For convenience of the reader in addition to these original sources we will also
give text book references [7].
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An open interval (a, b) with −∞ < a < b < ∞ is called a spectral gap of a symmetric
operator A if

∥
∥
∥
∥

(

A − a + b

2

)

f

∥
∥
∥
∥
w

≥ b − a

2
∥
∥f

∥
∥
w ∀f ∈ D(A). (1.2)

‖ · ‖w and 〈·, ·〉w are defined in Section 2. It is easy to find that (a + b)/2 is a real regular
point of A. If 〈Af, f〉w ≥ b‖f‖2w, we shall also say that (−∞, b) is a spectral gap of A (the
latter definition is not generally used but convenient for our purpose; and it is justified since
each interval (a, b) with a < b is a spectral gap of A). Let (a, b) be a spectral gap of A, then
there exists a self-adjoint extension Ã of A (for instance the famous Friedrichs extension)
such that (a, b) ⊂ Γ(Ã) (here Γ(Ã) is the regular-form domain of Ã which will be defined in
Definition 2.4), this is the reason why we call (a, b) a spectral gap of A.

Suppose in addition that the deficiency index of a symmetric operator A is equal
to n (n ∈ N). Let Ã be a self-adjoint extension of A. The sum of the multiplicities of the
eigenvalues of Ã within the interval (a, b) is at most n, and no point of the continuous
spectrum of Ã lies in the interval (a, b) (cf. [5, Theorem 8.19 and Corollary 2 in Section 8.3]).
Conversely, given any finite subset E of (a, b) and positive integers p(λ), λ ∈ E, such that
∑

λ∈E p(λ) ≤ n there exists a self-adjoint extension Ã of A such that σ(Ã) ∩ (a, b) = E and
the multiplicities of λ as an eigenvalue of Ã are equal p(λ) for each λ ∈ E (cf. [4]). If one
only requires that (a, b) is some interval within the set of real regular points of A, then the
corresponding statement is false. For instance, one can give a symmetric operator Â, such that
each λ ∈ R is a regular point of Â, the deficiency index of Â is equal one and each self-adjoint
extension Ã of Â has a periodic point spectrum with period p independent of Ã (cf. [4]).

This paper consists of three sections including the introduction. In Section 2, we
present some preliminary materials that include definitions and theorems needed for the rest
of the paper. In Section 3, we give three main results in the study of self-adjoint extensions
of a minimal operator generated by differential expression τ . Firstly, we present a partial
self-adjointness of the minimal operator T0. Secondly, if (a, b) is a spectral gap of T0, for all
β1, β2, . . . βm ∈ (a, b) (m ≤ r, r is the deficiency index of T0) and positive integer function p

satisfying
∑m

i=1 p(βi) = r, T0 has a self-adjoint extension T̃ with the following properties:

(i) σp(T̃) ∩ (a, b) = {β1, β2, . . . βm};

(ii) each βi (i = 1, 2, . . . m) is an eigenvalue of T̃ with multiplicity equal to p(βi);

(iii) T̃ has pure point spectrum within (a, b).

Finally, given a symmetric operator T0 with the deficiency index being equal to r, (a, b) ⊂ R,
β1, β2, . . . βm ∈ (a, b) (m ≤ r) being real regular points of T0, (the interval (a, b) need not be
a spectral gap of T0) and positive integer function p satisfying

∑m
i=1 p(βi) ≤ r, T0 has a self-

adjoint extension T̃ with the properties that each βi (i = 1, 2, . . . m) is an eigenvalue of T̃ with
multiplicity at least βi.
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2. Preliminaries

In this section, we introduce notations, definitions, and some theorems that are needed in this
paper.

First, we define the following space:

L2
(
α, β;w

)
:=

{

f :
∫β

α

f∗(t)w(t)f(t) < +∞
}

, (2.1)

with the inner product

〈
f, g

〉
w =

∫β

α

g∗(t)w(t)f(t)dt, (2.2)

where the weight function w(t) is the same as that in (1.1). Denote ‖f‖w = (〈f, f〉w)1/2 for
f ∈ L2(α, β;w). If f ∈ L2(α, β;w), then f is called square integrable. Here, we note that ifw is
singular, L2(α, β;w) is a quotient space in the sense that y = z if and only if ‖y − z‖w = 0. In
this case, L2(α, β;w) is a Hilbert space.

Now we introduce the maximal operator T and minimal operator T0 generated by the
expression τ .

Definition 2.1. The maximal operator T generated by τ is defined by

D(T) =
{
f ∈ L2

(
α, β;w

)
: f{0}, f{1}, . . . f{n−1} ∈ ACloc

(
α, β

)
, τf ∈ L2

(
α, β;w

)}
,

Tf = τf for f ∈ D(T),
(2.3)

where ACloc(α, β) denotes the collection of functions on (α, β) which are absolutely
continuous locally. Roughly speaking the jth quasi-derivative u{j} will be collection of terms
that, if differentiated (n − j) times, is “part” of the differential expression rτu (see [7] for
details). We know that T is densely defined and closed.

Definition 2.2. The preminimal operator T00 generated by τ is defined by

D(T00) =
{
f ∈ D(T) : f has compact support in

(
α, β

)}
,

T00f = τf = Tf for f ∈ D(T00).
(2.4)

Obviously, T00 ⊂ T and T00 is Hermitian. It is easy to know that D(T00) is dense, so T00 is
symmetric, and T00 is not closed [8]. The closure of T00 is called the (closed)minimal operator
denoted by T0.

Definition 2.3. Given a linear operator A with domain and range in a Hilbert space H, the
resolvent set of A is

ρ(A) =
{
λ ∈ C | (λ −A)−1 ∈ B(H)

}
, (2.5)
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the spectrum of A is the set σ(A) = C \ ρ(A). Denote

σp = {λ : (λ −A)−1 does not exist},
σc = {λ : (λ −A)−1 exists and R(λ −A) = H, but (λ −A)−1 is not continuous},
σr = {λ : (λ −A)−1 exists and R(λ −A)/=H}.

Obviously, σ(A) = σp ∪ σc ∪ σr (see [8]).

Definition 2.4. Let A be a linear operator in a Hilbert space H. The set of regular points of A,
is called the regular-form domain of A, denoted by γ(A):

Γ(A) =
{
z ∈ C : A − z is continuously invertible

}

=
{
z ∈ C : there exists a v = v(z) > 0 such that

∥
∥(A − z)f

∥
∥ ≥ v

∥
∥f

∥
∥, ∀f ∈ D(A)

}

(2.6)

it is an open subset of C containing C \ R.

Definition 2.5. For a closed operator A in a Hilbert space H, the essential spectrum of A is
defined as

σe(A) =
{
λ ∈ σ(A) : R(λ −A)/=R(λ −A)

}
. (2.7)

We assume that T0 has real regular points, that is, Γ(T0) ∩ R/= ∅. In this case the
deficiency index

n(T0, z) = n(T0) := dim ker(T − z) = dimR(T0 − z)⊥ (2.8)

does not depend on the special choice of the regular point of T0 and consequently T0 has
self-adjoint extensions.

The kernel N(T − z) is the vector space of those solutions of the differential equation
(τ − z)u = 0 which are elements of L2(α, β;w). Since the space of all solutions of (τ − z)u = 0
(which in general is not contained in L2(α, β;w)) has dimension p := n ×m, this implies

0 ≤ n(T0, z) ≤ p. (2.9)

Definition 2.6. We say that an operator A has pure point spectrum within (a, b) if σ(A) ∩
(a, b) = σp(A) ∩ (a, b).

Proposition 2.7. Let A be a self-adjoint operator in a Hilbert space H. One has ρ(A) = Γ(A).

Proof. From Definitions 2.3–2.5, we have ρ(A) ⊆ Γ(A) and σp, σc do not belong to Γ(A), so
ρ(A) ∪ (σr ∩ Γ(A)) = Γ(A), A is densely defined since it is a self-adjoint operator, so σr = ∅,
then we get ρ(A) = Γ(A).

The following results give the relation between deficiency index and self-adjoint
extension.
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Proposition 2.8. If T00, T0, T are the preminimal operator, minimal operator and maximal operator
generated by τ , and T̃ is one of the self-adjoint extension of T0, then One has:

T00 ⊂ T00 = T0 ⊂ T̃ =
(
T̃
)∗

⊂ T = T ∗
0 . (2.10)

Proposition 2.9. If A is Hermitian, then C \ R ⊂ Γ(A) (cf. [5, Proposition 2, page 229]).

Proposition 2.10. The deficiency index is constant on each connected subset of Γ(A). If A is
Hermitian, then the deficiency index is constant in the upper and lower half-planes (cf. [5, Theorem
8.1]).

Proposition 2.11. A closed symmetric operator is self-adjoint if and only if its deficiency index is
equal to 0.

Proposition 2.12. Let A be a symmetric operator,

(a) A has self-adjoint extension if and only if its deficiency indices are equal,

(b) Γ(A) ∩ R/=φ, then A has self-adjoint extensions,

(c) if A is semibounded, then A has self-adjoint extensions,

We can find the proof from Theorem 8.8 in [7].

Proposition 2.13 (see [8]). Let A be a closed symmetric operator in L2(α, β;w) and A1 = A∗. Set
N0(λ−A1) = N(λ−A1)∩D(A). If there exists a λ ∈ R such that λ /∈ σe(A), thenA has a self-adjoint
extension and

dimN(λ −A1) = n(A) + dimN0(λ −A1). (2.11)

Furthermore, there exists a self-adjoint extension Â of A such that

[N(λ −A1) �N0(λ −A1)] ∩D
(
Â
)
= {0}. (2.12)

3. Main Results

Let T0, T be the minimal operator and maximal operator generated by τ in (1.1) and let the
deficiency index of T0 be equal to r (0 < r ≤ p). In this section we assume that T0 has real
regular points. That is, Γ(T0) ∩ R/= ∅.

Definition 3.1. A closed subspace M of L2(α, β;w) is called a reducing subspace of T0 if Pf ∈
D(T0), and T0Pf = PT0f for all f ∈ D(T0), where P denotes the orthogonal projection in
D(T0) onto M.

Obviously along with M the orthogonal complement M⊥ of M is also a reducing
subspace of T0. It is easy to see that the closed span of an orthogonal system of eigenvectors
of T0 is a reducing subspace of T0. IfM is a reducing subspace of T0, then the part of T0 inM,
that is, the restriction of T0 toD(T0)∩Mmay be (and in the following will be) regarded as an
operator in the Hilbert space M.
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Since Γ(T0) ∩ R/= ∅, there exists a real point λ of T0, and the positive and negative
deficiency indices of T0 are equal. We choose a one-dimensional subspace Lλ of ker(T ∗

0 − λ)
(= ker(T − λ)), set

D
(
T ′
0
)
:= D(T0)+̇Lλ,

T ′
0
(
f + g

)
:= T0f + λg ∀f ∈ D(T0) and ∀g ∈ Lλ.

(3.1)

Obviously T ′
0 is a symmetric extension of T0, and n(T ′

0, z) = n(T0, z) − 1 for each regular point
z of T ′

0 and Lλ the corresponding eigenspace. Since the graph of T ′
0 is a one-dimensional

extension of the closed graph of T0, therefore the operator T ′
0 is closed [6].

Theorem 3.2. Assume that the deficiency index of T0 is equal to r, let (a, b) be a spectral gap of T0,
and let T ′

0 be defined as above.

(1) If T ′
0 has an eigenvalue μ ∈ (a, b), then (a, b) is a spectral gap of the restriction of T ′

0 to the
Hilbert space ker (T ′

0 − μ)⊥.

(2) The deficiency index of the restriction of T ′
0 to the Hilbert space ker(T ′

0 − μ)⊥ is equal to
r − 1.

Proof. (1) First we consider the case that −∞ < a < b < +∞. Without loss of generality, we
may assume that (a, b) = (−v, v). We have to show that

∥
∥T ′

0f
∥
∥ ≥ v

∥
∥f

∥
∥ ∀f ∈ D

(
T ′
0
) ∩ ker

(
T ′
0 − μ

)⊥
. (3.2)

Assume that ‖T ′
0f‖ < v‖f‖ for some f ∈ D(T ′

0) ∩ ker(T ′
0 − μ)⊥. Let g ∈ ker(T ′

0 − μ) and g /= 0.
Since ker(T ′

0 − μ) reduces T ′
0,

∥
∥T ′

0
(
c1f + c2g

)∥
∥2 = |c1|2

∥
∥T ′

0f
∥
∥2 + |c2|2

∥
∥T ′

0g
∥
∥2

= |c1|2
∥
∥T ′

0f
∥
∥2 + |c2|2μ

∥
∥g

∥
∥2

< |c1|2v2∥∥f
∥
∥2 + |c2|2v2∥∥g

∥
∥2

= v2∥∥c1f + c2g
∥
∥2
,

(3.3)

for all (c1, c2) ∈ C
2 \ (0, 0). Since f and g span a two-dimensional subspace of D(T0′) and

dimD(T ′
0) \D(T0) = 1, it follows that ‖T ′

0h‖ < v‖h‖ for some h ∈ D(T0), this is a contradiction
to the hypothesis that (−v, v) is a spectral gap of T0. This completes the proof in the case that
−∞ < a < b < +∞.

The proof in the semibounded case is similar. One only has to replace expression of
the form ‖T0f‖ by those of the form 〈T0f, f〉, here we omit the details.

(2) Since n(T ′
0, z) = n(T0, z) − 1, that is, n(T ′

0, z) = r − 1, and the restriction of T ′
0 to the

Hilbert space ker(T ′
0 − μ) is self-adjoint, so the deficiency index of the restriction of T ′

0 onto
Hilbert space ker(T ′

0 − μ)⊥ is equal to r − 1.
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Theorem 3.3. Suppose the deficiency index of T0 is equal to r and λ is a real regular point of T0. Let
f1, f2, . . . fm ∈ L2(α, β;w) be linearly independent solutions of (τ − λ)f = 0. One has the following.

(1) T0 has a j dimensional symmetric extension T
j

0 (j = 1, 2, . . . m) with the following
properties:

D
(
T
j

0

)
:= D(T0)+̇ span

{
f1
}
+̇ · · · +̇ span

{
fm

}
,

T
j

0

(
f + g1 + g2 + · · · + gm

)
= T0f + λ

(
g1 + g2 + · · · + gm

)
,

∀f ∈ D(T0) and ∀gj ∈ span
{
fj
} (

j = 1, 2 . . . m
)
.

(3.4)

(2) m ≤ r.

(3) Ifm = r, then T0 has a self-adjoint extension.

Proof. (1) Since span{f1} is a one-dimensional subspace of ker(T − λ), we define

D
(
T1
0

)
:= D(T0)+̇ span

{
f1
}
,

T1
0
(
f + g

)
:= Tf + λg ∀f ∈ D(T0) and ∀g ∈ span

{
f1
}
.

(3.5)

Obviously, T1
0 is a symmetric extension of T0, n(T1

0 , z) = n(T0, z) − 1 = r − 1, and λ is an
eigenvalue of T1

0 , and span {f1} is the corresponding eigenspace, and T1
0 is also closed. By

induction, we get

n
(
T
j

0 , z
)
= n(T0, z) − j = r − j, (3.6)

and T
j

0 (j = 1, 2 . . . m) is a closed symmetric operator.
(2)Whenm > r, then n(Tm

0 , z) = n(T0, z) −m = r −m < 0, that is a contradiction, so we
have m ≤ r.

(3) When m = r, then n(Tm
0 , z) = n(T0, z) −m = r − r = 0, so from Proposition 2.11, we

have that Tm
0 is a self-adjoint extension of T0.

Theorem 3.4. Assume that the deficiency index of T0 is equal to r. If (a, b) is a spectral gap of T0, then
for all β1, β2, . . . βm ∈ (a, b) (where m ≤ r) and positive integer function p satisfying

∑m
i=1 p(βi) = r,

the minimal operator T0 has a self-adjoint extension T̃ with the following properties:

(i) σp(T̃) ∩ (a, b) = {β1, β2, . . . βm},
(ii) each βj (j = 1, 2, . . . m) is aneigenvalue of T̃ with multiplicity p(βj),

(iii) T̃ has pure point spectrum within (a, b).

Proof. We choose λ1, λ2, . . . λr in (a, b), such that #{l ≤ r : λl = βj} = p(βj) (j = 1, . . . , m) (#M
denote the cardinality of the setM), in other words each βj ∈ (a, b) occurs exactly p(βj) times
in the sequence {λ1, λ2, . . . λr}.
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We choose a one-dimensional space Lλ1 of ker(T − λ1) and define

D
(
T ′
1

)
:= D(T0)+̇Lλ1 ,

T ′
1

(
f + g

)
:= T0f + λg ∀f ∈ D(T0) and ∀g ∈ Lλ1 .

(3.7)

Then T ′
1 is a closed symmetric extension of T0 with deficiency index being equal to r − 1 and

λ1 is an eigenvalue of T ′
1 with eigensubspace being Lλ1 .

SetH1 = L⊥
λ1
and denote byM1 and T1 the restriction of T ′

1 toLλ1 andH1, respectively.
Obviously M1 is a self-adjoint operator in the one-dimensional Hilbert space Lλ1 with
σ(M1) = {λ1}. T1 is a closed symmetric operator in Hilbert space H1, with deficiency index
being equal to r − 1, and T ′

1 = M1+̇T1. Moreover, by Lemma 3.1, (a, b) is a spectral gap of T1.
Thus we can replace L2(α, β;W) byH1, T0 by T1, and λ1 by λ2 in the above conclusions.

Proceeding further in this way by induction, we obtain sequences {Lλ1 , . . .Lλr} and
{H1, . . .Hr} of Hilbert spaces and sequence {M1, . . .Mr} and {T ′

1, . . . T
′
r} of the operators

with the following properties:

(i) T ′
l are closed symmetric extension of T0 which satisfy: T ′

1 ⊂ T ′
2 ⊂ · · · ⊂ T ′

r , T
′
l with

deficiency indices r − l (l = 1, 2, . . . r),

(ii) Ml is a self-adjoint operator on a one-dimensional subspace Lλl of Hl−1 (H0 :=
L2(α, β;w)),Hl = Hl−1 � Lλl , with σ(Ml) = {λl} for each λl (l = 1, 2, . . . r),

(iii) Tl is a closed symmetric operator in the Hilbert spaceHl with spectral gap (a, b) for
all l = 1, 2 . . . r.

(iv) T ′
l
= {⊕l

j=1Mj} ⊕ Tl (l = 1, . . . r).

Then we have that T ′
r is a closed symmetric extension of T0 with deficiency index 0. So T̃ = T ′

r

is a self-adjoint extension of T0 with the required properties.

Theorem 3.5. Assume the deficiency index of T0 is equal to r. Let β1, β2, . . . βm ∈ (a, b) (wherem ≤ r,
(a, b) need not be a spectral gap of T0) be real regular points of T0 and let positive integer function p
satisfy

∑m
j=1 p(βj) ≤ r. Moreover, one assumes that (τ − λi)f = 0 has at least p(βi) square integrable

solutions. Then T0 has a self-adjoint extension T̃ such that each βj (j = 1, 2, . . . m) is an eigenvalue of
T̃ with multiplicity at least equal to p(βj).

Proof. Choose a sequence λ1, . . . λr in (a, b) such that each βi occurs at least p(βi) times in
this sequence (the times ki of the λi appears in the sequence satisfies p(βi) ≤ k ≤ k̃i, k̃i is
the number of square integrable solutions of (τ − λi)f = 0; the λi which is not in {β1, . . . , βm}
will be selected as a regular point of T satisfying ker(T − λi)/= ∅). Since the deficiency index
of T0 is equal to r, the negative and positive deficiency indices are equal to r, so we select a
normalized orthogonal basis f+

1 · · · f+
r ∈ R(T0 + i)⊥ and f−

1 · · · f−
r ∈ R(T0 − i)⊥. Now, we define

by induction, orthonormal sequences g1, . . . gr ∈ D(T) as follows:
for k = 1, we choose normalized element g1 ∈ ker(T − λ1) with

〈
f+
1 , g1

〉
= 0 =

〈
f−
1 , g1

〉
. (3.8)
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Suppose for given k < r−1, the g1, . . . , gk (gj ∈ ker(T−λj)) are well definedwith the properties

〈
f+
i , gj

〉
= 0 =

〈
f−
i , gj

〉 ∀1 ≤ i, j ≤ k, (3.9)

(those gi are eigenfunctions of T relating to λj , so they are orthogonal if λi /=λj , and if λi = λj ,
we select different orthogonal eigenfunctions of T relating to λj), we choose a normalized
element gk+1 ∈ ker(T − λk+1) with

〈
gk+1, f

+
j

〉
= 0 =

〈
gk+1, f

−
j

〉
∀1 ≤ j ≤ k + 1. (3.10)

When k = r−1, we stop the induction process. So {g1, . . . gr} is an orthonormal sequence with
the following properties:

(i) gk ∈ ker(T − λk) for all k = 1, . . . r,

(ii) f+
k
∈ R(T0 + i)⊥ and f−

k
∈ R(T0 − i)⊥ for all k = 1, . . . r,

(iii) 〈gj , f+
k 〉 = 〈gj , f−

k 〉 = 0 for all j, k ∈ {1, . . . r}.

Set

D
(
T̃
)
:= D(T0) + span

{
g1, . . . gr

}
,

T̃h := Th ∀h ∈ D
(
T̃
)
.

(3.11)

Obviously T̃ is a symmetric extension of T0 and T̃gj = Tgj = λjgj for j = 1, . . . m, so each βj is
an eigenvalue of T̃ with multiplicity at least equal to p(βj). For every k ∈ {1, . . . , r}, we have

〈
f+
k ,
(
T̃ + i

)
f
〉
=
〈
f+
k , (T0 + i)f

〉
= 0 ∀f ∈ D(T0),

〈
f+
k ,
(
T̃ + i

)
gj
〉
=
〈
f+
k ,
(
λj + i

)
gj
〉
= 0 ∀j ∈ {1, . . . r}.

(3.12)

It follows that f+
k ∈ R(T̃ + i)⊥ for all k = 1, . . . , r. Thus we have

dimR
(
T̃ + i

)⊥
= dimR(T0 + i)⊥ − r = 0. (3.13)

Analogously, it can be shown that

dimR
(
T̃ − i

)⊥
= dimR(T0 − i)⊥ − r = 0. (3.14)

Thus dimR(T̃ + i)⊥ = dimR(T̃ − i)⊥ = 0 and consequently T̃ is a self-adjoint extensions which
has the properties mentioned above.
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