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Saewan and Kumam (2010) have proved the convergence theorems for finding the set of solutions
of a general equilibrium problems and the common fixed point set of a family of closed and
uniformly quasi-φ-asymptotically nonexpansive mappings in a uniformly smooth and strictly
convex Banach space E with Kadec-Klee property. In this paper, authors prove the convergence
theorems and do not need the Kadec-Klee property of Banach space and some other conditions
used in the paper of S. Saewan and P. Kumam. Therefore, the results presented in this paper
improve and extend some recent results.

1. Introduction

LetC be a nonempty closed convex subspace of a real Banach space E. AmappingA : D(A) ⊂
E → E∗ is said to be monotone if for each x, y ∈ D(A), the following inequality holds:

〈x − y, Ax −Ay〉 ≥ 0. (1.1)

A mapping A : C → E∗ is called α-inverse-strongly monotone if there exists α > 0 such that

〈
x − y, Ax −Ay

〉 ≥ α
∥∥Ax −Ay

∥∥2
. (1.2)

Amonotone mapping T is said to be maximal monotone if R(J + rT) = E∗, for all r > 0, where
J is the normalized duality mapping. We denote by T−1(0) = {x ∈ E : 0 ∈ Tx} the set of zero
points of T .
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Remark 1.1. It is well know that if A : C → E∗ is an α-inverse-strongly monotone mapping,
then it is (1/α)-Lipschitzian, and hence uniformly continuous. Clearly, the class of monotone
mappings includes the class of α-inverse strongly monotone mappings.

Let C be a nonempty closed convex subspace of a real Banach space E with dual E∗

and 〈·, ·〉 is the pairing between E and E∗. Let f : C ×C → R be a bifunction and A : C → E∗

be a monotone mapping. The generalized equilibrium problem means that finding a u ∈ C
such that

f
(
u, y

)
+ 〈Au, y − u〉 ≥ 0, ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by GEP(f,A), that is,

GEP
(
f,A

)
=
{
u ∈ C : f

(
u, y

)
+ 〈Au, y − u〉 ≥ 0, ∀y ∈ C

}
. (1.4)

If A = 0, then the problem (1.3) is equivalent to that of finding a u ∈ C such that

f
(
u, y

) ≥ 0, ∀y ∈ C, (1.5)

which is called the equilibrium problem. The solution of (1.5) is denoted by EP(f). If f = 0,
then the problem (1.3) is equivalent to that of finding a u ∈ C such that

〈
Au, y − u

〉 ≥ 0, ∀y ∈ C, (1.6)

which is called the variational inequality of Browder type. The solution of (1.6) is denoted by
VI(C,A).

The problem (1.3) was shown in [1] to cover variational inequality problems,
monotone inclusion problems, vector equilibrium problems, numerous problems in physics,
minimization problems, saddle point problems, and Nash equilibria in noncooperative
games. In addition, there are several other problems, for example, fixed point problem, the
complementarity problem, and optimization problem, which can also be written in the form
of an EP(f). In other words, the EP(f) is a unifying model for several problems arising in
physics, engineering, science, optimization, economics, and so on. In the past two decades,
Some methods have been modified for solving the generalized equilibrium problem and the
equilibrium problem in Hilbert space and Banach space, see [2–9].

The convex feasibility problem (CFP) is the problem for computing points that lay in
the intersection of a finite family of closed convex subsets Cj, j = 1, 2, . . . ,N, of a Banach
space E. This problem appears in many fields of applied mathematics, such as the theory
of optimization [1], Image Reconstruction from projections [10], and Game Theory [11] and
plays an important role in these domains. There is a considerable investigation of (CFP) in
the framework of Hilbert spaces which captures applications in various disciplines such as
image restoration, computer tomograph, and radiation therapy treatment planning [12]. Also
the projectionmethods have dominated in the iterative approaches to (CFP) in Hilbert spaces.
In 1993, Kitahara and Takahashi [13] deal with the convex feasibility problem by convex and
sunny nonexpansive retractions in a uniformly convex Banach space.

We note that the block iterative method is a commonmethod bymany authors to solve
(CFP) [14]. In 2008, Plubtieng and Ungchittrakool [15] established block iterative methods
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for a finite family of relatively nonexpansive mappings and got some strong convergence
theorems in a Banach space by using the hybrid method.

In 2009, Takahashi and Zembayashi [16] introduced the following iterative scheme in
the case that E is uniformly smooth and uniformly convex Banach space:

x0 = x ∈ C, arbitrarily,

yn = J−1(αnJxn + (1 − αn)Jxn);

un ∈ C s.t. f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉
, ∀y ∈ C

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
;

xn+1 = ΠCn+1x, n = 1, 2, . . . ,

(1.7)

where T is a relatively nonexpansive mapping and f is a bifunction from C × C into R.
They prove that the sequence {xn} converges strongly to q = ΠF(T)∩EP(f) under appropriate
conditions.

In the same year, Qin et al. [7] introduced a hybrid projection algorithm to two quasi-
φ-nonexpansive mappings in Banach spaces as follows:

x0 = x ∈ C, arbitrarily,

C1 = C;

x1 = ΠC1x0;

yn = J−1
(
αnJxn + βnJTxn + γnJSxn

)
;

un ∈ C s.t. f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C;

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
;

xn+1 = ΠCn+1x, n = 1, 2, . . . ,

(1.8)

where ΠCn+1 is the generalized projection from E onto Cn+1. They proved that the sequence
{xn} converges strongly toΠF(S)∩F(T)∩EP(f)x0. Then Petrot et al. [17] improved the notion from
a relatively nonexpansive mapping or a quasi-φ-nonexpansive mapping to two relatively
quasi-nonexpansive mappings; they also proved some strong convergence theorems to find
a common element of the set of fixed point of relatively quasi-nonexpansive mappings and
the set of solutions of an equilibrium problem in the framework of Banach spaces.

In 2010, Saewan and Kumam [18] introduced the following iterative method to
find a common element of the set of solutions of an equilibrium problem and the set of
common fixed points of an infinite family of closed and uniformly quasi-φ-asymptotically
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nonexpansivemappings in a uniformly smooth and strictly convex Banach space with Kadec-
Klee property.

x0 = x ∈ E, arbitrarily,

C1 = C;

x1 = ΠC1x0;

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
;

zn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

;

un ∈ C s.t. f
(
un, y

)
+
〈
Ayn, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0;

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn

}
;

xn+1 = ΠCn+1x, n = 1, 2, . . . ,

(1.9)

They proved that {xn} converges strongly to Π∩∞
i=1F(Si)∩GEP(f,A) under the proper conditions.

The same year, Chang et al. [19] proposed the modified block iterative algorithm for solving
the convex feasibility problems for an infinite family of closed and uniformly quasi-φ-
asymptotically nonexpansive mapping; they obtain the strong convergence theorems in a
Banach space.

Motivated by Saewan and Kumam [18], in this paper we use some new conditions
to prove strong convergence theorems for modified block hybrid projection algorithm for
finding a common element of the set of solutions of the generalized equilibrium problems
and the set of common fixed points of an infinite family of closed and uniformly quasi-
φ-asymptotically nonexpansive mappings which is more general than closed quasi-φ-
nonexpansive mappings in a uniformly smooth and strictly convex Banach space E. In (1.9)
we find iterative step yn is not essential, so we combine yn with zn of (1.9), and use an equally
continuous mapping that is more weak than uniformly L-Lipschitz mapping in a uniformly
smooth and strictly convex Banach space E, but the Banach space E does not have Kadec-
Klee property, under the circumstances we prove strong convergence theorems and get some
results same as the results of Saewan and Kumam [18]. The results presented in this paper
improve some well-known results in the literature.

2. Preliminaries

The space E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.1)

exists for all x, y ∈ U = {z ∈ E : ‖z‖ = 1}, and E is said to be uniformly smooth if the limit
(2.1) exists uniformly for all x, y ∈ U. Then a Banach space E is said to be strictly convex if
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‖x + y‖/2 ≤ 1 for all x, y ∈ U and x /=y. It is said to be uniformly convex if for each ε ∈ (0, 2],
there exists δ > 0 such that ‖x + y‖/2 ≤ 1 − δ for all x, y ∈ U with ‖x − y‖ ≥ ε.

Let E be a Banach space and let E∗ be the topological dual of E. For all x ∈ E and
x∗ ∈ E∗, we denote the value of x∗ at x by 〈x, x∗〉. Then, the duality mapping J : E → 2E

∗
is

defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥

∥f
∥
∥2

}
, (2.2)

for every x ∈ E. By the Hahn-Banach theorem, J(x) is nonempty.
The following basic properties can be found in Cioranescu [20].

(i) If E is a uniformly smooth Banach space, then J is uniformly continuous on each
bounded subset of E.

(ii) If E is a reflexive and strictly convex Banach space, then J−1 is norm-weak ∗-
continuous.

(iii) If E is a smooth, strictly convex, and reflexive Banach space, then the normalized
duality mapping J : E → 2E

∗
is single-valued, one-to-one, and onto.

(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex.

Let E be a smooth, strictly convex, and reflexive Banach space and letC be a nonempty
closed convex subset of E. Throughout this paper, we denote by φ the function defined by

φ
(
x, y

)
= ‖x‖2 − 2〈x, Jy〉 + ∥∥y

∥∥2
, ∀x, y ∈ E. (2.3)

Following Alber [21], the generalized projection ΠC from E onto C is defined by

ΠC(x) = argmin
u∈C

φ(u, x), ∀x ∈ E. (2.4)

If E is a Hilbert space, then φ(x, y) = ‖x − y‖2 and ΠC is the metric projection of H onto C.
We know the following lemmas for generalized projections.

Lemma 2.1 (see Alber [21] and Kamimura and Takahashi [22]). Let C be a nonempty closed
convex subset of a smooth, strictly convex and reflexive Banach space E. Then

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ
(
x, y

)
, ∀x ∈ C, y ∈ E. (2.5)

Lemma 2.2 (see Alber [21], Kamimura and Takahashi [22]). Let C be a nonempty closed convex
subset of a smooth, strictly convex, and reflexive Banach space and let x ∈ E and z ∈ C. Then

z = ΠCx ⇐⇒ 〈y − z, Jx − Jz〉 ≤ 0, ∀y ∈ C. (2.6)

Lemma 2.3 (see Kamimura and Takahashi [22]). Let E be a smooth and uniformly convex
Banach space and let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded.
If limn→∞φ(xn, yn) = 0, then limn→∞‖xn − yn‖ = 0.
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Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E and let T be a mapping from C into itself. We denoted by F(T) the set of fixed
points of T , that is F(T) = {x : Tx = x}. A point p ∈ C is said to be an asymptotic fixed point
of T if there exists {xn} in C which converges weakly to p and limn→∞‖xn − Txn‖ = 0. We
denote the set of all asymptotic fixed points of T by F̂(T).

A mapping T from C into itself is said to be relatively nonexpansive [23] if the
following conditions are satisfied:

(1) F(T) is nonempty,

(2) φ(u, Tx) ≤ φ(u, x), for all u ∈ F(T), x ∈ E,

(3) F(T) = F̂(T).

A mapping T from C into itself is said to be relatively quasi-nonexpansive if the
following conditions are satisfied:

(1) F(T) is nonempty,

(2) φ(u, Tx) ≤ φ(u, x), for all u ∈ F(T), x ∈ E,

The asymptotic behavior of a relatively nonexpansive mapping was studied in [24].
T is said to be φ-nonexpansive, if φ(Tx, Ty) ≤ φ(x, y) for x, y ∈ C. T is said to be quasi-φ-
asymptotically nonexpansive if the following conditions are satisfied:

(1) F(T) is nonempty,

(2) φ(u, Tnx) ≤ knφ(u, x), for all u ∈ F(T), x ∈ E and n ≥ 1,

where {kn} is a real sequence within [1,∞) and kn → 1 as n → ∞.
A mapping T is said to be closed if for any sequence {xn} ⊂ C with xn → x and

Txn → y, then Tx = y. It is easy to know that each relatively nonexpansive mapping is
closed. The class of quasi-φ-asymptotically nonexpansive mappings contains properly the
class of quasi-φ-nonexpansive mappings as a subclass and the class of quasi-φ-nonexpansive
mappings contains properly the class of relatively nonexpansive mappings as a subclass, but
the converse may be not true (see more details [24, 25]).

By using the similar method as in Su et al. [26], the following Lemma is not hard to
prove.

Lemma 2.4. Let E be a strictly convex and uniformly smooth real Banach space, let C be a closed
convex subset of E, and let T be a closed and quasi-φ-asymptotically nonexpansive mapping from C
into itself with a sequence {kn} ⊂ [1,∞) and kn → 1 as n → ∞. Then F(T) is a closed and convex
subset of C.

For solving the equilibrium problem, let us assume that a bifunction f satisfies the
following conditions:

(A1) f(x, x) = 0, for all x ∈ E,

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0, for all x, y ∈ E,

(A3) for all x, y, z ∈ E, lim supt↓0f(tz + (1 − t)x, y) ≤ f(x, y),

(A4) for all x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.
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Lemma 2.5 (see Blum and Oettli [1]). Let C be a closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction from C×C to R = (−∞,+∞) satisfying (A1)–(A4),
and let r > 0 and x ∈ E. Then, there exists z ∈ C such that

f
(
z, y

)
+
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2.7)

Lemma 2.6 (see Kumam [5]). LetC be a closed convex subset of a uniformly smooth, strictly convex,
and reflexive Banach space E. Let f be a bifunction from C×C to R = (−∞,+∞) satisfying (A1)–(A4)
and letA be a monotone mapping from C into E∗. For r > 0, define a mapping Tr : C → C as follows:

Tr(x) =
{
z ∈ C : f

(
z, y

)
+
〈
Ax, y − z

〉
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀ y ∈ C

}
, (2.8)

for all x ∈ E. Then, the following hold:

(1) Tr is single-valued,

(2) Tr is a firmly nonexpansive-type mapping [6], that is, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
, (2.9)

(3) F(Tr) = GEP(f,A),

(4) GEP(f,A) is closed and convex.

Lemma 2.7 (see Kumam [5]). Let C be a closed convex subset of a smooth, strictly convex, and
reflexive Banach space E. Let f be a bifunction from C × C to R = (−∞,+∞) satisfying (A1)–(A4)
and let A be a monotone mapping from C into E∗. For x ∈ E, q ∈ F(Tr), then the following holds:

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.10)

Lemma 2.8 (see Chang et al. [19]). Let E be a uniformly convex Banach space, r > 0 a positive
number, and Br(0) a closed ball of E. Then, for any given sequence {xi}∞i=1 ⊂ Br(0) and for any given
sequence {λi}∞i=1 of positive number with

∑∞
n=1 λn = 1, there exists a continuous, strictly increasing,

and convex function g : [0, 2r) → [0,∞) with g(0) = 0 such that, for any positive integer i, j with
i /= j,

∥∥∥∥∥

∞∑

n=1

λnxn

∥∥∥∥∥

2

≤
∞∑

n=1

λn‖xn‖2 − λiλig
(∥∥xi − xj

∥∥). (2.11)

Definition 2.9. A mapping S from C into itself is said to be equally continuous if it is follows
that

lim
n→∞

∥∥xn − yn

∥∥ = 0 =⇒ lim
n→∞

∥∥Snxn − Snyn

∥∥ = 0, ∀xn, yn ∈ C. (2.12)
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A mapping S from C into itself is said to be uniformly L-Lipschitz continuous if there exists
a constant L > 0 such that

∥
∥Snx − Sny

∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ C. (2.13)

It is easy to know that each L-Lipschitz continuous mapping is equally continuous, but the
converse may be not true.

Definition 2.10. Let {Si}∞i=1 : C → C be a sequence of mapping. {Si}∞i=1 is said to be a family of
uniformly quasi-φ-asymptotically nonexpansive mappings, if ∩∞

i=1F(Si)/= ∅, and there exists a
sequence {kn} ⊂ [1,∞)with kn → 1 such that for each i ≥ 1,

φ
(
p, Sn

i x
) ≤ knφ

(
p, x

)
, ∀p ∈ ∩∞

i=1F(Si), x ∈ C, ∀n ≥ 1. (2.14)

3. Main Results

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of E. Let f be a bifunction from C × C to R = (−∞,+∞) satisfying
(A1)–(A4) and let A be a continuous monotone mapping of C into E∗. Let {Si}∞i=1 : C → C be
an infinite family of closed equally continuous and uniformly quasi-φ-asymptotically nonexpansive
mappings with a sequence {kn} ⊂ [1,∞), kn → 1 such that F := ∩∞

i=1F(Si) ∩ GEP(f,A) is a
nonempty and bounded subset in C. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ΠC1x0,

yn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,

un = Trnyn,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x0, ∀n = 1, 2, 3, . . . ,

(3.1)

where J is the duality mapping on E, {αn,i}∞i=0 are sequences in [0, 1] which satisfies
∑∞

i=0 αn,i = 1,
θn = supp∈F(kn − 1)φ(p, xn), and rn ∈ [a,+∞) for some a > 0. If lim infn→∞αn,0αn,i > 0 for all
n ≥ 0, then {xn} converges strongly toΠFx0, whereΠF is the generalized projection from C onto F.

Proof. We first show that Cn is closed and convex. It is obvious that Cn is closed. In addition,
since

φ(z, un) ≤ φ(z, xn) + θn ⇐⇒ ‖un‖2 − ‖xn‖2 − 2〈z, Jun − Jxn〉 − θn ≤ 0, (3.2)

so Cn is convex, therefore, Cn is a closed convex subset of E for all n ≥ 0.
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Next, we show that F ⊂ Cn for all n ≥ 1. It is clear that F ⊂ C1 = C. Suppose F ∈ Cn

for n > 1, by the property of φ,
∑∞

i=0 αn,i = 1, Lemmas 2.6 and 2.8, and uniformly quasi-φ-
asymptotically nonexpansive of Sn for each u ∈ F ⊂ Cn, then we have

φ(u, un) = φ
(
u, Trnyn

)

≤ φ
(
u, yn

)

= φ

(

u, J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

))

= ‖u‖2 − 2

〈

u,

(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)〉

+

∥
∥∥∥∥
αn,0Jxn +

∞∑

i=1

αn,iJS
n
i xn

∥
∥∥∥∥

2

≤ ∥∥p
∥∥2 − 2αn,0

〈
p, Jxn

〉 − 2
∞∑

i=1

αn,i

〈
u, JSn

i xn

〉
+ αn,0‖xn‖2

+
∞∑

i=1

αn,i

∥∥Sn
i xn

∥∥2 − αn,0αn,jg
(∥∥∥Jxn − JSn

j xn

∥∥∥
)

≤ αn,0φ(u, xn) +
∞∑

i=1

αn,iφ
(
u, Sn

i xn

)

≤ αn,0φ(u, xn) +
∞∑

i=1

αn,iknφ(u, xn)

≤ knφ(u, xn)

≤ φ(u, xn) + θn.

(3.3)

This shows that u ∈ Cn+1 implies that F ⊂ Cn for all n ≥ 1 by induction. On the one hand,
since xn+1 = ΠCnx0 and Cn+1 ⊂ Cn for all n ≥ 1, we have

φ(xn, x0) ≤ φ(xn+1, x0). (3.4)

Therefore {φ(xn, x0)} is nondecreasing. In the other hand, by Lemma 2.1, we have

φ(xn, x0) = φ(ΠCnx0, x0)

≤ φ(u, x0) − φ(u, xn)

≤ φ(u, x0),

(3.5)

for each u ∈ F(T) ⊂ Cn for all n ≥ 0. Therefore, {φ(xn, x0)} is bounded; this together with
(3.4) implies that the limit of {φ(xn, x0)} exists.
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Since {φ(xn, x0)} is bounded, so {xn} is bounded by (1.7), together with limn→∞kn = 1,
we have that

lim
n→∞

θn = 0. (3.6)

From Lemma 2.1, we have, for any positive integers n,m, that

φ(xn+m, xn) = φ(xn+m,ΠCnx0)

≤ φ(xn+m, x0) − φ(ΠCnx0, x0)

= φ(xn+m, x0) − φ(xn, x0).

(3.7)

Because the limit of {φ(xn, x0)} exists, then we have

lim
n→∞

φ(xn+m, xn) = 0 (3.8)

uniformly for positive integersm > 1. Since {xn} is a bounded sequence, by using Lemma 2.4,
we have

lim
n→∞

‖xn+m − xn‖ = 0 (3.9)

uniformly for positive integers m > 1. Hence {xn} is a Cauchy sequence, therefore, there
exists a point p ∈ C such that {xn} converges strongly to p.

In addition, from (3.7) we have limn→∞φ(xn+1, xn) = 0, this together with the fact
xn+1 ∈ Cn implies that

φ(xn+1, un) ≤ φ(xn+1, xn) + θn. (3.10)

Taking limit on both side of (3.10) and from (3.6),we get that

lim
n→∞

φ(xn+1, un) = 0. (3.11)

By using Lemma 2.4, we have

lim
n→∞

‖xn+1 − un‖ = 0, (3.12)

which implies that {un} converges strongly to p.
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From (3.3), we have φ(u, yn) ≤ (u, xn) + θn, together with un = Trnyn and Lemma 2.7,
we have

φ
(
un, yn

)
= φ

(
Trnyn, yn

)

≤ φ
(
u, yn

) − φ
(
u, Trnyn

)

≤ φ(u, xn) − φ
(
u, Trnyn

)
+ θn

= φ(u, xn) − φ(u, un) + θn

(3.13)

for any u ∈ F. This implies that

lim
n→∞

φ
(
un, yn

)
= 0. (3.14)

Therefore, we have

lim
n→∞

∥∥un − yn

∥∥ = 0, (3.15)

which implies that {yn} converges strongly to p. Thus we have proved that

xn −→ p, un −→ p, yn −→ p, (3.16)

as n → ∞, where p ∈ C. From (3.1)

∥∥Jxn − Jyn

∥∥ =

∥∥∥∥∥
Jxn −

(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)∥∥∥∥∥

=

∥∥∥∥∥

∞∑

i=1

αn,i

(
Jxn − JSn

i xn

)
∥∥∥∥∥

≤
∞∑

i=1

αn,i

∥∥Jxn − JSn
i xn

∥∥,

(3.17)

and hence

∥∥Jxn − JSn
i xn

∥∥ ≤ 1
∑∞

i=1 αn,i

∥∥Jxn − Jyn

∥∥. (3.18)

Taking limit on both side of above inequality, by lim infn→∞
∑∞

i=1 αn,i > 0 and from (3.16), we
have

lim
n→∞

∥∥Jxn − JSn
i xn

∥∥ = 0. (3.19)



12 Abstract and Applied Analysis

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥
∥xn − Sn

i xn

∥
∥ = 0, (3.20)

for each i ≥ 1, together with (3.16), we get that

lim
n→∞

Sn
i xn = p, (3.21)

for each i ≥ 1. Since Si is equally continuous, we have

∥
∥
∥Sn+1

i xn − Sn
i xn

∥
∥
∥ =

∥
∥
∥Sn+1

i xn − Sn+1
i xn+1

∥
∥
∥ +

∥
∥
∥Sn+1

i xn+1 − xn+1

∥
∥
∥

+ ‖xn+1 − xn‖ +
∥∥∥xn − Sn+1

i xn

∥∥∥

≤ (Li + 1)‖xn+1 − xn‖ +
∥∥∥Sn+1

i xn+1 − xn+1

∥∥∥ +
∥∥∥xn − Sn+1

i xn

∥∥∥.

(3.22)

Together with (3.16) and (3.20), we have limn→∞‖Sn+1
i xn − Sn

i xn‖ = 0. From (3.21), we have
Sn+1
i xn → p, that is, SiS

n
i xn → p. In view of closeness of Si, we have Sip = p, for all i ≥ 1.

This implies that p ∈ ∩∞
i=1F(Si).

Next we show p ∈ GEP(f,A). By un = Trnyn, we have

f
(
un, y

)
+
〈
Ayn, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.23)

From (A2), we get that

〈
Ayn, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ −f(un, y
) ≥ f

(
y, un

)
, ∀y ∈ C, (3.24)

and hence

0 ≥ −〈Ayn, y − un

〉 −
〈
y − un,

Jun − Jyn

rn

〉
+ f

(
y, un

)
, ∀y ∈ C. (3.25)

For t with 0 < t < 1 and y ∈ C, let yt = ty + (1 − t)p, then yt ∈ C, from (3.25)we have

〈
Ayt, yt − un

〉 ≥ 〈
Ayt, yt − un

〉 − 〈
Ayn, yt − un

〉 −
〈
yt − un,

Jun − Jyn

rn

〉
+ f

(
yt, un

)

=
〈
Ayt −Aun, yt − un

〉
+
〈
Aun −Ayn, yt − un

〉

−
〈
yt − un,

Jun − Jyn

rn

〉
+ f

(
yt, un

)
.

(3.26)
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Since J is uniformly norm-to-norm continuous on bounded sets, A is monotone and (3.16),
we have

〈Ayt, yt − un〉 ≥ 0. (3.27)

It follows from (A4) that

f
(
yt, p

) ≤ lim inf
n→∞

f
(
yt, un

)

≤ lim
n→∞

〈
Ayt, yt − un

〉

=
〈
Ayt, yt − p

〉

= t
〈
Ayt, y − p

〉
.

(3.28)

From the conditions (A1) and (A4), we have

0 = f
(
yt, yt

)

≤ tf
(
yt, y

)
+ (1 − t)f

(
yt, p

)

≤ tf
(
yt, y

)
+ (1 − t)t

〈
Ayt, y − p

〉

≤ f
(
yt, y

)
+ (1 − t)

〈
Ayt, y − p

〉
.

(3.29)

Letting t → 0, we get

f
(
p, y

)
+
〈
Ap, y − p

〉 ≥ 0, ∀y ∈ C. (3.30)

This implies that p ∈ GEP(f,A).
Finally, we show that p = ΠFx0. Let w = ΠFx0, from p ∈ F, we have

φ
(
p, x0

) ≥ φ(w,x0). (3.31)

Since xn = ΠCnx0 and w ∈ F ⊂ Cn,

φ(xn, x0) ≤ φ(w,x0), (3.32)

together with above two hands and limn→∞xn = p, we obtain

φ
(
p, x0

)
= φ(w,x0). (3.33)

that is p = w = ΠFx0. The proof is completed.

By using the similar method of proof as in Theorem 3.1, the following theorem is not
hard to prove.
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Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of E. Let f be a bifunction from C × C to R = (−∞,+∞) satisfying
(A1)–(A4). Let {Si}∞i=1 : C → C be an infinite family of closed equally continuous and uniformly
quasi-φ-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1,∞), kn → 1 such that
F := ∩∞

i=1F(Si) ∩ EP(f) is a nonempty and bounded subset in C. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ΠC1x0,

yn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,

un ∈ C s.t. f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x0, ∀n = 1, 2, 3, . . . ,

(3.34)

where J is the duality mapping on E, {αn,i}∞i=0 are sequences in [0, 1] which satisfies
∑∞

i=0 αn,i = 1,
θn = supp∈F(kn − 1)φ(p, xn), and rn ∈ [a,+∞) for some a > 0. If lim infn→∞αn,0αn,i > 0 for all
n ≥ 0, then {xn} converges strongly toΠFx0, whereΠF is the generalized projection from C onto F.

Proof. In Theorem 3.1, put A = 0 we can obtain the conclusion of Theorem 3.2.

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of E. Let f be a bifunction from C × C to R = (−∞,+∞) satisfying
(A1)–(A4) and let A be a continuous monotone mapping of C into E∗. Let S : C → C be an
infinite family of closed equally continuous and quasi-φ-asymptotically nonexpansive mappings with
a sequence {kn} ⊂ [1,∞), kn → 1 such that F := F(S) ∩ GEP(f,A) is a nonempty and bounded
subset in C. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ΠC1x0,

yn = J−1(αnJxn + (1 − αn)JSnxn),

un = Trnyn,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x0, ∀n = 1, 2, 3, . . . ,

(3.35)

where J is the duality mapping on E, {αn} are sequences in [0, 1] which satisfies lim infn→∞αn(1 −
αn) > 0 for all n ≥ 0, θn = supp∈F(kn − 1)φ(p, xn) and rn ∈ [a,+∞) for some a > 0. Then {xn}
converges strongly toΠFx0, where ΠF is the generalized projection from C onto F.

Proof. In Theorem 3.1, put Si = S, for i = 1, 2, . . ., we can obtain the conclusion of Theorem 3.3.



Abstract and Applied Analysis 15

4. Application for Optimization Problem

In this section, we study a kind of optimization problem by using the result of this paper.
that is, we will give an iterative algorithm of solution for the following optimization problem
with nonempty set of solutions:

max h(x), x ∈ C, (4.1)

where h(x) is a convex and lower semicontinuous functional defined on a closed convex
subset C of a Banach space H. We denoted by S the set of solutions of (4.1). Let F be a
bifunction from C × C to R defined by f(x, y) = h(x) − h(y). We consider the following
equilibrium problem, that is, to find x ∈ C such that

f
(
x, y

) ≥ 0, ∀y ∈ C. (4.2)

It is obvious that EP(F) = S, where EP(F) denote the set of solutions of equilibrium problem
(4.2). In addition, it is easy to see that f(x, y) satisfies the conditions (A1)–(A4) in the
Section 2. Therefore, from the Theorem 3.1, we can obtain the following theorem.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of E. Let f be a bifunction from C × C to R = (−∞,+∞) satisfying
(A1)–(A4) and let A be a continuous monotone mapping of C into E∗. Let {Si}∞i=1 : C → C be
an infinite family of closed equally continuous and uniformly quasi-φ-asymptotically nonexpansive
mappings with a sequence {kn} ⊂ [1,∞), kn → 1 such that F := ∩∞

i=1F(Si) ∩ S is a nonempty and
bounded subset in C. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ΠC1x0,

yn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,

un ∈ C, s.t. h(un) − h
(
y
)
+

1
rn

〈
y − un, un − yn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x0 ∀n = 1, 2, 3, . . . ,

(4.3)

where J is the duality mapping on E, {αn,i}∞i=0 are sequences in [0, 1] which satisfies
∑∞

i=0 αn,i = 1,
θn = supp∈F(kn − 1)φ(p, xn), and rn ∈ [a,+∞) for some a > 0. If lim infn→∞αn,0αn,i > 0 for all
n ≥ 0, then {xn} converges strongly toΠFx0, whereΠF is the generalized projection from C onto F.

Proof. By the proof of Theorem 3.2, we can obtain Theorem 4.1.

It is easy to see that, this paper has some new methods and conditions than the
conditions of Takahashi and Zembayashi [16]. In this paper, we prove the convergence
theorems for uniformly quasi-φ-asymptotically nonexpansive mappings and do not need the
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Kadec-Klee property of Banach space and use the condition of equally continuous that is
more weak different from the condition of uniformly L-Lipscitz.
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