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Under the hypothesis that the first derivative satisfies some kind of weak Lipschitz conditions, a
new semilocal convergence theorem for inexact Newtonmethod is presented. Unified convergence
criteria ensuring the convergence of inexact Newton method are also established. Applications to
some special cases such as the Kantorovich type conditions and γ-conditions are provided and
some well-known convergence theorems for Newton’s method are obtained as corollaries.

1. Introduction

Let F be a continuously Fréchet differentiable nonlinear operator from a convex subset D of
Banach space X to Banach space Y . Finding solutions of a nonlinear operator equation:

F(x) = 0 (1.1)

in Banach space is a basic and important problem in applied and computational mathematics.
A classical method for finding an approximation of a solution of (1.1) is Newton’s method
which is defined by

xn+1 = xn − F ′(xn)−1F(xn), x0 ∈ D, n = 0, 1, 2, . . . . (1.2)

There is a huge literature on local as well as semilocal convergence for Newton’s
method under various assumptions (see [1–9]). Besides, there are a lot of works on the
weakness of the hypotheses made on the underlying operators, see for example [2, 3, 5–9]
and references therein. In particular, Wang in [7, 8] introduced the notions of Lipschitz
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conditions with L average, under which Kantorovich like convergence criteria and Smale’s
point estimate theory can be put together to be investigated.

However, Newton’s method has two disadvantages. One is to evaluate F ′ involved,
the other is to solve the exact solution of Newton equations:

F ′(xn)(xn+1 − xn) = −F(xn), n = 0, 1, 2, . . . . (1.3)

In many applications, for example, those in Euclidean spaces, computing the exact solutions
using a direct method such as Gaussian elimination can be expensive if the number of
unknowns is large and may not be justified when xk is far from the searched solution. While
using linear iterative methods to approximate the solutions of (1.3) instead of solving it
exactly can reduce some of the costs of Newton’s method. One of the methods is inexact
Newton method which can be found in [10] and takes the following form:

xn+1 = xn + sn, F ′(xn)sn = −F(xn) + rn, n = 0, 1, 2, . . . , (1.4)

where {rn} is a sequence in Y .
As is well known, the convergence behavior of the inexact Newton method depends

on the residual controls of {rn} under the hypothesis that F ′ satisfies different conditions.
Some relative results can be found in [10–24], for example.

Under the Lipschitz continuity assumption on F ′, different residual controls were
used. For example, the residual controls ‖rn‖ ≤ ηn‖F(xn)‖were adopted in [10, 12]; in [15] the
affine invariant conditions ‖F ′(x0)

−1rn‖ ≤ ηn‖F ′(x0)
−1F(xn)‖ were considered; while in [21]

Shen has analyzed the semilocal convergence behavior in some manner such that the relative
residuals {rn} satisfy

∥
∥
∥F ′(x0)−1rn

∥
∥
∥ ≤ ηn

∥
∥
∥F ′(x0)−1F(xn)

∥
∥
∥

1+κ
, 0 ≤ κ ≤ 1, n = 0, 1, 2, . . . . (1.5)

Assuming that the residuals satisfy ‖Pnrn‖ ≤ θn‖PnF(xn)‖1+κ, where {Pn} is a sequence of
invertible operators from Y toX, and that F ′(x0)

−1F ′ satisfies the Hölder condition around x0,
Li and Shen established the local and semilocal convergence in [16, 20], respectively. Besides,
the γ-condition was also introduced into inexact Newton method in [22] by considering
residual controls (1.5) with κ = 1, that is,

∥
∥
∥F ′(x0)−1rn

∥
∥
∥ ≤ ηn

∥
∥
∥F ′(x0)−1F(xn)

∥
∥
∥

2
, n = 0, 1, 2, . . . ; (1.6)

Smale’s α-theory for the inexact Newton method was established there.
In the present paper, by considering the residual controls (1.6), we will study the

convergence of inexact Newton method under the assumption that F has a continuous
derivative in a closed ball B(x0, r), F ′(x0)

−1F ′ exists and F ′(x0)
−1F ′ satisfies the weak Lipschitz

condition:

∥
∥
∥F ′(x0)−1

(

F ′(x) − F ′(x′))
∥
∥
∥ ≤

∫ρ(xx′)

ρ(x)
L(u)du, ∀x ∈ B(x0, r), ∀x′ ∈ B(x, r − ρ(x)), (1.7)
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where r is a positive number, ρ(x) = ‖x − x0‖, ρ(xx′) = ρ(x) + ‖x′ − x‖ ≤ r, and L is a positive
integrable nondecreasing function on [0, r]. We also establish the unified convergence criteria,
which include Kantorovich type and Smale type convergence criteria as special cases. In
particular, in the special case when ηn = 0 (n = 0, 1, 2, . . .), (1.4) reduces to Newton’s method
and our result extends the corresponding one in [7].

The paper is organized as follows. Section 2 gives some lemmas which are used in the
proof of ourmain theorem. In Section 3, the semilocal convergence of inexact Newtonmethod
is studied under the weak Lipschitz condition (1.7). Its applications to some special cases are
provided in Section 4.

2. Preliminaries

Let X and Y be Banach spaces. Throughout this paper, R > r are two positive numbers, L is a
positive integrable nondecreasing function on any involved intervals, and B(x,R) is an open
ball in X with center x and radius R. Let β > 0, 0 ≤ λ < 1, ω ≥ 1, and σ ≥ 0. Define

ϕ(t) = β − (1 − λ)t + σt2 +ω
∫ t

0
L(u)(t − u)du, 0 ≤ t ≤ R,

ψ(t) = β − t +ω
∫ t

0
L(u)(t − u)du, 0 ≤ t ≤ R.

(2.1)

Obviously,

ϕ′(t) = −(1 − λ) + 2σt +ω
∫ t

0
L(u)du, 0 ≤ t ≤ R, (2.2)

ψ ′(t) = −1 +ω
∫ t

0
L(u)du, 0 ≤ t ≤ R, (2.3)

ϕ′′(t) = 2σ +ωL(t) > 0, 0 ≤ t ≤ R. (2.4)

Set

rλ := sup
{

r ∈ (0, R) : ω
∫ r

0
L(u)du + 2σr ≤ 1 − λ

}

, (2.5)

bλ := (1 − λ)rλ − σr2λ −ω
∫ rλ

0
L(u)(rλ − u)du. (2.6)

Write δ = ω
∫R

0 L(u)du + 2σR. Then

rλ =

{

R, if δ < 1 − λ,
r ′
λ
, if δ ≥ 1 − λ, (2.7)
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where r ′
λ
∈ [0, R] is such that ω

∫ r ′
λ

0 L(u)du + 2σr ′
λ
= 1 − λ. Furthermore, it follows that

bλ ≥ ω
∫ rλ

0
L(u)udu + σr2λ, if δ < 1 − λ,

bλ = ω
∫ rλ

0
L(u)udu + σr2λ, if δ ≥ 1 − λ.

(2.8)

Let

t0 = 0, tn+1 = tn −
ϕ(tn)
ψ ′(tn)

, n = 0, 1, 2, . . . . (2.9)

The following two lemmas describe some properties about the majorizing function ϕ
and the convergence property of {tn}.

Lemma 2.1. Suppose that β ≤ bλ and ϕ is defined by (2.1). Then the function ϕ is strictly decreasing
and has exact one zero t∗ on [0, rλ] satisfying β < t∗.

Proof. By (2.4) and (2.5), we know ϕ′ is strictly increasing on [0, rλ] and has the values ϕ′(0) <
0 and ϕ′(rλ) ≤ 0. This implies that ϕ is strictly decreasing on [0, rλ]. Note that ϕ(0) = β > 0
and ϕ(rλ) ≤ 0 by the definition of bλ. Thus, ϕ(t) = 0 has exact one solution t∗ on [0, rλ]. Since

ϕ
(

β
)

= λβ + σβ2 +ω
∫β

0
L(u)

(

β − u)du > 0, (2.10)

we have β < t∗. The proof is complete.

Lemma 2.2. Let t∗ be the positive solution of equation ϕ(t) = 0 on [0, rλ]. Suppose that β ≤ bλ and
the sequence {tn} is defined by (2.9). Then

tn < tn+1 < t
∗, n = 0, 1, 2, . . . . (2.11)

Consequently, {tn} is strictly increasing and converges to t∗.

Proof. We prove the lemma by mathematical induction. Note that 0 = t0 < t1 = β < t∗. For
n > 1, assume that

tn−1 < tn < t∗. (2.12)

Since ψ ′′(t) = ωL(t) > 0, −ψ ′ is strictly decreasing on [0, rλ]. Hence,

−ψ ′(tn) > −ψ ′(t∗) ≥ −ψ ′(rλ) = −ϕ′(rλ) + λ + 2σrλ ≥ 0. (2.13)

Moreover, ϕ(tn) > 0 by of Lemma 2.1. It follows that

tn+1 = tn −
ϕ(tn)
ψ ′(tn)

> tn. (2.14)
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Define a functionN(t) on [0, t∗] by

N(t) := t − ϕ(t)
ψ ′(t)

, t ∈ [0, t∗]. (2.15)

Note that ψ ′(t) < 0, t ∈ [0, t∗], unless λ = 0, σ = 0 and t = t∗ = rλ, for which we adopt the
convention that limt→ t∗(ϕ(t)/ψ ′(t)) = 0 andN(t∗) = t∗ − limt→ t∗(ϕ(t)/ψ ′(t)) = t∗. Hence, the
functionN(t) is well defined and continuous on [0, t∗].

Moreover, by (2.2) and (2.3), we have

N ′(t) = 1 − ϕ′(t)ψ ′(t) − ϕ(t)ψ ′′(t)
(

ψ ′(t)
)2

=
−ψ ′(t)(λ + 2σt) + ϕ(t)ψ ′′(t)

(

ψ ′(t)
)2

> 0, t ∈ [0, t∗). (2.16)

Hence,N(t) is monotonically increasing on [0, t∗). This together with (2.9) and (2.14) implies
that

tn < tn+1 =N(tn) < N(t∗) = t∗. (2.17)

Therefore, by mathematical induction, (2.11) holds. Consequently, {tn} is increasing,
bounded, and converges to a point t∗λ, which satisfies ϕ(t∗λ) = 0. Hence, t∗ = t∗λ. The proof
is complete.

To prove our main result, we need two more lemmas. The first can be found in [23]
and the second in [7].

Lemma 2.3. Suppose that F has a continuous derivative satisfying the weak Lipschitz condition (1.7).
Let r satisfy

∫ r

0 L(u)du ≤ 1. Then F ′(x) is invertible in the ball B(x0, r) and

∥
∥
∥F ′(x)−1F ′(x0)

∥
∥
∥ ≤

(

1 −
∫ρ(x)

0
L(u)du

)−1
. (2.18)

Lemma 2.4. Let 0 ≤ c < R and define

χ(t) =
1
t2

∫ t

0
L(c + u)(t − u)du, 0 ≤ t < R − c. (2.19)

Then, χ is increasing on [0, R − c).

3. Semilocal Convergence Analysis

Recall that F : D ⊆ X → Y is a nonlinear operator with continuous Fréchet derivative.
Let B(x0, R) ⊆ D and x0 ∈ D be such that F ′(x0)

−1 exists. In the present paper, we adopt
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the residuals {rn} satisfying (1.6) and assume that η = supn≥0ηn < 1. Thus, if n ≥ 0 and {xn}
is well defined, then

∥
∥
∥F ′(x0)−1rn

∥
∥
∥ ≤ ηn

∥
∥
∥F ′(x0)−1F(xn)

∥
∥
∥

2 ≤ η
∥
∥
∥F ′(x0)−1F(xn)

∥
∥
∥

2
. (3.1)

Let

α =
∥
∥
∥F ′(x0)−1F(x0)

∥
∥
∥, β =

(

1 +
√
η
)

α. (3.2)

Write

ω = 1 +
√
η, σ =

η
(

1 +√
η
)(

1 +
∫R

0 L(u)du
)2

(

1 − √
η
)2

. (3.3)

Recall that rλ is determined by (2.5), ϕ(t∗) = 0, and {tn} is generated by (2.9) with ω and σ
given in (3.3).

Lemma 3.1. Let {xn} be a sequence generated by (1.4). Suppose that F satisfies the weak Lipschitz
condition (1.7) on B(x0, t∗) ⊆ B(x0, R) and that β ≤ bλ. For an integerm ≥ 1, if

√
η
∥
∥
∥F ′(x0)−1F(xn−1)

∥
∥
∥ ≤ 1, ‖xn − xn−1‖ ≤ tn − tn−1 (3.4)

hold for each 1 ≤ n ≤ m, then the following assertions hold:

(

1 +
√
η
)
∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ ≤ ϕ(tm);

√
η
∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ ≤ 1.

(3.5)

Proof. Assume that (3.4) holds for each 1 ≤ n ≤ m. Write xτm−1 = xm−1 +τ(xm −xm−1), τ ∈ [0, 1].
Applying (1.4), we have

F(xm) = F(xm) − F(xm−1) − F ′(xm−1)(xm − xm−1) + rm−1

=
∫1

0

[

F ′(xτm−1
) − F ′(xm−1)

]

dτ(xm − xm−1) + rm−1.
(3.6)

Hence,

∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ ≤

∥
∥
∥
∥
∥
F ′(x0)−1

∫1

0

[

F ′(xτm−1
) − F ′(xm−1)

]

dτ(xm − xm−1)

∥
∥
∥
∥
∥

+
∥
∥
∥F ′(x0)−1rm−1

∥
∥
∥

= I1 + I2.

(3.7)
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To estimate I1, by (3.4), we notice that
∥
∥xτm−1 − x0

∥
∥ = ‖xm−1 + τ(xm − xm−1) − x0‖

≤
m−1∑

n=1

‖xn − xn−1‖ + τ‖xm − xm−1‖

≤ tm−1 + τ(tm − tm−1)

= (1 − τ)tm−1 + τtm < t∗.

(3.8)

In particular,

‖xm−1 − x0‖ ≤ tm−1 < t∗, ‖xm − x0‖ ≤ tm < t∗. (3.9)

Thus, by the weak Lipschitz condition (1.7), we obtain

I1 ≤
∫‖xm−xm−1‖

0
(‖xm − xm−1‖ − u)L(‖xm−1 − x0‖ + u)du. (3.10)

Below we estimate I2. We firstly notice that (3.1) and (3.4) yield

∥
∥
∥F ′(x0)−1F ′(xm−1)(xm − xm−1)

∥
∥
∥ ≥

∥
∥
∥F ′(x0)−1F(xm−1)

∥
∥
∥ −

∥
∥
∥F ′(x0)−1rm−1

∥
∥
∥

≥
∥
∥
∥F ′(x0)−1F(xm−1)

∥
∥
∥ − η

∥
∥
∥F ′(x0)−1F(xm−1)

∥
∥
∥

2

≥ (

1 −√
η
)
∥
∥
∥F ′(x0)−1F(xm−1)

∥
∥
∥.

(3.11)

Since
∥
∥
∥F ′(x0)−1F ′(xm−1)

∥
∥
∥ =

∥
∥
∥I + F ′(x0)−1

[

F ′(xm−1) − F ′(x0)
]
∥
∥
∥

≤ 1 +
∫ρ(xm−1)

0
L(u)du

≤ 1 +
∫R

0
L(u)du,

(3.12)

we have

∥
∥
∥F ′(x0)−1F(xm−1)

∥
∥
∥ ≤

∥
∥
∥F ′(x0)−1F ′(xm−1)

∥
∥
∥‖xm − xm−1‖

1 − √
η

≤ 1 +
∫R

0 L(u)du
1 − √

η
‖xm − xm−1‖. (3.13)

Combining this with (3.1) implies that

I2 ≤ η
∥
∥
∥F ′(x0)−1F(xm−1)

∥
∥
∥

2 ≤
η
(

1 +
∫R

0 L(u)du
)2

(

1 − √
η
)2 ‖xm − xm−1‖2. (3.14)
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Consequently, by (3.7), (3.10), (3.14) and Lemma 2.4, we get

(

1 +
√
η
)
∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ ≤ (

1 +
√
η
)

(I1 + I2)

≤ (

1 +
√
η
)
∫‖xm−xm−1‖

0
(‖xm − xm−1‖ − u)L(‖xm−1 − x0‖ + u)du

+
η
(

1 +√
η
)(

1 +
∫R

0 L(u)du
)2

(

1 − √
η
)2 ‖xm − xm−1‖2

= ω
∫‖xm−xm−1‖

0
(‖xm − xm−1‖ − u)L(‖xm−1 − x0‖ + u)du

+ σ‖xm − xm−1‖2

=

(

ω

‖xm − xm−1‖2
∫‖xm−xm−1‖

0
(‖xm − xm−1‖ − u)

×L(‖xm−1 − x0‖ + u)du + σ

)

‖xm − xm−1‖2

≤
(

ω

(tm − tm−1)2

∫ tm−tm−1

0
(tm − tm−1 − u)L(tm−1 + u)du + σ

)

× (tm − tm−1)2

= ω
∫ tm−tm−1

0
(tm − tm−1 − u)L(tm−1 + u)du

+ σ
[

t2m − t2m−1 − 2tm−1(tm − tm−1)
]

= ϕ(tm) − ϕ(tm−1) − ϕ′(tm−1)(tm − tm−1).
(3.15)

Noting that ϕ′(t) = ψ ′(t) + λ + 2σt and −ϕ(tm−1) − ψ ′(tm−1)(tm − tm−1) = 0, we have

(

1 +
√
η
)
∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ ≤ ϕ(tm) − ϕ(tm−1) − ϕ′(tm−1)(tm − tm−1)

= ϕ(tm) − (λ + 2σtm−1)(tm − tm−1)

≤ ϕ(tm).

(3.16)

Moreover, since ϕ is decreasing on [0, t∗], one has

(

1 +
√
η
)
∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ ≤ ϕ(tm) ≤ ϕ(t0) = β. (3.17)
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And therefore

√
η
∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ ≤

√
η

1 +√
η
β =

√
η
∥
∥
∥F ′(x0)−1F(x0)

∥
∥
∥ ≤ 1. (3.18)

That is, (3.5) holds, and the proof is complete.

We now give the main result.

Theorem 3.2. Suppose that β ≤ min{1/√j, b˘} and B(x0, t∗) ⊆ B(x0, R), and that F ′(x0)
−1F ′ satis-

fies the weak Lipschitz condition (1.7) on B(x0, t∗). Then the sequence {xn} generated by the inexact
Newton method (1.4) converges to a solution x∗ of (1.1). Moreover,

‖xn − x∗‖ ≤ t∗ − tn, n = 0, 1, 2, . . . . (3.19)

Proof. We firstly use mathematical induction to prove that (3.4) holds for each n = 1, 2, . . .. For
n = 1, by the above condition and (3.2), the first inequality in (3.4) holds trivially. While the
second one can be proved as follows:

‖x1 − x0‖ ≤
∥
∥
∥F ′(x0)−1F(x0)

∥
∥
∥ +

∥
∥
∥F ′(x0)−1r0

∥
∥
∥

≤ α + ηα2 ≤ α +
√
ηα =

(

1 +
√
η
)

α = β = t1 − t0.
(3.20)

Assume that (3.4) holds for all n ≤ m. Then, Lemma 3.1 is applicable to concluding that

(

1 +
√
η
)
∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ ≤ ϕ(tm);

√
η
∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ ≤ 1.

(3.21)

Hence, by (3.5), together with the weak Lipschitz condition (1.7) and Lemma 2.3, one has

‖xm+1 − xm‖ ≤
∥
∥
∥F ′(xm)−1F ′(x0)

∥
∥
∥

(∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ +

∥
∥
∥F ′(x0)−1rm

∥
∥
∥

)

≤ 1

1 − ∫ρ(xm)
0 L(u)du

(∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥ + η

∥
∥
∥F ′(xm)

−1F(xm)
∥
∥
∥

2
)

≤ 1 +√
η

1 −ω ∫ρ(xm)
0 L(u)du

∥
∥
∥F ′(x0)−1F(xm)

∥
∥
∥

≤ − ϕ(tm)
ψ ′(tm)

= tm+1 − tm.

(3.22)

Therefore, (3.4) holds for n = m + 1 and so for each n ≥ 1. Consequently, for n ≥ 0 and k ≥ 0,

‖xk+n − xn‖ ≤
k∑

i=1

‖xi+n − xi+n−1‖ ≤
k∑

i=1

(ti+n − ti+n−1) = tk+n − tn. (3.23)
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This together with Lemma 2.2 means that {xn} is a Cauchy sequence and so converges to
some x∗. While taking k → ∞ in (3.23), we obtain

‖xn − x∗‖ ≤ t∗ − tn, n = 0, 1, 2, . . . . (3.24)

The proof is complete.

In the special case when ηn = 0 (n = 0, 1, 2, . . .), inexact Newton method (1.4) reduces
to Newton’s method. Moreover, ω = 1, σ = 0, β = ‖F ′(x0)

−1F(x0)‖. Thus, Theorem 3.2
reduces to the related theorem of Newton’s method.

Corollary 3.3. Assume that β ≤ bλ and B(x0, t∗) ⊆ B(x0, R), where bλ =
∫ rλ
0 L(u)udu and rλ

satisfying
∫ rλ
0 L(u)du ≤ 1 − λ. Suppose that F ′(x0)

−1F ′ satisfies the weak Lipschitz condition (1.7) on
B(x0, t∗). Then the sequence {xn} generated by Newton’s method (1.2) converges to a solution x∗ of
(1.1). Moreover,

‖xn − x∗‖ ≤ t∗ − tn, n = 0, 1, 2, . . . , (3.25)

where t∗ and {tn} are defined in Lemma 2.2 for η = 0.

In more particular, suppose that
∫R

0 L(u)du > 1 and λ = 0. Then Corollary 3.3 reduces
to the following result given in (Theorem 3.1, [7]).

Corollary 3.4. Assume that β ≤ bλ0 , where bλ0 =
∫ rλ0
0 L(u)udu and

∫ rλ0
0 L(u)du = 1. Suppose that

F ′(x0)
−1F ′ satisfies weak Lipschitz condition (1.7) on B(x0, t∗) ⊆ B(x0, R). Then the sequence {xn}

generated by Newton’s method (1.2) converges to a solution x∗ of (1.1). Moreover,

‖xn − x∗‖ ≤ t∗ − tn, n = 0, 1, 2, . . . , (3.26)

where t∗ and {tn} are defined in Lemma 2.2 for η = 0 and λ = 0.

4. Application

This section is divided into two subsections: we consider the applications of our main results
specializing, respectively, in Kantorovich type condition and in γ-condition. In particular, our
results reduce some of the corresponding results of Newton’s method.

4.1. Kantorovich-Type Condition

Throughout this subsection, let L be a positive constant. By (2.1), we have

ϕ(t) = β − (1 − λ)t +
(

σ +
1
2
ωL

)

t2, t ≥ 0,

ψ(t) = β − t + 1
2
ωLt2, t ≥ 0.

(4.1)
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By (2.5) and (2.6), we get

rλ =
1 − λ
ωL + σ

, bλ =
(1 − λ)2ωL
2(ωL + σ)

. (4.2)

The convergence criterion becomes

∥
∥
∥F ′(x0)−1F(x0)

∥
∥
∥ ≤ (1 − λ)2ωL

2(ωL + σ)
. (4.3)

Moreover, suppose that η = 0 and λ = 0. Then criterion (4.3) reduces to the well-known
Kantorovich type criterion ‖F ′(x0)

−1F(x0)‖ ≤ 1/2L of Newton’s method in [7].

Corollary 4.1. Let L be a positive constant, β = ‖F ′(x0)
−1F(x0)‖ and β ≤ bλ0 , where bλ0 = 1/2L and

rλ0 = 1/L. Assume that F satisfies the condition:

∥
∥
∥F ′(x0)−1

(

F ′(x) − F ′(x′))
∥
∥
∥ ≤ L∥∥x − x′∥∥, ∀x, x′ ∈ B(x0, r), ‖x − x0‖ +

∥
∥x − x′∥∥ ≤ r, (4.4)

where r = (1−√1 − 2Lβ)/L. Then the sequence {xn} generated by Newton’s method (1.2) converges
to a solution x∗ of (1.1), and satisfies

‖xn − x∗‖ ≤ t∗ − tn, n = 0, 1, 2, . . . . (4.5)

4.2. γ-Condition

Throughout this subsection, we assume that γ > 0 and F has continuous second derivative
and satisfies

∥
∥
∥F ′(x0)−1F ′′(x)

∥
∥
∥ ≤ 2γ

(

1 − γ‖x − x0‖
)3
, ∀x ∈ B

(

x0,
1
γ

)

. (4.6)

Let

L(u) =
2γ

(

1 − γu)3
, u ∈

[

0,
1
γ

)

. (4.7)
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Then, by (2.1), we have

ϕ(t) = β − (1 − λ)t + σt2 + γt2

1 − γt , 0 ≤ t < 1
γ
,

ψ(t) = β − t + γt2

1 − γt , 0 ≤ t < 1
γ
.

(4.8)

By (2.5) and (2.6), rλ and bλ satisfy

ω

[

1
(

1 − γrλ
)2

− 1

]

+ σrλ = 1 − λ, bλ =
γr2λ

(

1 − γrλ
)2
. (4.9)

The convergence criterion becomes

∥
∥
∥F ′(x0)−1F(x0)

∥
∥
∥ ≤ γr2λ

(

1 − γrλ
)2
. (4.10)

In the more special case, when η = 0 and λ = 0, we obtain the criterion
‖F ′(x0)

−1F(x0)‖ ≤ (3 − 2
√
2)/γ the same with Newton’s method in [7].

Corollary 4.2. Let γ be a positive constant, β = ‖F ′(x0)
−1F(x0)‖ and β ≤ bλ0 , where bλ0 = (3−2√2)/

γ and rλ0 = (1 − (1/
√
2))(1/γ). Assume that F satisfies the condition:

∥
∥
∥F ′(x0)−1

(

F ′(x) − F ′(x′))
∥
∥
∥ ≤ 1

(

1 − γ‖x − x0‖ − γ‖x′ − x0‖
)2

− 1
(

1 − γ‖x − x0‖
)2
,

∀x, x′ ∈ B(x0, r), ‖x − x0‖ +
∥
∥x′ − x∥∥ ≤ r,

(4.11)

where r = (1 + βγ −
√

(1 + βγ)2 − 8βγ)/4γ . Then the sequence {xn} generated by Newton’s method
(1.2) converges to a solution x∗ of (1.1), and satisfies

‖xn − x∗‖ ≤ t∗ − tn, n = 0, 1, 2, . . . . (4.12)
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