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We First introduce a three-step iterative algorithm for approximating the fixed points of the
hemicontractive mappings in Banach spaces. Consequently, we prove the strong convergence of
the proposed algorithm under some assumptions. Since three-step iterations include Ishikawa
iterations as special cases, our result continue to hold for these problems. Our main results can
be viewed as an important refinement of the previously known results.

1. Introduction

In recent years, several convergence results have been proved on iterative methods for
approximating fixed points of pseudocontractive mappings (see, e.g., [1–10] and references
therein). It is worth mentioning that such iterative type methods are known as Mann
iterations and Ishikawa iterations. It is clear that a Lipschitz pseudocontractive mapping
with a unique fixed point for which the Mann iteration sequence failed to converge, but
it does converge for the sequence obtained by the Ishikawa iterations, see [11]. In 2000,
Noor [12] suggested and analyzed three-step iterative methods for finding the approximate
solution of a continuous mapping in the Hilbert space using the technique of updating the
solution. Three-step iterations are also known as Noor iteration. It is well known [13] that
three-step iterative schemes include one-step (Mann) and two-step (Ishikawa) iterations as
special cases. It raises an interesting question. Is there exist any Lipschitz pseudo-contractive
mapping with a unique fixed point for which Ishikawa iteration sequence fail to convergence,
but Does convergence for the sequence obtained from Noor iteration? This is an open and
challenging problem. To the best of our knowledge, main result of Ishikawa [14], see Theorem
IS has never been extended to more general Banach spaces. Motivated and inspired by the
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recent research activities in this filed, we suggest and analyze a three-step iterative scheme
associated with hemi-contractive mappings in Banach spaces. We also prove the strong
convergence of the sequence generated by the three-step iterations under mild conditions.
Since three-step iterations include Ishikawa iterations as special cases, our results continue to
hold for these problems. It is worth mentioning that our results may be considered as very
significant, interesting and important extensions of the previously known results concerning
pseudo-contractive mappings.

Let E be a real Banach space and E∗ be its dual space. The normalized duality mapping
from E to 2E

∗
is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖}, ∀x ∈ E, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing.
Let C be a nonempty subset of E, a mapping T : C → C is called pseudo-contractive

if there exists j(x − y) ∈ J(x − y) such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥x − y
∥∥2

, (1.2)

for all x, y ∈ C. Let F(T) := {x ∈ C : Tx = x}. A mapping T : C → C is called hemicontractive
if F(T)/= ∅ and

〈
Tx − x∗, j(x − x∗)

〉 ≤ ‖x − x∗‖2, ∀x ∈ C, x∗ ∈ F(T). (1.3)

It is easy to see that the class of pseudo-contractive mappings with fixed points is a subclass
of the class of hemicontractions. A mapping T : C → C is called Lipschitzian if there exists a
constant L ≥ 0 such that ‖Tx − Ty‖ ≤ L‖x − y‖ for each x, y ∈ C.

In 1974, Ishikawa [14] proved the following result for the pseudo-contractive
mappings.

Theorem 1.1 (see [14]). If C is a compact convex subset of a Hilbert space H, T : C → C is a
Lipschitzian pseudo-contractive mapping. For x0 ∈ C, define the sequence {xn} iteratively by

xn+1 = (1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTxn, n ≥ 0,

(1.4)

where {αn}, {βn} are sequences of positive numbers satisfying the conditions
(i) 0 ≤ αn ≤ βn < 1;
(ii) limn→∞ βn = 0;
(iii)

∑∞
n=1 αn βn = ∞.

Then the sequence {xn} defined by (1.4) converges strongly to a fixed point of T .

Since its publication in 1974, Theorem IS, as far as we know, has never been extended
to more general Banach spaces.

In this paper, we suggest and analyze a three-step iteration below Algorithm 1.2
associated with hemi-contractive mappings having a strong convergence in the setting of
Banach spaces under some appropriate conditions.
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Algorithm 1.2. For arbitrary x1 ∈ C, let the sequence {xn} be generated by

zn =
(
1 − γn

)
xn + γnTxn,

yn =
(
1 − βn

)
xn + βnTzn,

xn+1 = (1 − αn)xn + αnTyn, n ≥ 1.

(1.5)

It is clear that Algorithm 1.2 includes Mann (one-step) and Ishikawa (two-step)
iterations as special cases. For some related works, please refere to [15–19].

2. Preliminaries

Let E be a Banach space, the modulus of convexity of E is the function δE : (0, 2] → [0, 1]
defined by

δE(ε) = inf
{
1 − 1

2
∥∥x + y

∥∥ : ‖x‖ = 1,
∥∥y

∥∥ = 1,
∥∥x − y

∥∥ ≥ ε

}
. (2.1)

A Banach space E is called uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. For
p > 1, the (generalized) duality mapping Jp : E → 2E

∗
is defined as Jp(x) := {x∗ ∈ E :

〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1}. In particular, J = J2 is the normalized duality mapping on E.
It is known that Jp(x) = ‖x‖p−2J(x), x /= 0. A Banach space E is called p-uniformly convex if
there exists a constant c > 0 such that δE(ε) ≥ cεp, 0 < ε ≤ 2. It is known (see e.g., [12]) that
Lp is

2 uniformly convex, if 1 < p ≤ 2,

p uniformly convex, if p ≥ 2.
(2.2)

For proving our main results, we shall need the following lemmas.

Lemma 2.1 (see [20]). Let p > 1 be a given real number. Then the following statements about a
Banach space E are equivalent:

(i) E is p-uniformly convex;
(ii) there is a constant cp > 0 such that for every x, y ∈ E, jp(x) ∈ Jp(x), the following

inequality holds:

∥∥x + y
∥∥p ≥ ‖x‖p + p

〈
y, jp(x)

〉
+ cp

∥∥y
∥∥p

. (2.3)

Remark 2.2. Replacing x by (x + y), y by (−y) in inequality (2.3) and using the Cauchy-
Schwarz inequality, we can obtain

∥∥x + y
∥∥p ≤ ‖x‖p + p

∥∥y
∥∥ · ∥∥x + y

∥∥p−1
. (2.4)
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Lemma 2.3 (see [20]). Let p > 1 be a given real number. Let E be a p-uniformly convex Banach
space. Then, there exists a constant d > 0 such that

∥
∥λx + (1 − λ)y

∥
∥p ≤ λ‖x‖p + (1 − λ)

∥
∥y

∥
∥p −Wp(λ)d

∥
∥x − y

∥
∥p

, (2.5)

for all λ ∈ [0, 1] and x, y ∈ E, whereWp(λ) = λp(1 − λ) + λ(1 − λ)p.

Lemma 2.4 (see [4]). Let {ρn} : {σn} be two nonnegative sequences and for all integers n ≥ N0 (for
some fixed N0), ρn+1 ≤ ρn + σn.

(i) if
∑∞

n=1 σn < ∞, then limn→∞ ρn exists;
(ii) if

∑∞
n=1 σn < ∞ and {ρn} has a sequence converging to zero, then limn→∞ ρn = 0.

3. Main Results

In the sequel, cp and d will denote the constants appearing in inequalities (2.3) and (2.5),
respectively. For the rest of this paper, we shall assume that E be a real p-uniformly convex
Banach space such that 2−(p−2)dp > (p − 1)c−1p and p ≤ 1 + cp. For Lp spaces with 1 < p ≤ 2, the
following inequalities hold (see [12, pages 1131-1132]):

∥∥x + y
∥∥2 ≥ ‖x‖2 + 2

〈
y, J(x)

〉
+ cp

∥∥y
∥∥2

,

∥∥λx + (1 − λ)y
∥∥2 ≤ λ‖x‖2 + (1 − λ)

∥∥y
∥∥2 −W2(λ)

(
p − 1

)∥∥x − y
∥∥2

,
(3.1)

for λ ∈ [0, 1] and for all x, y ∈ E, where cp = [1 + t
(p−1)
p ][(1 + tp)

−(p−1)], and for 0 < tp < 1, tp is
the unique solution of the equation g(t) = (p − 2)t(p−1) + (p − 1)t(p−2) − 1 = 0.

Remark 3.1. We observe that the function h : [0, 1] → [0,∞) defined by h(x) = (1 + xp−1)/
(1 + x)p−1 is increasing on [0, 1] (h′(x) = (1 + x)p−2(p − 1)(xp−2 − 1)/(1 + x)2p−2 ≥ 0), hence for
Lp (1 < p ≤ 2), we have cp ≥ 1 and d = p − 1. Therefore, the conditions 2−(p−2)dp > (p − 1)c−1p
and p ≤ 1 + cp are satisfied.

Lemma 3.2. Let E be a real p-uniformly convex Banach space, ∅/=C ⊂ E nonempty closed convex
and bounded, and T : C → C a hemi-contractive mapping with F(T)/= ∅. Then, for each x ∈ C and
for each integer n ≥ 1, the following inequality holds:

cp‖Tx − x∗‖p ≤ (
p − 1

)‖x − x∗‖p + ‖x − Tx‖p, ∀x∗ ∈ F(T). (3.2)

Proof. Replacing x by (1/2)(x − x∗) and y by (−1/2)(Tx − x∗) in inequality (2.3), we can get

‖x − Tx‖p ≥ ‖x − x∗‖p − p2p−1
〈
Tx − x∗, jp

(
1
2
(x − x∗)

)〉

+ cp‖Tx − x∗‖p

≥ ‖x − x∗‖p − p‖x − x∗‖p + cp‖Tx − x∗‖p.

(3.3)
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Since jp((1/2)(x − x∗)) ∈ Jp((1/2)(x − x∗)) = 2−(p−1)‖x − x∗‖(p−2)J(x − x∗) so that

cp‖Tx − x∗‖p ≤ (
p − 1

)‖x − x∗‖p + ‖x − Tx‖p. (3.4)

This completes the proof.

Remark 3.3. We note that the function f : [0,∞) → (−∞,+∞) defined by f(x) = Lpxp−dp(1−
x)2−(p−2) + (p − 1)c−1p is strictly increasing on (0,∞). Hence, it has at most one zero on (0,∞),
provided that f(0) = (p − 1)c−1p − dp2−(p−2) < 0. In this case, since f(1) = Lp + (p − 1)c−1p > 0, it
follows that the zero tp ∈ (0, 1).

Lemma 3.4. Let E be a real p-uniformly convex Banach space such that 2−(p−2)dp > (p − 1)c−1p and
p ≤ 1 + cp. Let C be a nonempty closed convex and bounded subset of E, let T : C → C be a Lipschitz
hemi-contractive mapping with Lipschitz constant L ≥ 0 and F(T)/= ∅. Let {αn}, {βn} and {γn} be
three real sequences in [0, 1] satisfying the following conditions:

ε ≤ 1 − dcp(1 − αn)2−(p−2) ≤ βn ≤ b,
∞∑

n=1

γn < ∞. (3.5)

for all integers n ≥ 1, some ε > 0 and b ∈ (0, tp), where tp is the unique solution of the equation:

Lpxp − dp(1 − x)2−(p−2) +
(
p − 1

)
c−1p = 0, (3.6)

on (0,∞).
For arbitrary x1 ∈ C, let the sequence {xn} be generated by

zn =
(
1 − γn

)
xn + γnTxn,

yn =
(
1 − βn

)
xn + βnTzn,

xn+1 = (1 − αn)xn + αnTyn, n ≥ 1.

(3.7)

Then, limn→∞ ‖xn − Txn‖ = 0.

Proof. We shall use M to denote the possible different constants appearing in the following
reasoning.

Let x∗ ∈ F(T). Using inequality (2.5), we have

‖xn+1 − x∗‖p =
∥∥(1 − αn)(xn − x∗) + αn

(
Tyn − x∗)∥∥p

≤ (1 − αn)‖xn − x∗‖p + αn

∥∥Tyn − x∗∥∥p

−Wp(αn)d
∥∥xn − Tyn

∥∥p
.

(3.8)
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From (3.2), we have

cp‖Txn − x∗‖p ≤ (
p − 1

)‖xn − x∗‖p + ‖xn − Txn‖p, (3.9)

cp
∥
∥Tyn − x∗∥∥p ≤ (

p − 1
)∥∥yn − x∗∥∥p +

∥
∥yn − Tyn

∥
∥p

. (3.10)

Moreover, we also have

∥
∥yn − x∗∥∥p =

∥
∥(1 − βn

)
(xn − x∗) + βn(Tzn − x∗)

∥
∥p

≤ (
1 − βn

)‖xn − x∗‖p + βn‖Tzn − x∗‖p

−Wp

(
βn
)
d‖xn − Tzn‖p,

(3.11)

∥∥yn − Tyn

∥∥p =
∥∥(1 − βn

)(
xn − Tyn

)
+ βn

(
Tzn − Tyn

)∥∥p

≤ (
1 − βn

)∥∥xn − Tyn

∥∥p + βn
∥∥Tzn − Tyn

∥∥p

−Wp

(
βn
)
d‖xn − Tzn‖p.

(3.12)

At the same time, applying (2.4), we can obtain the following estimates:

‖Tzn − x∗‖p = ‖Txn − x∗ + Tzn − Txn‖p

≤ ‖Txn − x∗‖p + p‖Tzn − Txn‖‖Tzn − x∗‖p−1

≤ ‖Txn − x∗‖p + pL‖zn − xn‖‖Tzn − x∗‖p−1

= ‖Txn − x∗‖p + pLγn‖Txn − xn‖‖Tzn − x∗‖p−1

≤ ‖Txn − x∗‖p +Mγn,

(3.13)

‖xn − Txn‖p = ‖Tzn − Txn + xn − Tzn‖p

≤ ‖xn − Tzn‖p + p‖Tzn − Txn‖‖xn − Txn‖p−1

≤ ‖xn − Tzn‖p +Mγn,

(3.14)

∥∥Tzn − Tyn

∥∥p =
∥∥Txn − Tyn + Tzn − Txn

∥∥p

≤ ∥∥Txn − Tyn

∥∥p + p‖Tzn − Txn‖
∥∥Tzn − Tyn

∥∥p−1

≤ ∥∥Txn − Tyn

∥∥p +Mγn.

(3.15)

Substitute (3.13) and (3.14) into (3.11) to get

∥∥yn − x∗∥∥p ≤ (
1 − βn

)‖xn − x∗‖p + βn‖Txn − x∗‖p

−Wp

(
βn
)
d‖xn − Txn‖p +Mγn,

(3.16)
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this together with (3.9) implies that

∥
∥yn − x∗∥∥p ≤ (

1 − βn
)‖xn − x∗‖p

+ βnc
−1
p

{(
p − 1

)‖xn − x∗‖p + ‖xn − Txn‖p
}

−Wp

(
βn
)
d‖xn − Txn‖p +Mγn

=
[
1 + βnc

−1
p

(
p − 1 − cp

)]‖xn − x∗‖p

+
[
βnc

−1
p −Wp

(
βn
)
d
]
‖xn − Txn‖p +Mγn.

(3.17)

Set tn = βnc
−1
p (p − 1 − cp), rn = βnc

−1
p −Wp(βn)d. Then,

∥∥yn − x∗∥∥p ≤ (1 + tn)‖xn − x∗‖p + rn‖xn − Txn‖p +Mγn. (3.18)

From (3.12), (3.14), and (3.15), we have

∥∥yn − Tyn

∥∥p ≤ (
1 − βn

)∥∥xn − Tyn

∥∥p + βn
∥∥Txn − Tyn

∥∥p

−Wp

(
βn
)
d‖xn − Txn‖p +Mγn.

(3.19)

Substitution of (3.18) and (3.19) into (3.10) yields

cp
∥∥Tyn − x∗∥∥p ≤ (

p − 1
)
(1 + tn)‖xn − x∗‖p + (

p − 1
)
rn‖xn − Txn‖p

+
(
1 − βn

)∥∥xn − Tyn

∥∥p + βn
∥∥Txn − Tyn

∥∥p

−Wp

(
βn
)
d‖xn − Txn‖p +Mγn

=
(
p − 1

)
(1 + tn)‖xn − x∗‖p + [(

p − 1
)
rn −Wp

(
βn
)
d
]

× ‖xn − Txn‖p +
(
1 − βn

)∥∥xn − Tyn

∥∥p

+ βn
∥∥Txn − Tyn

∥∥p +Mγn.

(3.20)
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Substitution of this inequality into (3.8) now gives

‖xn+1 − x∗‖p ≤ (1 − αn)‖xn − x∗‖p

+ αnc
−1
p

{(
p − 1

)
(1 + tn)‖xn − x∗‖p + [(

p − 1
)
rn −Wp

(
βn
)
d
]

×‖xn − Txn‖p +
(
1 − βn

)∥∥xn − Tyn

∥
∥p + βn

∥
∥Txn − Tyn

∥
∥p}

−Wp(αn)d
∥
∥xn − Tyn

∥
∥p +Mγn

=
[
(1 − αn) + αnc

−1
p

(
p − 1

)
(1 + tn)

]
‖xn − x∗‖p

+
[
αnc

−1
p

(
1 − βn

) −Wp(αn)d
]∥
∥xn − Tyn

∥
∥p

+ αnc
−1
p

[(
p − 1

)
rn −Wp

(
βn
)
d
]‖xn − Txn‖p

+ αnβnc
−1
p

∥∥Txn − Tyn

∥∥p +Mγn,

(3.21)

that is,

‖xn+1 − x∗‖p ≤
{
1 + αn

[(
p − 1

)
c−1p (1 + tn) − 1

]}
‖xn − x∗‖p

−
[
Wp(αn)d − c−1p αn

(
1 − βn

)]∥∥xn − Tyn

∥∥p

− c−1p αn

[
Wp

(
βn
)
d − (

p − 1
)
rn
]‖xn − Txn‖p

+ αnβnc
−1
p

∥∥Txn − Tyn

∥∥p +Mγn.

(3.22)

Observe that c−1p (p − 1)(1 + tn) − 1 = c−2p (p − 1 − cp)[(p − 1)βn + cp] and that by condition (3.5),
since Wp(αn) ≥ αn(1 − αn)2−(p−2), we get Wp(αn)d − c−1p αn(1 − βn) ≥ 0. so that

‖xn+1 − x∗‖p ≤
{
1 + αnc

−2
p

(
p − 1 − cp

)[(
p − 1

)
βn + cp

]}‖xn − x∗‖p

− αnc
−1
p

[
Wp

(
βn
)
d − (

p − 1
)
rn
]‖xn − Txn‖p

+ αnβnc
−1
p

∥∥Txn − Tyn

∥∥p +Mγn.

(3.23)

Since T is Lipschitzian, we have

∥∥Txn − Tyn

∥∥p ≤ Lp
∥∥xn − yn

∥∥p = Lp
∥∥βn(xn − Tzn)

∥∥p

≤ Lpβ
p
n‖xn − Tzn‖p

= Lpβ
p
n‖xn − Txn + Txn − Tzn‖p

≤ Lpβ
p
n

[
‖xn − Txn‖p + p‖Txn − Tzn‖‖xn − Tzn‖p−1

]

≤ Lpβ
p
n‖xn − Txn‖p +Mγn.

(3.24)
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By the assumption p ≤ 1 + cp, hence

‖xn+1 − x∗‖p ≤ ‖xn − x∗‖p − αnβnc
−1
p

[
dp

(
1 − βn

)
2−(p−2) − (

p − 1
)
c−1p − β

p
nL

p
]

× ‖xn − Txn‖p +Mγn.

(3.25)

Since b ∈ (0, tp), it follows that δ = dp(1−b)2−(p−2) − (p−1)c−1p −bpLp > 0. We can choose some
ε such that ε′ = 1−(1−ε)2−(p−2)cpd > 0. Then, condition (3.5) implies αn ≥ ε′ > 0. Furthermore,
inequality (3.25) now yields the following estimates:

‖xn+1 − x∗‖p ≤ ‖xn − x∗‖p − εε′c−1p δ‖xn − Txn‖p +Mγn

≤ ‖xn − x∗‖p +Mγn.
(3.26)

Since
∑∞

n=0 γn < ∞, it follows from Lemma 2.3 that limn→∞ ‖xn − x∗‖p exists. Let limn→∞
‖xn − x∗‖p = r. Inequality (3.26) also yields

0 < εε′c−1p δ‖xn − Txn‖p ≤ ‖xn − x∗‖p − ‖xn+1 − x∗‖p +Mγn → 0. (3.27)

Hence, limn→∞ ‖xn − Txn‖ = 0. This completes the proof.

Remark 3.5. The interest and importance of Lemma 3.2 lie in the fact that strong convergence
of the sequence {xn} is achieved under certain mild compactness assumptions either on T or
on its domain.

Now, we give a strong convergence theorem as follows.

Theorem 3.6. Let E be a real p-uniformly convex Banach space such that 2−(p−2)dp > (p − 1)c−1p and
p ≤ 1 + cp. Let C be a nonempty closed convex and bounded subset of E, T : C → C be a completely
continuous Lipschitz hemi-contractive mapping with Lipschitz constant L ≥ 0 and F(T)/= ∅. Let {αn},
{βn}, and {γn} be three real sequences in [0, 1] satisfying the following conditions:

ε ≤ 1 − dcp(1 − αn)2−(p−2) ≤ βn ≤ b,
∞∑

n=1

γn < ∞, (3.28)

for all integers n ≥ 1, some ε > 0 and b ∈ (0, tp), where tp is the unique solution of the equation:

Lpxp − dp(1 − x)2−(p−2) +
(
p − 1

)
c−1p = 0, (3.29)

on (0,∞).
For arbitrary x1 ∈ C, let the sequence {xn} be defined by (3.7). Then, {xn} converges strongly

to a fixed point of T .
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Proof. By Lemma 3.2 limn→∞ ‖xn − Txn‖ = 0. Since T is completely continuous, there exists a
subsequence {Txni} of {Txn} such that Txni → y∗. This implies, by Lemma 3.2 that

xni −→ y∗. (3.30)

By the continuity of T and Lemma 3.2, we obtain Ty∗ = y∗, that is, y∗ is a fixed point of T .
Replacing the x∗ by y∗ in inequality (3.26), we obtain that

∥
∥xn+1 − y∗∥∥p ≤ ∥

∥xn − y∗∥∥p − εε′c−1p δ‖xn − Txn‖p

≤ ∥
∥xn − y∗∥∥p +Mγn.

(3.31)

From (3.30), we know that {‖xn−y∗‖} has a sequence converging to zero. We note that
the condition

∑∞
n=0 γn < ∞. Hence from inequality (3.31) and Lemma 2.3, we can conclude

that ‖xn − y∗‖ → ∞ as n → ∞, that is, {xn} converges to a fixed point of T . This completes
the proof.

From Theorem 3.6, we can obtain the following result.

Corollary 3.7. Let E be a real p-uniformly convex Banach space such that 2−(p−2)dp > (p−1)c−1p and
p ≤ 1 + cp. Let C be a nonempty closed convex and bounded subset of E, T : C → C be a completely
continuous Lipschitz hemi-contractive mapping with Lipschitz constant L ≥ 0 and F(T)/= ∅. Let {αn}
and {βn} be two real sequences in [0, 1] satisfying the following condition:

ε ≤ 1 − dcp(1 − αn)2−(p−2) ≤ βn ≤ b, (3.32)

for all integers n ≥ 1, some ε > 0 and b ∈ (0, tp), where tp is the unique solution of the equation:

Lpxp − dp(1 − x)2−(p−2) +
(
p − 1

)
c−1p = 0 (3.33)

on (0,∞).
For arbitrary x1 ∈ C, let the sequence {xn} be defined by (1.4). Then, {xn} converges strongly

to a fixed points of T .
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