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The background of definition of coincidence degree is explained, and some of its basic properties
are given.

1. Introduction

Gaines and Mawhin introduced coincidence degree theory in 1970s in analyzing functional
and differential equations [1, 2]. Mawhin has continued studies on this theory later on and
has made so important contributions on this subject since then this theory is also known
as Mahwin’s coincidence degree theory. Coincidence theory is very powerful technique
especially in existence of solutions problems in nonlinear equations. It has especially so broad
applications in the existence of periodic solutions of nonlinear differential equations so that
many researchers have used it for their investigations (see [3–32] and references therein).
The main goal in the coincidence degree theory is to search the existence of a solutions of the
operator equation

Lx = Nx (1.1)

in some bounded and open set Ω in some Banach space for L being a linear operator and
N nonlinear operator using Leray-Schauder degree theory. As it is known that, in finite
dimensional case, for Ω ⊂ R

n, f ∈ C(Ω), and p ∈ R
n \ f(∂Ω), the degree of f on Ω

with respect to p, d(f,Ω, p) is well defined. But unfortunately this is not the case in infinite
dimension for f ∈ C(Ω) (see [33], page 172). Luckily, in an arbitrary Banach space X, Leray
and Schauder proved that for Ω ∈ X open, bounded set, M : Ω → X compact operator and
for p ∈ X\(I−M)(∂Ω) the degree of compact perturbation of identity I−M inΩwith respect
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to p, d(I −M,Ω, p) is well defined [34]. One of the main useful properties of degree theory is
that if d(I−M,Ω, p)/= 0 then (I−M)x = p has at least one solution inΩ. In particular if we take
p = 0 and d(I −M,Ω, p)/= 0 then the compact operatorM has at least one fixed point in Ω. In
[1], Gaines and Mawhin studied existence of a solution of an operator equation (1.1) defined
on a Banach space X in an open bounded set Ω using the Leray-Schauder degree theory. But
since the operator I − (L−N) is not compact in general the need to define a compact operator
M such that its set of fixed points in Ωwould be equal to a solution set of (1.1) inΩ aroused.
In [1], the compact operator M is given and the coincidence degree for the couple (L,N) in
Ω is defined by d[(L,N),Ω] = d(I −M,Ω, 0).

The aim of this paper is to make an effort to understand the theoretical background of
the definition of coincidence degree which has similar properties with the Leray-Schauder
degree for an operator couple (L,N) satisfying some special conditions, to analyze the
dependence of coincidence degree to the components of the compact operator M and in this
way to prepare good resource for one who wants to study and to improve the coincidence
degree theory.

The paper is basically prepared using [1]. In this study, we tried to explain the theory
that was given densely in [1]. Besides we give proofs of some results that their proofs not
given in [1]. Namely, we give proofs of Lemmas 2.1, 2.2, and 3.19 and Theorems 3.3, 4.1, and
4.2. We state and prove Lemma 3.17 which is essential for Proposition 3.18. In Proposition 3.6
we show that the operator ΠQ is an isomorphism and explain important details, and, in
Proposition 3.20, we show that A is an automorphism and make necessary explanations.
Also in each proof we tried to make important contributions to make the proofs much more
understandable and so that it can be improved by interested researchers.

In summary, in Section 2, some preliminaries which are used in the definition of
coincidence degree are used. In Section 3, definition of coincidence degree for some linear
perturbations of Fredholm mappings on normed spaces is given. In Section 4, some basic
properties of coincidence degree are given.

2. Algebraic Preliminaries

In this section, we will give some facts that will be used throughout the paper.
Let X and Z be two vector spaces, the domain of operator L, Dom L is a linear

subspace of X, and L : Dom L → Z is a linear operator. Assume that the operators
P : X → X and Q : Z → Z linear projection operators such that the chain

X
P−→ Dom L

L−→ Z
Q−→ Z (2.1)

is exact, that is, ImP = kerL and ImL = kerQ. Let us define the restriction of L to Dom L ∩
kerP as LP : Dom L ∩ kerP → ImL.

Now, let us give the following lemma about LP .

Lemma 2.1. LP is an algebraic isomorphism.

Proof. Firstly, let us show that LP is one-to-one mapping. For this let us take x ∈ kerLP ⊂
kerL = ImP , so that there exists y ∈ Dom P such that x = Py. Since P is a projection operator
we get x = Py = P 2y = P(Py) = Px = 0. Therefore, x = 0, so that we obtain that kerLP = {0}.
This means that LP is one-to-one.
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Now let us show that LP is onto. Since P : X → X is a projection operator, we canwrite
the vector spaceX as direct sumsX = kerP ⊕ ImP . From the exactness of the chain above, we
get X = kerP ⊕ kerL. Take z ∈ ImL, so that there exists x ∈ Dom L ⊂ X with Lx = z. Since
X = kerP ⊕kerL, there exists unique elements e ∈ kerP and f ∈ kerL such that we can write
x = e + f . From here, we can obtain z = Lx = L(e + f) = Le + Lf = Le + 0 = Le. This means
that e ∈ Dom L. So we get e ∈ Dom L and e ∈ kerP and LPe = z. So the result follows.

Now, let us define KP := L−1
P . It is clear that KP : ImL ⊂ Z → DomL ∩ kerP is

one-to-one, onto, and PKP = 0.

Lemma 2.2. (1) On ImL, we have LKP = I. (2) On Dom L, we have KPL = I − P .

Proof. (1) Take x ∈ ImL. Therefore, LKPx = L(KP (x)) = LP (KP (x)) = Ix.
(2) Since ImP = kerL, then we have LP = 0, so we obtain KPL = KPL(I − P). So that

in order to prove (2), we need to show the equality KPL(I − P) = KPLP (I − P). If we can
have Im(I − P) ⊆ Dom(LP ) = DomL ∩ kerP , then the result follows. Take x ∈ DomL. Since
P(x) ∈ kerL ⊂ DomL and DomL is a vector subspace of X, we have (x − Px) ∈ DomL.

Since P(x − Px) = Px − P 2x = Px − Px = 0, then (x − Px) ∈ kerP ; therefore, we have
(x − Px) ∈ DomL ∩ kerP . From here, we obtain Im(I − P) ⊂ DomL ∩ kerP . So using (1), the
result KPL(I − P) = KPLP (I − P) = I − P follows.

Now, let us define the canonic surjection Π as

Π : Z −→ CokerL

z �−→ z + ImL.
(2.2)

Here, CokerL = Z/ ImL is the quotient space of Z under the equivalence relation z ∼ z′ ⇔
z − z′ ∈ ImL. Thus, CokerL = {z = z + ImL : z ∈ Z}. It is clear that the canonic surjection
operator Π is linear and kerΠ = kerQ.

Proposition 2.3. If there exists an one-to-one operator Λ : CokerL → kerL, then

Lx = y, y ∈ Z (2.3)

will be equivalent to

(I − P)x =
(
ΛΠ +KP,Q

)
y. (2.4)

Here, the operator KP,Q : Z → X is defined as KP,Q = KP (I −Q).

Proof. Since ImL = kerQ = kerΠ, then for y ∈ ImL we have Qy = 0 and ΛΠy = Λ ImL =
Λ0 = 0. From here, it is seen that

Lx = y ⇐⇒ Lx = y −Qy ⇐⇒ KPLx = KP

(
y −Qy

)

⇐⇒ (I − P)x = KP (I −Q)y ⇐⇒ (I − P)x = (ΛΠ +KP (I −Q))y.
(2.5)
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Now, let us consider another projection operator couple (P ′, Q′) that will make the
chain

X
P ′
−−→ Dom L

L−→ Z
Q′
−−→ Z (2.6)

exact, and let us search the relation of this operator couple with (P,Q).
From Lemma 2.2, since LKP = I, and LKP ′ = I then we have L(KP − KP ′) = 0. So

for any z ∈ ImL, we have (KP − KP ′)z ∈ kerL. Therefore, we can write KP − KP ′ : ImL →
kerL = ImP = ImP ′. Since the projection operator P behaves on ImP as an identity operator,
we have KP −KP ′ = P(KP −KP ′). As a result, the equality

KP −KP ′ = P(KP −KP ′) = P ′(KP −KP ′) (2.7)

follows.

Lemma 2.4. The following relations hold.

(i) PKP ′ + P ′KP = 0, (ii) KP ′ = (I − P ′)KP .

Proof. (i) Using PKP = 0, P ′KP ′ = 0, and (2.7), the result

P
(
Kp −KP ′

)
= P ′(KP −KP ′)

−PKP ′ = P ′KP

(2.8)

follows.
(ii) Again using (2.7) and (i), we obtain

KP −KP ′ = P ′(KP −KP ′)

=⇒ KP −KP ′ = P ′KP − P ′KP ′

=⇒ KP = P ′KP + (−PKP ′)

=⇒ KP = (I − PKP ′).

(2.9)

In a similar manner, the equality KP ′ = (I − P ′KP ) can be obtained.

3. Definition of Coincidence Degree for Some Linear Perturbations of
Fredholm Mappings on Normed Spaces

In this section, definition of coincidence degree for some linear perturbations of Fredholm
mappings on normed spaces is given.

Let X and Z be two real norm spaces, Ω ⊂ X an open, bounded subset of X and Ω an
closure of Ω. Let us assume that the operators

L : Dom L ⊂ X −→ Z, N : Ω ⊂ X −→ Z (3.1)
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satisfy the following conditions:

(i) L is linear and ImL is an closed subset of Z,

(ii) kerL and CokerL = Z/ ImL are finite dimensional spaces and dimkerL =
dimCokerL,

(iii) the operator N : Ω ⊂ X → Z is continuous and ΠN(Ω) is bounded,

(iv) the operator KP,QN : Ω → Z is compact on Ω.

Definition 3.1. The operator Lwhich satisfies the conditions (i) and (ii)will be called as Fred-
holm operator of index zero.

Definition 3.2. The operator N : Ω → Z which satisfies the conditions (iii) and (iv) will be
called L-compact operator.

It is clear that if we take X = Z and L = I the operator Π reduced to zero operator
and the operator KP,Q turns to an identity operator then L-compactness of N on Ω reduced
to usual compactness for operators.

Theorem 3.3. Let Z be a Banach space. If the operator L is a Fredholm operator of index zero then
there exist continuous projections P : X → X and Q : Z → Z such that the chain

X
P−→ Dom L

L−→ Z
Q−→ Z (3.2)

will be exact.

Proof. Assume that kerL is finite dimensional, and the set {y1, y2, . . . , yn} is a basis for kerL.
Define the vector subspaces as Xk = span{y1, y2, . . . , yk−1, yk+1, . . . , yn}. Since Xk is finite
dimensional so is a closed subspace of X (see [35, Theorem 2.4-3] and yk /∈ Xk. Let B be
a basis of X such that {y1, y2, . . . , yn} ⊆ B. Now, let us define the linear operators which
satisfy the conditions

Fk : X −→ R,

Fk

(
y
)
=

{
1, if y = yk

0, if y ∈ B − {
yk

}
.

(3.3)

Therefore, the operator P defined by

Px =
n∑

k=1

Fk(x)yk (3.4)

is a continuous projection operator (see [36, Remark 2.1.19]).
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Now, let us prove the existence of continuous projection operatorsQ onZwith kerQ =
ImL. We know that there exists a subspace Z̃ such that Z = ImL⊕ Z̃ (see [37, Proposition I]).
The projection operator Q defined on Z with the rule

Q(z) = Q
(
zkerQ + zZ̃

)
= zZ̃ (3.5)

satisfies the relations kerQ = ImL and ImQ = Z̃. Since dimCokerL is finite dimensional so is
ImQ, therefore it is closed in Z. Since Z is a Banach space, kerQ and ImQ are closed subsets
of Z, therefore the projection operator Q is continuous (see [38, Theorem 6.12.6]).

Moreover, the canonical surjection Π : Z → CokerL is continuous with the quotient
topology on CokerL. Now, let us state two theorems that will be used in the proof of follow-
ing proposition.

Theorem 3.4 (see [35]). Assume X and Y are normed spaces and the operator T : X → Y is linear.
Therefore,

(a) If T is bounded and dim(Im T) < ∞ then T is compact.

(b) If dimX < ∞ then T is continuous and compact.

Theorem 3.5 (see [35], Lemma 8.3-2). Let X be normed space, T : X → X be a linear compact
operator, and S : X → X a linear bounded (continuous) operator. So the operators TS and ST are
also compact.

The following proposition states that the condition (iv) does not depend on the choice
of the projection operators P and Q.

Proposition 3.6. Assume that the conditions (i), (ii), (iii) are all satisfied. If the condition (iv) is satis-
fied for the projection operator couple (P,Q) that makes the chain exact then for any projection operator
couple (P ′, Q′) that makes the chain exact is satisfied.

Proof. Let us denote the restriction of Π to ImQ with ΠQ, and let us show that the linear
operator ΠQ : ImQ → Z/ImL is one-to-one and onto. Since ker(ΠQ) ∈ ImL = kerQ
and kerQ ∩ ImQ = {0}, then we have ker(ΠQ) = {0}. Therefore ΠQ is one-to-one. To show
surjection, let us take an arbitrary element z ∈ Z/ ImL. So there exists z ∈ Z such thatΠz = z
holds. Since the space Z can be written as Z = ImQ ⊕ kerQ = ImQ ⊕ ImL there exist unique
elements zImQ ∈ ImQ and zImL ∈ ImL such that the relation z = zImQ + zImL is satisfied.
Since we have

z = Π
(
zImQ + zImL

)
= Π

(
zImQ

)
+ Π(zImL) = Π

(
zImQ

)
, (3.6)

then the surjectivity ofΠQ follows.
Since we have dim(ImQ) ≤ dim(ImΠQ) ≤ dim(CokerL) = n < ∞, then ImQ is a

finite dimensional linear subspace of Z. Similarly, ImQ′ is also a finite dimensional subspace
of Z. Therefore, since we have dim(Im(Q −Q′)) ≤ dim(ImQ) + dim(ImQ′), then Im(Q −Q′)
is also a finite dimensional subspace of Z.
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Now, let us show that for an arbitrary α ∈ Z the relation Π−1
Q Π(α) = Q(α) holds. Since

we can write α = Qα + (I −Q)α), then

Π−1
Q Π(α) = Π−1

Q Π((Qα + (I −Q)α)) = Π−1
Q Π(Qα) + Π−1

Q Π((I −Q)α)

= Π−1
Q Π(Qα) = Π−1

Q ΠQ(Qα) = Qα
(3.7)

is obtained.
Let K̃P denote the restriction of the operatorKP to the finite dimensional space Im(Q−

Q′). Using the results obtained until here in this proof and using the equalityKP ′ = (I−P ′)KP ,

KP ′,Q′N = KP ′
(
I −Q′)N =

(
I − P ′)KP

(
I −Q′)N

=
(
I − P ′)KP

(
I −Q +Q +Q′)N

=
(
I − P ′)KP (I −Q)N +

(
I − P ′)KP

(
Q −Q′)N

=
(
I − P ′)KP,QN +

(
I − P ′)KP

(
Q −Q′)N

=
(
I − P ′)KP,QN +

(
I − P ′)K̃P

(
Q −Q′)N

=
(
I − P ′)KP,QN +

(
I − P ′)K̃P

(
Π−1

Q Π −Π−1
Q′Π

)
N

=
(
I − P ′)KP,QN +

(
I − P ′)K̃P

(
Π−1

Q −Π−1
Q′

)
ΠN

(3.8)

is achieved. Now, let us explain the operator KP ′,Q′N is compact. Since the operator KP,QN
is compact and I − P ′ is continuous, then the operator (I − P ′)KP,QN is compact. Since
dim(CokerL) = n < ∞, then the operator Π−1

Q : CokerL → ImQ is compact. From the
same reason, the operator Π−1

Q′ is also compact. Since the operators N, Π, and I − P ′ are all
continuous, the compactness of KP ′,Q′N follows.

Proposition 3.7. The element x ∈ DomL ∩Ω is a solution of the operator equation (1.1) if and only
if it satisfies

(I − P)x =
(
ΛΠ +KP,Q

)
Nx. (3.9)

In other words, the set of solutions of (1.1) is equal to the set of fixed points of the operatorM : Ω → X
defined by

M = P +
(
ΛΠ +KP,Q

)
N. (3.10)

Here, Λ : CokerL → kerL is any isomorphism.

Proof. Clear from Proposition 2.3.

Remark 3.8. Note that since ImP = kerL ⊂ DomL, ImΛ = kerL ⊂ DomL, and ImKP,Q ⊂
DomL ∩ kerP ⊂ DomL, then by definition M : Ω → DomL. That is, any fixed points of M,
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if they exist, should be in the set Ω ∩ DomL. Therefore, if (1.1) has a solution in Ω, then the
solution should be in the set Ω ∩DomL.

Proposition 3.9. Assume that the conditions (i)–(iv) hold. Then, the operator M is compact on Ω.

Proof. The projection operator P is bounded and ImP = kerL then ImP is a finite dimensional
therefore, from Theorem 3.4 (a), P is compact. By assumption (iv),KP,QN is compact. Beside
these the operator Λ : CokerL → kerL is linear isomorphism and dim(CokerL) = n <
∞, therefore Λ is compact. Since ΛΠ is continuous then ΛΠN is compact. As a result, we
obtained the compactness of the operator M on a set Ω.

Let ∂Ω denote the boundary of a set Ω.
(v) If 0 /∈ (L −N)(DomL ∩ ∂Ω), then the Leray-Schauder degree d(I −M,Ω, 0) is well

defined [34], since this condition by Proposition 3.7 gives us 0 /∈ (I −M)(∂Ω).
Now, let us search how much the degree depends upon the choice of the operators P ,

Q, and Λ. To show this, we will need the following definition and results.
Let ΛL will be the set of all linear isomorphism from CokerL to kerL.

Definition 3.10. If there exists a continuous Λ,

Λ : CokerL × [0, 1] −→ kerL

Λ(·, 0) = Λ, Λ(·, 1) = Λ′
(3.11)

such that for any λ ∈ [0, 1] the operator Λ(·,Λ) ∈ ΛL then the operator Λ,Λ′ ∈ ΛL is called
homotopic in ΛL.

Being homotopic is an equivalence relation in the set ΛL. Therefore, this equivalence
relation divides the set ΛL into homotopy classes.

Proposition 3.11. The operators Λ and Λ′ are homotopic in ΛL if and only if det(ΛΛ′) > 0.

Proof. Assume that Λ and Λ′ are homotopic in ΛL. From the condition (ii) we know that
we have dimkerL = dimCokerL = n. Let Λ be the operator defined in Definition 3.10,
[a1, a2, . . . , an] and [b1, b2, . . . , bn] be bases of the spaces CokerL and kerL, respectively. If
for any λ ∈ [0, 1], Δ(λ) denotes the determinant of the matrix corresponding to Λ(·, λ) with
respect to these bases, then, for any λ ∈ [0, 1], Δ(λ)/= 0 since Λ(·, λ) is an isomorphism for
any λ ∈ [0, 1]. Beside this, since Λ is continuous, then Δ is also continuous with respect to
λ. Using continuity and the fact that for any λ ∈ [0, 1], Δ(λ)/= 0 we have the number Δ(λ) is
always positive or negative, that is it has always same sign. In particular Δ(0) and Δ(1) have
the same signs, therefore we have

det
(
Λ′Λ−1

)
= det

(
Λ′)det

(
Λ−1

)
=

det(Λ′)
det(Λ)

=
Δ(1)
Δ(0)

> 0. (3.12)

Conversely assume that det(Λ′Λ−1) > 0. With respect to bases of CokerL and kerL, let Λ̃ and
Λ̃′ denote the matrix representations of the operators Λ and Λ′, respectively. By assumption
det(Λ̃) and det(Λ̃′) have the same sign. Therefore, they belong to same connected component
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of the topological group GL(n, r). Since GL(n, r) is locally arcwise connected then the corre-
sponding component is also path connected. Therefore, there exists a continuous operator

Λ̃ : CokerL × [0, 1] → kerL

Λ̃(·, 0) = Λ̃, Λ̃(·, 1) = Λ̃′.
(3.13)

Therefore, for any λ ∈ [0, 1], if we take Λ(·, λ) as a family of isomorphisms corresponding to
continuous matrices defined from CokerL to kerL, then the proof will be completed.

Corollary 3.12. ΛL is separated into two homotopy classes.

Therefore, the set of all isomorphisms Λ : CokerL → kerL with the same sign of
determinant will be in the same classes. So one class will be with positive determinant and
the other one will be with negative determinant.

Note the following: let Λ : CokerL → kerL be any isomorphism from the set ΛL. The
sign of determinant of the matrix corresponding toΛ depends upon not only the basis chosen
for CokerL and kerL but also the order of the elements in these basis. If the operators Λ and
Λ′ are homotopic with respect to chosen bases for CokerL and kerL, then they are homotopic
with respect to any basis chosen for these spaces.

Now, let us fix an orientation on CokerL and kerL, and let [a1, a2, . . . , an] be a basis
for CokerL for the chosen orientation.

Definition 3.13. Let the operator Λ : CokerL → kerL be given. If [Λa1,Λa2, . . . ,Λan] has the
same orientation with basis chosen in kerL, then the operator Λ is said to be an orientation
preserving transformation. Otherwise, it is said to be an orientation reversing transformation.

Proposition 3.14. If CokerL and kerL are oriented, then the operators Λ and Λ′ are homotopic in
ΛL if and only if they are both orientation preserving or both orientation reversing transformations.

Proof. Assume that [a1, a2, . . . , an] and [b1, b2, . . . , bn] are, respectively, bases of CokerL and
kerL with respect to chosen the orientation. The basis [Λa1,Λa2, . . . ,Λan] on kerL has the
same orientation with [b1, b2, . . . , bn] if and only if the determinant of the matrix S = (sij)
defined by

Λaj =
n∑

j=1

sijbj (3.14)

will be positive. Namely, let M1 be the transition matrix from the basis [a1, a2, . . . , an] to the
basis [b1, b2, . . . , bn] andM2 be the transition matrix from the basis [a1, a2, . . . , an] to the basis
[Λa1,Λa2, . . . ,Λan],

[a1, a2, . . . , an]
M1−−−→ [b1, b2, . . . , bn],

[a1, a2, . . . , an]
M2−−−→ [Λa1,Λa2, . . . ,Λan],

[Λa1,Λa2, . . . ,Λan]
S−→ [b1, b2, . . . , bn],

(3.15)
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then we have M1 = SM2 and det(M1) = det(S)det(M2). [Λa1,Λa2, . . . ,Λan] has the same
orientation with [b1, b2, . . . , bn] if and only if the determinants of the matrixes M1 and M2

have the same sign. This is only possible in the case the determinant of S is positive. Therefore,
since the determinant of the matrixes M1 and M2 have the same sign, using the relation
det(M1) = det(S)det(M2), we obtain that det(S) > 0.

Let us assume that S′ is a matrix related to a basis [Λ′a1, Λ′a2, . . . ,Λ′an]. In this case
if the matrix G = (gij) is the matrix represent the operator Λ′Λ−1 with respect to basis
[b1, b2, . . . , bn], then we have

n∑

j=1

sijbj = Λ′ai = Λ′
(
ΛΛ−1

)
ai =

(
Λ′Λ−1

)
Λai,

(
Λ′Λ−1

) n∑

k=1

skibk =
n∑

k=1

ski
(
Λ′Λ−1

)
(bk),

n∑

k=1

ski
n∑

j=1

gjkbj .

(3.16)

Therefore, (S′)T = STGT and S′ = GS are obtained. Since det(S) > 0 and det(S′) > 0, then
det(G) > 0, that is det(Λ′Λ−1) > 0. This means that Λ′ and Λ−1 have the same orientation.

Conversely, if the operatorsΛ′ andΛ−1 have the same orientation, then det(Λ′Λ−1) > 0.
Therefore, from the Proposition 3.11, Λ′ and Λ−1 are homotopic.

Lemma 3.15. Let Y be a vector space and S, S′ : Y → Y be two projection operators with ImS =
ImS′ /= 0. Therefore the operator S′′ defined by S′′ = aS + bS′, a, b ∈ R, is a projection operator with
the property ImS′′ = ImS if and only if a + b = 1.

Proof. Let a and b are real numbers and assume that the operator S′′ defined S′′ = aS + bS′ is
a projection operator with its image is equal to ImS = ImS′. Since for any x ∈ ImS we have
Sx = x and for any y ∈ Y , S′y ∈ ImS′ = ImS then, for any y ∈ Y we have SS′y = S(S′y) = S′y.
Therefore, we get the relation SS′ = S′. In a similar manner, the equality S′S = S can be shown.
So

aS + bS′ = S′′ =
(
S′′)2 =

(
aS + bS′)(aS + bS′)

= a2S2 + abSS′ + abS′S + b2
(
S′)2 = a2S + abSS′ + abS′S + b2S′

= a2S + abS′ + abS + b2S′ = a
(
aS + bS′) + b

(
aS + bS′)

= (a + b)
(
aS + bS′)

(3.17)

is obtained. From here, we get the result (a + b − 1)(aS + bS′) = 0, that is (a + b − 1)S′′ = 0. The
assumption ImS′′ /= 0 forces the fact that a + b = 1.
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Conversely, if a + b = 1, then

S′′ =
(
S′′)2 =

(
aS + bS′)(aS + bS′)

= a2S2 + abSS′ + abS′S + b2
(
S′)2 = a2S + abSS′ + abS′S + b2S′

= a2S + abS′ + abS + b2S′ = (a + b)
(
aS + bS′) = aS + bS′ = S′′

(3.18)

is obtained. Therefore, S′′ is a projection operator. Since ImS = ImS′ is a vector space and
S′′ = aS + bS′, then we have ImS′′ ⊆ ImS. Now, let us take an arbitrary element x ∈ ImS =
ImS′′ /= {0}. Therefore,

S′′x = aSx + bS′x = ax + bx = (a + b)x = x (3.19)

and from here we obtain x ∈ ImS′′ and ImS ⊆ ImS′′. So the result ImS = ImS′′ follows.

Lemma 3.16. If P and P ′ are projection operators onto kerL, a + b = 1 and P ′′ = aP + bP ′, then
KP ′′ = aKP + bKP ′ .

Proof. In the case kerL = {0}, the proof is clear. Assume that ImP = ImP ′ = kerL/= {0}. Since
a+ b = 1 by Lemma 3.15, P ′′ is a projection operator and ImP ′′ = ImP . SinceKP ′ = (I − P ′)KP

and PKP = 0, then the relation

KP ′′ =
(
I − P ′′)KP =

(
I − aP − bP ′)KP

= KP − aPKP − bP ′KP = 1 ·KP − bP ′KP

= (a + b)KP − bP ′KP = aKP + bKP − bP ′KP

= aKP + b
(
I − P ′)KP = aKP + bKP ′

(3.20)

is obtained.

Lemma 3.17. Let Z be a vector space, S, S′ : Z → Z two projection operators with kerS = kerS′,
then for a, b ∈ R, a + b = 1 the operator S′′ defined by S′′ = aS + bS′ is a projection operator with
kerS′′ = kerS.

Proof. First of all, let us show that S′′ is a projection operator. Since

S : Z −→ Z S′ : Z −→ Z

Z = kerS ⊕ ImS, Z = kerS′ ⊕ ImS′,
(3.21)
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then for any z ∈ Z there exist unique elements z0 ∈ kerS, z1 ∈ ImS, z′0 ∈ kerS′, and z′1 ∈ ImS′

such that z = z0 + z1 and z = z′0 + z′1 hold. Therefore,

(
S′′)2(z) = a2S(z) + abSS′(z) + abS′S(z) + b2S′(z)

= a2S
(
z′0 + z′1

)
+ abSS′(z′0 + z′1

)
+ abS′S(z0 + z1) + b2S′(z0 + z1)

= a2S
(
z′1
)
+ abSS′(z′1

)
+ abS′S(z1) + b2S′(z1)

= a2S
(
z′1
)
+ abS

(
z′1
)
+ abS′(z1) + b2S′(z1) = (a + b)

(
aS

(
z′1
)
+ bS′(z1)

)

= aS
(
z′1
)
+ bS′(z1) = aS

(
z′0
)
+ aS

(
z′1
)
+ bS′(z0) + bS′(z1)

= aS(z) + bS′(z) = S′′(z)

(3.22)

is obtained.
Now, let us show that kerS′′ = kerS = kerS′. For this, take an arbitrary element x ∈

kerS = kerS′. Therefore,

S′′(x) = aS(x) + bS(x) = a.0 + b.0 = 0. (3.23)

This means that kerS = kerS′ ⊆ kerS′′. Now, take x ∈ kerS′′. Since Z = kerS ⊕ ImS, then
there exist unique elements e ∈ kerS and f ∈ ImS such that x = e + f holds. Therefore, we
obtain

0 = S′′(x) = aS(x) + bS′(x)

= aS
(
e + f

)
+ bS′(e + f

)
= aS

(
f
)
+ bS′(f

)
= af + bS′(f

)
.

(3.24)

That is af + bS′(f) = 0. If b = 0, since a + b = 1 then a = 1 and then f = 0. So that x ∈ kerS =
kerS′. If b /= 0, then S′(f) = −(a/b)f . Then,

S′(f
)
= S2(f

)
= S′(S′(f

))
= S′

(
−a
b
f
)
= −a

b
S′(f

)
(3.25)

is obtained. In this case, we get S′(f) = −(a/b)S′(f). Since a + b = 1, this gives us S′(f) = 0.
From here, we get that kerS′′ ⊆ kerS = kerS′ is obtained. So in any case we showed that
kerS′′ = kerS = kerS′.

Proposition 3.18. If the assumptions (i)−(v) hold, then Leray-Schauder degree d[I − M,Ω, 0]
depends on only L,N, Ω and homotopy class of Λ in ΛL.

Proof. Let the operators P , P ′, Q, Q′ be the projection operators with the properties ImP =
ImP ′ = kerL, kerQ = kerQ′ = ImL and Λ, Λ′ two isomorphisms from CokerL to kerL in the
same homotopy class. From Lemma 3.15 and Lemma 3.16, it is clear that for each λ ∈ [0, 1]
the operators

P(λ) = (1 − λ)P + λP ′, Q(λ) = (1 − λ)Q + λQ′ (3.26)
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are the projection operators with the property of for each λ ∈ [0, 1], ImP(λ) = kerL and
kerQ(λ) = ImL. Beside this, from Lemma 3.16, we have KP(λ) = (1 − λ)KP + λKP ′ . Let
the operator Λ : CokerL × [0, 1] → kerL be the operator given in Definition 3.1. Using
Proposition 3.7, we see that for each λ ∈ [0, 1] the fixed points of the operator

M(·, λ) : Ω −→ X

M(·, λ) = P(λ) + ΛΠN(·, λ) +KP(λ),Q(λ)N
(3.27)

coincide with the solutions of the operator equation (1.1). From the condition (v), we have
0 /∈ (L −N)(DomL ∩ ∂Ω) and

x /∈ M(x, λ), ∀x ∈ ∂Ω, ∀λ ∈ [0, 1]. (3.28)

Clearly, we have

M(·, 0) = M = P +
(
ΛΠN +KP,QN

)
,

M(·, 1) = M′ = P ′ +
(
Λ′ΠN +KP ′,Q′N

)
.

(3.29)

Now let us show that M is compact on Ω × [0, 1]. From the open form

M(·, λ) = (1 − λ)Px + λP ′x + ΛΠN(·, λ) + ((1 − λ)KP + λKP ′)
(
I − (1 − λ)Q − λQ′)N,

(3.30)

it is clear that M is continuous. So, in order to show that the set M(Ω × [0, 1]) is relatively
compact the only delicate point is the last term. Using the fact thatKP ′ = (I−P ′)KP , we obtain
the last term as

(
I − λP ′)KP (I −Q)N + λ

(
I − λP ′)KP

(
Q −Q′)N. (3.31)

Therefore, compactness can be proven like in the proof of Proposition 3.9. Using the invari-
ance of Leray-Schauder degree with respect to compact homotopy, we obtain that

d(I −M(·, 0),Ω, 0) = d(I −M(·, 1),Ω, 0), (3.32)

that is,

d(I −M,Ω, 0) = d
(
I −M′,Ω, 0

)
. (3.33)

Now, let us indicate how the degree d(I − M,Ω, 0) depends on homotopy class of Λ.
For this, let us prove the following lemma.
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Lemma 3.19. If G : kerL → kerL is any automorphism and

M′ = P +
(
GΛΠ +KP,Q

)
N (3.34)

then the relation

I −M′ = (I − P +GP)(I −M) (3.35)

is satisfied.

Proof. Since P 2 = P , PKP,Q = 0, and PΛ = Λ, then

(I−P+GP)(I−M) = I−M−P+PM+GP−GPM

= I−P−ΛΠN−KP,QN−P+P 2+PΛΠN+PKP,QN+GP−GPM

= I−P−ΛΠN−KP,QN+PΛΠN+GP−GPM

= I−P−ΛΠN−KP,QN+PΛΠN+GP−GP
(
P+

(
ΛΠN+KP,QN

))

= I−P−ΛΠN−KP,QN+PΛΠN+GP−GP 2−GPΛΠN−GPKP,QN

= I−P−ΛΠN−KP,QN+PΛΠN−GPΛΠN

= I−(P+
(
GPΛΠ+KP,Q

)
N
)
= I−M′.

(3.36)

Proposition 3.20. If Λ,Λ′ ∈ ΛL and

M′ = P +
(
Λ′Π +KP,Q

)
N (3.37)

then we have

d
(
I −M′,Ω, 0

)
= sgn

(
det

(
Λ′Λ−1

))
d(I −M,Ω, 0). (3.38)

Proof. In Lemma 3.19, if we take G = Λ′Λ−1, then

I −M′ =
(
I − P + Λ′Λ−1P

)
(I −M) (3.39)

is obtained. Now let us show that the operator A = I − P +Λ′Λ−1P is an automorphism on X.
For this take, x ∈ kerL, then we have

x − Px + Λ′Λ−1Px = 0. (3.40)

If we apply the operator P to both sides, we get Λ′Λ−1Px = 0. Since Λ′Λ−1 is one-to-one, this
result gives Px = 0. If we substitute this result in (3.40) we obtain that x = 0, and therefore A
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is one-to-one. For surjectivity, take y ∈ X. Therefore, there exists unique elements k ∈ kerP ,
j ∈ ImP such that y = k + j. Now, we are looking for x ∈ X, k′ ∈ kerP , j ′ ∈ ImP such that
x = k′ + j ′ and Ax = y. So

Ax = y

(
I − P +

(
Λ′Λ−1

)
P
)
x = y

(
I − P +

(
Λ′Λ−1

)
P
)(

k′ + j ′
)
= k + j

k′ + Λ′Λ−1j ′ = k + j.

(3.41)

Using uniqueness in direct sum and the fact that Λ′Λ−1 is an automorphism on kerL = ImP ,
we get k′ = k and Λ′Λ−1j ′ = j. Therefore, taking x = k′ + Λ′Λ−1j ′ ontoness of the operator A
is proved. Therefore, A is an automorphism on X. So using the identity I − M′ = (I − P +
Λ′Λ−1P)(I −M) and Leray Product Theorem, we have

d
(
I −M′,Ω, 0

)
= d(A,Bε(0), 0) · d(I −M,Ω, 0). (3.42)

Therefore the result

d
(
I −M′,Ω, 0

)
= d

(
I − P + Λ′Λ−1P, Bε(0), 0

)
· d(I −M,Ω, 0)

= d
((

I − P + Λ′Λ−1P
)

kerL
, Bε(0) ∩ kerL, 0

)
· d(I −M,Ω, 0)

= d
(
Λ′Λ−1, Bε(0) ∩ kerL, 0

)
· d(I −M,Ω, 0)

= sgn
(
det

(
Λ′Λ−1

))
· d(I −M,Ω, 0)

(3.43)

is achieved.

Corollary 3.21. Under the assumptions of Proposition 3.18, Leray-Schauder degree |d(I −M,Ω, 0)|
only depends upon L,N, and Ω.

Now, if the orientation on the spaces kerL and CokerL is fixed, then we can give the
following beautiful and fruitful definition.

Definition 3.22. If the operators L and N satisfy the conditions (i)–(v) then the coincidence
degree of L andN in Ω defined by

d[(L,N),Ω] = d(I −M,Ω, 0). (3.44)

Here, Λ inM is an orientation preserving isomorphism.

This definition is supported with all the arguments given in this paper.
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4. Basic Properties of Coincidence Degree

In this section, we will see that the coincidence degree satisfies all the basic properties of the
Leray-Schauder degree. First, let us consider the simplest case where X = Z and L = I. In
this situation, kerL = {0} and ImL = Z = X, so that CokerL = Z/ ImL = {0}. Therefore
dimkerL = dimCokerL = 0 and then the assumptions (i) and (ii) are clearly satisfied. Since
ImP = kerL = 0 and kerQ = ImL = Z, then P = 0, and Q = 0. Thus KP,Q = KP (I − Q) =
I(I − 0) = I, and Π = 0. Therefore, the conditions (iii) and (iv) reduced to the compactness
of N on Ω. Since L = I and DomL = X, then the condition (v) in this case means that N has
no fixed point on ∂Ω. Since P = 0, Π = 0, and KP,Q = 0, then M = P + (ΛΠ + KP,Q)N = N.
Therefore,

d[(L,N),Ω] = d[(I,N),Ω] = d(I −N,Ω, 0). (4.1)

That is the coincidence degree of L and N in this case is nothing but the Leray-Schauder
degree of I −N.

Now, we will give the basic properties of coincidence degree.

Theorem 4.1. Assume that the conditions (i) to (v) are satisfied. Then coincidence degree satisfies the
following basic properties.

(1) Existence theorem: if d[(L,N),Ω]/= 0, then 0 ∈ (L −N)(domL ∩Ω).

(2) Excision property: if Ω0 ∈ Ω is an open set such that (L −N)−1(0) ∈ Ω0, then

d[(L,N),Ω] = d[(L,N),Ω0]. (4.2)

(3) Additivity property: if Ω = Ω1 ∪Ω2 with Ω1 and Ω2 are open, bounded, disjoint subsets of
X, then

d[(L,N),Ω] = d[(L,N),Ω1] + d[(L,N),Ω2]. (4.3)

(4) Invariance under homotopy property: if the operator

Ñ : Ω × [0, 1] −→ Z

(x, λ) �−→ Ñ(x, λ)
(4.4)

is L-compact inΩ×[0, 1] and such that for each λ ∈ [0, 1], 0 /∈ [L−Ñ(·, λ)](domL∩∂Ω),
then coincidence degree d[(L,N(·, λ)),Ω], is independent of λ in [0, 1]. In particular

d[(L,N(·, 1)),Ω] = d[(L,N(·, 0)),Ω]. (4.5)

Proof. (1) If d(I −M,Ω, 0) = d[(L,N),Ω]/= 0, then ∃x ∈ Ω such that (I −M)x = 0. But in fact,
we know that x ∈ DomL∩Ω. Also, by Proposition 3.7, Lx = Nx. That is 0 ∈ (L−N)(domL∩
Ω).
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(2) Assume that Ω0 ∈ Ω is an open set such that (L − N)−1(0) ∈ Ω0, then by
Proposition 3.7, (I −M)−1(0) ∈ Ω0. Therefore, by the excision property of the Leray-Schauder
degree, d(I −M,Ω, 0) = d(I −M,Ω0, 0). So, by the definition of coincidence degree, we have
d[(L,N),Ω] = d[(L,N),Ω0].

(3) If Ω = Ω1 ∪ Ω2 with Ω1 and Ω2 are open, bounded, disjoint subsets of X, then
additive property of Leray-Schauder degree we have d(I −M,Ω, 0) = d(I −M,Ω1, 0) + d(I −
M,Ω2, 0). So the result follows from the definition of coincidence degree.

(4) Since the operator Ñ(·, λ) is L-compact for each λ ∈ [0, 1] and for each λ ∈
[0, 1], 0 /∈ [L − Ñ(·, λ)](domL ∩ ∂Ω), then for each λ ∈ [0, 1] the coincidence degree
d[(L,N(·, λ)),Ω] is well defined. Since the operator Ñ is L-compact on Ω × [0, 1] then it is a
homotopy of compact operators onΩ. Therefore, by invariance of the Leray-Schauder degree
under homotopy property the result follows.

The famous Borsuck theorem for degree theory is also valid for coincidence degree.

Theorem 4.2. If Ω is symmetric with respect to 0 and contains it and ifN(−x) = −N(x) inΩ, then
coincidence degree d[(L,N),Ω] is an odd integer.

Proof. We proved that the operatorM is compact onΩ. Since a projection operator P is linear
then it is odd in Ω and N is odd in Ω then the operator M = P + (ΛΠ + KP,Q)N is odd in
Ω. Therefore, the result follows from the validity of Borsuck theorem in the Leray-Schauder
degree.
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