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Relatively nonexpansive mappings and equilibrium problems are considered based on a shrinking
projection method. Using properties of the generalized f -projection operator, a strong convergence
theorem for relatively nonexpansive mappings and equilibrium problems is proved in Banach
spaces under some suitable conditions.

1. Introduction

It is well known that metric projection operator in Hilbert and Banach spaces is widely used
in different areas of mathematics such as functional analysis and numerical analysis, theory of
optimization and approximation, and also for the problems of optimal control and operations
research, nonlinear and stochastic programming and game theory.

Let X be a real Banach space with its dual X∗, and let K be a nonempty, closed, and
convex subset of X. In 1994, Alber [1] introduced the generalized projections πK : X∗ → K
and ΠK : X → K in uniformly convex and uniformly smooth Banach spaces based on the
function φ(y, x) defined on p.3 and studied their properties in detail. In 2005, Li [2] extended
the definition of the generalized projection operator from uniformly convex and uniformly
smooth Banach spaces to reflexive Banach spaces and studied some properties of the
generalized projection operator. Recently, Wu and Huang [3] introduced a new generalized
f-projection operator in a Banach space. By making use of (2.5), they extended the definition
of the generalized projection operators introduced by Abler [1] and proved some properties
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of the generalized f-projection operator. Wu and Huang [4] studied a relation between the
generalized projection operator and the resolvent operator for the subdifferential of a proper
convex and lower semicontinuous functional in reflexive and smooth Banach spaces (see
[5–9]). Very recently, Li et al. [10] studied some properties of the generalized f-projection
operator, and proved the strong convergence theorems for relatively nonexpansive mappings
in Banach spaces.

On the other hand, equilibrium problem was introduced by Blum and Oettli [11], in
1994. It is a hot topic of intensive research efforts, because it has a great impact and influence
in the development of several branches of pure and applied sciences. It has been shown
that equilibrium problem theory provides a novel and unified treatment of a wide class of
problems arisen in economics, finance, physics, image reconstruction, ecology, transportation,
network, elasticity, and optimization problems. Numerous issues in physics, optimization,
and economics reduce to finding a solution of equilibrium problem. Somemethods have been
proposed to solve the equilibrium problems (see, e.g, [12–14] and the references therein).

In this paper, motivated and inspired by the work mentioned above, we introduce
a new hybrid projection algorithm based on the shrinking projection method for relatively
nonexpansive mapping and equilibrium problem. Using the new algorithm, we prove
a strong convergence theorem for relatively nonexpansive mappings and equilibrium
problems in Banach spaces. The result presented in this paper extends and improves the
main result of Li et al. [10].

2. Preliminaries

Let X be a real Banach space with its dual X∗ and R = (−∞,+∞). We denote the duality
between X and X∗ by 〈·, ·〉, and the norms of Banach space X and X∗ by ‖ · ‖X and ‖ · ‖X∗ ,
respectively. A Banach space X is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ X
with ‖x‖ = ‖y‖ = 1 and x /=y. It is also said to be uniformly convex if limn→∞‖xn −yn‖ = 0 for
any two sequences {xn}, {yn} in X, such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ = 1.
The function

δX(ε) = inf

{
1 −

∥∥x + y
∥∥

2
: ‖x‖ = 1,

∥∥y∥∥ = 1,
∥∥x − y

∥∥ ≥ ε

}
(2.1)

is called the modulus of convexity of X.
A Banach spaceX is said to be smooth provided that limt→ 0(‖x+ ty‖−‖x‖)/t exists for

all x, y ∈ X with ‖x‖ = ‖y‖ = 1. It is also said to be uniformly smooth if the limit is attained
uniformly for ‖x‖ = ‖y‖ = 1. The function

ρX(t) = sup

{∥∥x + y
∥∥ +

∥∥x − y
∥∥

2
− 1 : ‖x‖ = 1,

∥∥y∥∥ ≤ t

}
(2.2)

is called the modulus of smoothness of X.
When {xn} is a sequence inX, we denote the strong convergence of {xn}with a cluster

x ∈ X by xn → x and the weak convergence of {xn} with a weak cluster x ∈ X by xn ⇀ x. A
Banach space X is said to have the Kadec-Klee property if a sequence {xn} of X satisfies that
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xn ⇀ x ∈ X and ‖xn‖ → ‖x‖, then xn → x. It is known that if X is uniformly convex, then X
has the Kadec-Klee property.

The normalized duality mapping J from X to X∗ is defined by

Jx =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
(2.3)

for any x ∈ X. We list some properties of mapping J as follows.

(i) If X is a smooth Banach space (with Gâteaux differential norm), then J is single-
valued and demicontinuous. If X is a smooth reflexive Banach space, then J is
single-valued and hemicontinuous. If X is a strongly smooth Banach space (with
Fréchet differential norm), then J is single-valued and continuous.

(ii) J is uniformly continuous on every bounded set of a uniformly smooth Banach
space.

(iii) If X is a reflexive, smooth and strictly convex Banach space, J∗ : X∗ → X is the
duality mapping of X∗, then J−1 = J∗, JJ∗ = IX∗ , J∗J = IX .

Let X be a smooth Banach space andK be a nonempty, closed and convex subset of X.
The function φ : X ×X → R is defined by

φ
(
y, x

)
=
∥∥y∥∥2 − 2

〈
y, Jx

〉
+ ‖x‖2 (2.4)

for all x, y ∈ X.
Next, we recall the concept of the generalized f-projector operator, together with its

properties. Let G : K ×X∗ → R ∪ {+∞} be a functional defined as follows:

G
(
ξ, ϕ

)
= ‖ξ‖2 − 2

〈
ξ, ϕ

〉
+
∥∥ϕ∥∥2 + 2ρf(ξ), (2.5)

where ξ ∈ K, ϕ ∈ X∗, ρ is a positive number and f : K → R ∪ {+∞} is proper, convex, and
lower semicontinuous.

From the definitions of G and f , it is easy to have the following properties:

(i) G(ξ, ϕ) is convex and continuous with respect to ϕwhen ξ is fixed;

(ii) G(ξ, ϕ) is convex and lower semicontinuous with respect to ξ when ϕ is fixed.

Definition 2.1. Let X be a real smooth Banach space andK be a nonempty, closed and convex
subset of X. We say that Πf

K : X → 2K is a generalized f-projection operator if

Πf

Kx =
{
u ∈ K : G(u, Jx) = inf

ξ∈K
G(ξ, Jx)

}
, ∀x ∈ X. (2.6)

In order to obtain our results, the following lemmas are crucial to us.

Lemma 2.2 (see [15]). Let X be a real Banach space and f : X → R ∪ {+∞} be a lower
semicontinuous convex functional. Then there exist x∗ ∈ X∗ and α ∈ R such that

f(x) ≥ 〈x, x∗〉 + α, ∀x ∈ X. (2.7)
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Lemma 2.3 (see [16]). Let X be a uniformly convex and smooth Banach space and let {yn}, {zn} be
two sequences of X. If φ(yn, zn) → 0 and either {yn} or {zn} is bounded, then yn − zn → 0.

Let K be a closed subset of a real Banach space X, and let T be a mapping from K
to K. We denote by F(T) the set of all fixed points of T . A point p in K is said to be an
asymptotic fixed point of T , ifK contains a sequence {xn}which converges weakly to p such
that limn→∞(xn−Txn) = 0. The set of all asymptotic fixed points of T will be denoted by F̂(T).
T is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K, and relatively nonexpansive
if F̂(T) = F(T) and φ(p, Tx) ≤ φ(p, x) for all x ∈ K and p ∈ F(T). Obviously, the definition
of relatively nonexpansive mapping T is equivalent to F̂(T) = F(T) and G(p, JTx) ≤ G(p, Jx)
for all x ∈ K and p ∈ F(T).

Lemma 2.4 (see [17]). Let X be a strictly convex and smooth Banach space, let K be a closed, and
convex subset of X, and let T be a relatively nonexpansive mapping from K into itself. Then F(T) is
closed, and convex.

Lemma 2.5 (see[10]). Let X be a real reflexive and smooth Banach space and let K be a nonempty,
closed, and convex subset of X. The following statements hold:

(i) Πf

Kx is a nonempty, closed, and convex subset of K for all x ∈ X;

(ii) for all x ∈ X, x̂ ∈ Πf

Kx if and only if

〈
x̂ − y, Jx − Jx̂

〉
+ ρf

(
y
) − ρf(x̂) ≥ 0, ∀y ∈ K; (2.8)

(iii) if X is strictly convex, then Πf

K is a single-valued mapping.

Lemma 2.6 (see [10]). Let X be a real reflexive and smooth Banach space, let K be a nonempty,
closed, and convex subset of X, and let x ∈ X, x̂ ∈ Πf

Kx. Then

φ
(
y, x̂

)
+G(x̂, Jx) ≤ G

(
y, Jx

)
, ∀y ∈ K. (2.9)

Lemma 2.7 (see [10]). Let X be a Banach space and y ∈ X. Let f : X → R ∪ {+∞} be a proper,
convex and lower semicontinuous functional with convex domainD(f). If {xn} is a sequence inD(f)
such that xn ⇀ x̂ ∈ int(D(f)) and limn→∞G(xn, Jy) = G(x̂, Jy), then limn→∞‖xn‖ = ‖x̂‖.

LetM be a closed and convex subset of a real Banach space X and g : M ×M → R be
a bifunction. The equilibrium problem for g is as follows. Find x̂ ∈ M such that

g
(
x̂, y

) ≥ 0, ∀y ∈ M. (2.10)

The set of all solutions for the above equilibrium problem is denoted by EP(g). For solving
the equilibrium problem, one always assumes that the bifunction g satisfies the following
conditions:

(A1) g(x, x) = 0, for all x ∈ M;

(A2) g is monotone, that is, g(x, y) + g(y, x) ≤ 0, for all x, y ∈ M;
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(A3) for all x, y, z ∈ M, lim supt↓0g(tz + (1 − t)x, y) � g(x, y);

(A4) for all x ∈ M, g(x, ·) is convex and lower semicontinuous.

In order to prove our results, we present several necessary lemmas.

Lemma 2.8 (see [14]). Let M be a closed and convex subset of a uniformly smooth, strictly convex
and reflexive Banach space X, and g(·, ·) be a bifunction fromM ×M → R satisfying the conditions
(A1)–(A4). For all r > 0 and x ∈ X, define the mappingas follows.

Trx =
{
z ∈ M : g

(
z, y

)
+
1
r

〈
Jz − Jx, y − z

〉 ≥ 0, ∀y ∈ M

}
. (2.11)

Then, the following statements hold:

(B1) Tr is single-valued;

(B2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ X,

〈
JTrx − JTry, Trx − Try

〉 ≤ 〈
Jx − Jy, Trx − Try

〉
; (2.12)

(B3) F(Tr) = F̂(Tr) = EP(g);

(B4) EP(g) is closed and convex.

Lemma 2.9 (see [14]). LetM be a closed and convex subset of a smooth, strictly convex, and reflexive
Banach space X, g be a bifunction from M ×M to R satisfying the conditions (A1)–(A4), and r > 0.
Then, for any x ∈ X and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.13)

3. The Main Result

In this section, we prove a strong convergence theorem for relatively nonexpansive mappings
and equilibrium problems in Banach spaces.

Theorem 3.1. Let X be a uniformly convex and uniformly smooth Banach space, K and M be two
nonempty, closed and convex subsets of X such that K ∩ M/= ∅. Let T : K → K be a relatively
nonexpansive mapping and f : X → R a convex and lower semicontinuous mapping with K ⊂
int(D(f)). Let g(·, ·) be a bifunction from M × M → R, which satisfies the conditions (A1)–(A4).



6 Abstract and Applied Analysis

Assume that {αn}∞n=0 is a sequence in [0, 1) such that lim supn→∞αn < 1, and {rn} ⊂ [a,∞) for
some a > 0. Define a sequence {xn} in K ∩M by the following algorithm:

x0 = x ∈ K ∩M, H0 = K ∩M,

yn = J−1(αnJxn + (1 − αn)JTxn),

un ∈ M such that g
(
un, y

)
+

1
rn

〈
Jun − Jyn, y − un

〉 ≥ 0, ∀y ∈ M,

Hn+1 =
{
z ∈ Hn : G(z, Jun) ≤ G

(
z, Jyn

) ≤ G(z, Jxn)
}
,

xn+1 = Πf

Hn+1
x, n = 0, 1, 2, . . . .

(3.1)

If F = F(T) ∩ EP(g) is nonempty, then {xn} converges strongly toΠf

Fx.

Proof . The proof is divided into the following four steps.
(I) First, we prove the following conclusion: Hn is a closed convex set and F ⊂ Hn for

all n ≥ 0.
It is obvious that H0 is a closed convex set and F ⊂ H0. Thus, we only need to show

that Hn is a closed convex set and F ⊂ Hn for all n ≥ 1.
Since G(z, Jun) ≤ G(z, Jyn) and G(z, Jyn) ≤ G(z, Jxn) are respectively equivalent to

2
〈
z, Jyn − Jun

〉
+ ‖un‖2 −

∥∥yn

∥∥2 ≤ 0,

2
〈
z, Jxn − Jyn

〉
+
∥∥yn

∥∥2 − ‖xn‖2 ≤ 0,
(3.2)

it follows thatHn+1 is closed and convex for all n ≥ 0. Thus, we know that {xn} is well defined.
Further, for any u ∈ F and n ≥ 0, we have

G
(
u, Jyn

)
= ‖u‖2 − 2〈u, αnJxn + (1 − αn)JTxn〉 + ‖αnJxn + (1 − αn)JTxn‖2 + 2ρf(u)

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2(1 − αn)〈u, JTxn〉 + αn‖xn‖2 + (1 − αn)‖Txn‖2 + 2ρf(u)

= αn

(
‖u‖2 − 2〈u, Jxn〉 + ‖xn‖2 + 2ρf(u)

)

+ (1 − αn)
(
‖u‖2 − 2〈u, JTxn〉 + ‖Txn‖2 + 2ρf(u)

)
= αnG(u, Jxn) + (1 − αn)G(u, JTxn)

≤ G(u, Jxn).

(3.3)

On the other hand, it follows from the definition of {un} and Lemma 2.8 that un = Trnyn. From
Lemma 2.9, we obtain

φ(u, un) = φ
(
u, Trnyn

) ≤ φ
(
u, yn

)
, (3.4)
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which implies that

G(u, Jun) ≤ G
(
u, Jyn

)
. (3.5)

Therefore, u ∈ Hn+1 for all n ≥ 0.
(II) Second, we show that {xn} is bounded and limn→∞G(xn, Jx) exists.
Since f : X → R is a convex and lower semicontinuous mapping, a direct application

of Lemma 2.2 yields that there exist x∗ ∈ X∗ and α ∈ R such that

f
(
y
) ≥ 〈

y, x∗〉 + α, ∀y ∈ X. (3.6)

It follows that

G(xn, Jx) = ‖xn‖2 − 2〈xn, Jx〉 + ‖x‖2 + 2ρf(xn)

≥ ‖xn‖2 − 2〈xn, Jx〉 + ‖x‖2 + 2ρ〈xn, x
∗〉 + 2ρα

= ‖xn‖2 − 2
〈
xn, Jx − ρx∗〉 + ‖x‖2 + 2ρα

≥ ‖xn‖2 − 2
∥∥Jx − ρx∗∥∥‖xn‖ + ‖x‖2 + 2ρα

=
(‖xn‖ −

∥∥Jx − ρx∗∥∥)2 + ‖x‖2 − ∥∥Jx − ρx∗∥∥2 + 2ρα.

(3.7)

Since xn = Πf

Hn
x, it follows from (3.7) that

G(u, Jx) ≥ G(xn, Jx)

≥ (‖xn‖ −
∥∥Jx − ρx∗∥∥)2 + ‖x‖2 − ∥∥Jx − ρx∗∥∥2 + 2ρα, ∀u ∈ F,

(3.8)

which implies that {xn} is bounded and so is {G(xn, Jx)}. By the fact that xn+1 ∈ Hn+1 ⊂ Hn

and Lemma 2.6, we obtain

φ(xn+1, xn) +G(xn, Jx) ≤ G(xn+1, Jx). (3.9)

It is obvious that

φ(xn+1, xn) ≥ (‖xn+1‖ − ‖xn‖)2 ≥ 0, (3.10)

and so {G(xn, Jx)} is nondecreasing. Therefore, we know that limn→∞G(xn, Jx) exists.
(III) Third, we prove that, if xnk ⇀ x̂, then x̂ ∈ F, where {xnk} is an arbitrarily weakly

convergent subsequence of {xn}.
It follows from the definition of Hn+1 and xn+1 ∈ Hn that

φ(xn+1, un) ≤ φ
(
xn+1, yn

) ≤ φ(xn+1, xn) ≤ G(xn+1, Jx) −G(xn, Jx). (3.11)
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Taking limn→∞ in (3.11), we get

lim
n→∞

φ(xn+1, un) = lim
n→∞

φ
(
xn+1, yn

)
= lim

n→∞
φ(xn+1, xn) = 0. (3.12)

Applying Lemma 2.3, we obtain

lim
n→∞

‖xn+1 − un‖ = lim
n→∞

∥∥xn+1 − yn

∥∥ = lim
n→∞

‖xn+1 − xn‖ = 0. (3.13)

Next, we show that x̂ ∈ F̂(T) = F(T).
From the fact that J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥∥Jxn+1 − Jyn

∥∥ = lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (3.14)

Note that

∥∥Jxn+1 − Jyn

∥∥ = ‖Jxn+1 − αnJxn − (1 − αn)JTxn‖
= ‖(1 − αn)Jxn+1 − (1 − αn)JTxn + αnJxn+1 − αnJxn‖
≥ (1 − αn)‖Jxn+1 − JTxn‖ − αn‖Jxn+1 − Jxn‖

(3.15)

and thus

‖Jxn+1 − JTxn‖ ≤ 1
1 − αn

∥∥Jxn+1 − Jyn

∥∥ +
αn

1 − αn
‖Jxn+1 − Jxn‖

≤ 1
1 − αn

(∥∥Jxn+1 − Jyn

∥∥ + ‖Jxn+1 − Jxn‖
)
.

(3.16)

From (3.14) and lim supn→∞αn < 1, we get

lim
n→∞

‖Jxn+1 − JTxn‖ = 0. (3.17)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Txn‖ = 0. (3.18)

Since

‖xn − Txn‖ = ‖xn − xn+1 + xn+1 − Txn‖
≤ ‖xn − xn+1‖ + ‖xn+1 − Txn‖,

(3.19)
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we have

lim
n→∞

‖xn − Txn‖ = lim
k→∞

‖xnk − Txnk‖ = 0 (3.20)

and so

x̂ ∈ F̂(T) = F(T). (3.21)

Now, we show x̂ ∈ EP(g). Since

∥∥un − yn

∥∥ ≤ ‖xn+1 − un‖ +
∥∥xn+1 − yn

∥∥, (3.22)

we get

lim
n→∞

∥∥un − yn

∥∥ = 0. (3.23)

Since J is a uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.24)

From the assumption that rn ≥ a, we get

lim
n→∞

∥∥Jun − Jyn

∥∥
rn

= 0. (3.25)

It follows from un = Trnyn that

g
(
un, y

)
+

1
rn

〈
Jun − Jyn, y − un

〉 ≥ 0, ∀y ∈ M. (3.26)

From (A2), we obtain

∥∥y − un

∥∥ ·
∥∥Jun − Jyn

∥∥
rn

≥ 1
rn

〈
Jun − Jyn, y − un

〉 ≥ −g(un, y
) ≥ g

(
y, un

)
, ∀y ∈ M. (3.27)

Since limn→∞‖xn+1 − un‖ = limn→∞‖xn+1 − xn‖ = 0, we obtain

lim
n→∞

‖xn − un‖ = lim
k→∞

‖xnk − unk‖ = 0. (3.28)
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For any h ∈ X∗, it follows that

lim
k→∞

(h(unk) − h(x̂)) = lim
k→∞

[h(unk − xnk) + h(xnk − x̂)] = 0 (3.29)

and so unk ⇀ x̂. From (3.27) and (A4), we know that

g
(
y, x̂

) ≤ lim inf
k→∞

g
(
y, unk

) ≤ lim
k→∞

∥∥y − unk

∥∥ ·
∥∥Junk − Jynk

∥∥
rnk

= 0, ∀y ∈ M. (3.30)

Letting

yt = ty + (1 − t)x̂ ∈ M, ∀0 < t < 1, y ∈ M, (3.31)

we have

g
(
yt, x̂

) ≤ 0. (3.32)

It follows from (A1) that

0 = g
(
yt, yt

) ≤ tg
(
yt, y

)
+ (1 − t)g

(
yt, x̂

) ≤ tg
(
yt, y

)
(3.33)

and thus

g
(
yt, y

) ≥ 0. (3.34)

Taking the limit as t ↓ 0 in (3.34) and from (A3), we have

g
(
x̂, y

) ≥ 0, ∀y ∈ M (3.35)

and so x̂ ∈ EP(g).
(IV) Last, we prove that xn → Πf

Fx.

Since F is a closed convex set, from Lemma 2.5, we know that Πf

Fx is single-valued

and denote that w = Πf

Fx. Since xn = Πf

Hn
x and w ∈ F ⊂ Hn, we have

G(xn, Jx) ≤ G(w, Jx), ∀n ≥ 1. (3.36)

For each given x, G(ξ, Jx) is convex and lower semicontinuous with respect to ξ, it is easy to
see that G(ξ, Jx) is weakly lower semicontinuous with respect to ξ and so

G(x̂, Jx) ≤ lim inf
k→∞

G(xnk , Jx) ≤ lim sup
k→∞

G(xnk , Jx) ≤ G(w, Jx). (3.37)
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From the definition of Πf

Fx and x̂ ∈ F, we know that x̂ = w and so limk→∞G(xnk , Jx) =
G(x̂, Jx). It follows from Lemma 2.7 that limk→∞‖xnk‖ = ‖x̂‖. The Kadec-Klee property of X
implies that {xnk} converges strongly toΠf

Fx. Since {xnk} is an arbitrarily weakly convergent

sequence of {xn}, we conclude that {xn} converges strongly toΠf

Fx. This completes the proof.

Remark 3.2. LettingM = X, EP(g) = X and un = yn in (3.1), thenHn+1 = {z ∈ Hn : G(z, Jyn) ≤
G(z, Jxn)} and so Theorem 3.1 reduces to Theorem 4.1 of Li et al. [10].
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