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We provide some new type of mappings associated with pseudocontractions by introducing
some actual examples in smooth and strictly convex Banach spaces. Moreover, we also find
the significant inequality related to the mappings mentioned in the paper and the mappings
defined from generalized mixed equilibrium problems on Banach spaces. We propose an iterative
shrinking projection method for finding a common solution of generalized mixed equilibrium
problems and fixed point problems of closed and φ-quasi-strict pseudo-contractions. Our results
hold in reflexive, strictly convex, and smooth Banach spaces with the property (K). The results
of this paper improve and extend the corresponding results of Zhou and Gao (2010) and many
others.

1. Introduction

It is well known that, in an infinite-dimensional Hilbert space, the normal Mann’s iterative
algorithm [1] has only weak convergence, in general, even for nonexpansive mappings [2, 3].
Consequently, in order to obtain strong convergence, Nakajo and Takahashi [4] modified the
normal Mann’s iteration algorithm, later well known as a hybrid projection iteration method.
Since then, the hybrid method has undergone rapid developments. For the details, the readers
are referred to papers [5–9] and the references therein.
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Let E be a smooth Banach space, and let E∗ be the dual of E. The function φ : E×E → R

is defined by

φ
(
y, x

)
=
∥
∥y

∥
∥2 − 2

〈
y, Jx

〉
+ ‖x‖2 (1.1)

for all x, y ∈ E, which was studied by Alber [10], Kamimura and Takahashi [11], and Reich
[12], where J is the normalized duality mapping from E to 2E

∗
defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 =

∥
∥f

∥
∥2

}
, (1.2)

where 〈·, ·〉 denotes the duality paring. It is well known that if E is smooth, then J is single
valued and if E is strictly convex, then J is injective (one to one). Let C be a closed convex
subset of E, and let T be a mapping from C into itself. We denote by F(T) the set of fixed
points of T . A point p in C is said to be an asymptotic fixed point of T [12] if C contains a
sequence {xn}, which converges weakly to p such that the strong limn→∞(xn − Txn) = 0. The
set of asymptotic fixed points of T will be denoted by F̂(T). A mapping T from C into itself
is called nonexpansive if ‖Tx − Ty‖ � ‖x − y‖ for all x, y ∈ C and relatively nonexpansive
[13–16] if F̂(T) = F(T) and φ(p, Tx) � φ(p, x) for all x ∈ C and p ∈ F(T). The asymptotic
behavior of relatively nonexpansive mapping was studied in [13–16].

In 2005, Matsushita and Takahashi [16] proposed the hybrid iteration method with
generalized projection for relatively nonexpansive mapping T in the framework of uniformly
smooth and uniformly convex Banach spaces E as follows:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0),

(1.3)

where J is the duality mapping on E and ΠC(·) is the generalized projection from E onto
a nonempty closed convex subset C. Based on the guidelines of Matsushita and Takahashi
[16], Plubtieng and Ungchittrakool [17, 18] studied and developed (1.3) to the case of two
relatively nonexpansive mappings and finite family of relatively nonexpansive mappings,
respectively.

On the other hand, for a real Banach space E and the dual E∗, let C be a nonempty
closed convex subset of E. Let Θ : C×C → R a bifunction, ϕ : C → R a real-valued function,
and A : C → E∗ be a nonlinear mapping. The generalized mixed equilibrium problem is to
find x ∈ C such that

Θ
(
x, y

)
+
〈
Ax, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.4)
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The solution set of (1.4) is denoted by GMEP(Θ, A, ϕ), that is,

GMEP
(
Θ, A, ϕ

)
=
{
x ∈ C : Θ

(
x, y

)
+
〈
Ax, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C

}
. (1.5)

If A = 0, the problem (1.4) reduces to the mixed equilibrium problem for Θ, denoted by
MEP(Θ, ϕ), which is to find x ∈ C such that

Θ
(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.6)

If Θ = 0, the problem (1.4) reduces to the mixed variational inequality of Browder type,
denoted by VI(C,A, ϕ), which is to find x ∈ C such that

〈
Ax, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.7)

If A = 0 and ϕ = 0, the problem (1.4) reduces to the equilibrium problem for Θ (for short,
EP), denoted by EP(Θ), which is to find x ∈ C such that

Θ
(
x, y

) ≥ 0, ∀y ∈ C. (1.8)

If Θ = 0 and A = 0, the problem (1.4) reduces to the minimization problem for ϕ, denoted by
Argmin(ϕ), which is to find x ∈ C such that

ϕ(x) ≤ ϕ
(
y
)
, ∀y ∈ C. (1.9)

The above formulation (1.7) was shown in [19] to cover monotone inclusion
problems, saddle point problems, variational inequality problems, minimization problems,
optimization problems, vector equilibrium problems, and Nash equilibria in noncooperative
games. In addition, there are several other problems, for example, the complementarity
problem, fixed point problem and optimization problem, which can also be written in the
form of (1.8). However, (1.4) is very general, it covers the problems mentioned above as
special cases.

In 2007, S. Takahashi and W. Takahashi [20] and Tada and Takahashi [21, 22] proved
weak and strong convergence theorems for finding a common element of the set of solution
of an equilibrium problem (1.8) and the set of fixed points of a nonexpansive mapping in
a Hilbert space. Takahashi et al. [9] studied a strong convergence theorem by the hybrid
method for a family of nonexpansive mappings in Hilbert spaces as follows: x0 ∈ H, C1 = C
and x1 = PC1x0, and let

yn = αnxn + (1 − αn)Tnxn,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, n ∈ N,

(1.10)

where 0 � αn � a < 1 for all n ∈ N and {Tn} is a sequence of nonexpansive mappings of C into
itself such that

⋂∞
n=1 F(Tn)/= ∅. They proved that if {Tn} satisfies some appropriate conditions,

then {xn} converges strongly to P⋂∞
n=1 F(Tn)x0.
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Motivated by Takahashi et al. [9], Takahashi and Zembayashi [23] (see also [24])
introduced and proved a hybrid projection algorithm for solving equilibrium problems and
fixed point problems of a relatively nonexpansive mapping S in the framework of uniformly
smooth and uniformly convex Banach space as follows:

x0 = x, C0 = C,

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C such that Θ
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(1.11)

where ΠCn+1(·) is the generalized projection from E onto Cn+1. Under some appropriate
assumptions on Θ, {αn}, and {rn}, they proved that the sequence {xn} converges strongly
to ΠF(S)∩EP(Θ)(x0).

In 2010, Zhou and Gao [25] introduced the definition of a quasi-strict pseudocon-
traction related to the function φ and proved a hybrid projection algorithm for finding a
fixed point of a closed and quasi-strict pseudocontraction in more general framework than
uniformly smooth and uniformly convex Banach spaces as follows:

x0 ∈ E, chosen arbitrarily,

C1 = C,

x1 = ΠC1(x0),

un ∈ C such that

Cn+1 =
{
z ∈ Cn : φ(xn, Txn) ≤ 2

1 − k
〈xn − z, Jxn − JTxn〉

}
,

xn+1 = ΠCn+1(x0),

(1.12)

where ΠCn+1 is the generalized projection from E onto Cn+1. They proved that the sequence
{xn} converges strongly to ΠF(T)(x0).

Motivated and inspired by the above research work, in this paper, we provide some
new type of mappings associated with pseudocontractions by introducing some actual
examples in smooth and strictly convex Banach spaces. Furthermore, by employing the
inequality that appeared in Lemma 2.10 together with (1.12) and some facts of Zhou and
Gao [25], we create an iterative shrinking projection method for finding a common solution
of generalized mixed equilibrium problems and fixed point problems of closed and φ-
quasi-strict pseudocontractions in the framework of reflexive, strictly convex, and smooth
Banach spaces with the property (K). The results of this research improve and extend the
corresponding results of Zhou and Gao [25] and many others.



Abstract and Applied Analysis 5

2. Preliminaries

In this paper, we denote by E and E∗ a real Banach space and the dual space of E, respectively.
Let C be a nonempty closed convex subset of E. We denote by J the normalized duality
mapping from E to 2E

∗
defined by (1.1). Let S(E) := {x ∈ E : ‖x‖ = 1} be the unit sphere

of E. Then, a Banach space E is said to be strictly convex ‖(x + y)/2‖ < 1 for all x, y ∈ S(E)
and x /=y. It is also said to be uniformly convex if limn→∞‖xn − yn‖ = 0 for any two sequences
{xn} and {yn} in S(E) such that limn→∞‖(xn + yn)/2‖ = 1. The Banach space E is said to be
smooth provided

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.1)

exists for each x, y ∈ S(E). In this case, the norm of E is said to be Gâteaux differentiable. The
norm of E is said to be Fréchet differentiable if for each x ∈ S(E), the limit (2.1) is attained
uniformly for y ∈ S(E). The norm of E is said to be uniformly Fréchet differentiable (and E is
said to be uniformly smooth) if the limit (2.1) is attained uniformly for x, y ∈ S(E).

A Banach space E is said to have the property (K) (or Kadec-Klee property) if for any
sequence {xn} ⊂ E such that xn → x weakly and ‖xn‖ → ‖x‖, then ‖xn − x‖ → 0. For more
information concerning property (K) the reader is referred to [26] and references cited there.

A mapping T : C → C is said to be closed if for any sequence {xn} ⊂ C with xn → x
and Txn → y, x = y.

We also know the following properties (see [27–29] for details):

(i) if E is smooth (⇔ E∗ is strictly convex), then J is single-valued,

(ii) if E is strictly convex (⇔ E∗ is smooth), then J is one-to-one (i.e., J(x)∩ J(y) = ∅ for
all x /=y),

(iii) if E is reflexive (⇔ E∗ is reflexive), then J is surjective,

(iv) if E∗ is smooth and reflexive, then J−1 : E∗ → 2E is single-valued and
demicontinuous (i.e., if {x∗

n} ⊂ E∗ such that x∗
n → x∗, then J−1(x∗

n) → J−1(x∗)),

(v) E is uniformly smooth if and only if E∗ is uniformly convex,

(vi) if E is uniformly convex, then

(a) it is strictly convex,
(b) it is reflexive,
(c) it satisfies the property (K),

(vii) if E is a Hilbert space, then J is the identity operator.

It is also very well known that if C is a nonempty closed convex subset of a Hilbert
space H and PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This
fact actually characterizes Hilbert spaces, and, consequently, it is not available in more general
Banach spaces. In this connection, Alber [10] recently introduced a generalized projection
operator ΠC in a Banach space E that is an analogue of the metric projection in Hilbert spaces.

Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, for any x ∈ E. The generalized projection ΠC : E → C is a map that assigns to
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an arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x, where
x is the solution to the minimization problem

φ(x, x) = min
y∈C

φ
(
y, x

)
. (2.2)

Existence and uniqueness of the operator ΠC follow from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, e.g., [10, 11, 27, 29, 30]). In Hilbert
spaces, φ(y, x) = ‖y − x‖2 and ΠC coincides with the metric projection PC.

It is obvious from the definition of function φ that

(∥∥y
∥∥ − ‖x‖)2 ≤ φ

(
y, x

) ≤ (∥∥y
∥∥ + ‖x‖)2

, ∀x, y ∈ E, (2.3)

φ
(
x, y

)
= φ(x, z) + φ

(
z, y

)
+ 2

〈
x − z, Jz − Jy

〉
, ∀x, y, z ∈ E. (2.4)

Remark 2.1. If E is a reflexive strictly convex and smooth Banach space, then, for x, y ∈
E, φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y.
From (2.3), we have ‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definitions of
J , we have Jx = Jy. That is, x = y; one may consult [27, 29] for the details.

T is said to be a φ-quasi-strict pseudocontraction [25, page 230] if there exists a
constant k ∈ [0, 1) and F(T)/= ∅ such that φ(p, Tx) ≤ φ(p, x) + kφ(x, Tx) for all x ∈ C and
p ∈ F(T). In particular, T is said to be φ-quasi-nonexpansive if k = 0 and T is said to be
φ-quasi-pseudocontractive if k = 1.

Let C be a nonempty closed convex subset of a real Banach space E with the dual E∗.
A mapping A : D(A) ⊂ E → E∗ is said to be monotone if, for each x, y ∈ D(A), the following
inequality holds:

〈
x − y,Ax −Ay

〉
� 0. (2.5)

A is said to be r-inverse strongly monotone if there exists a positive real number r such that

〈
x − y,Ax −Ay

〉 ≥ r
∥∥Ax −Ay

∥∥2
E∗ , ∀x, y ∈ D(A). (2.6)

A is said to be r-quasi inverse strongly monotone if A−1(0) = {z ∈ D(A) : Az = 0}/= ∅ and there
exists a positive real number r such that for each u ∈ A−1(0), the following inequality holds:

〈x − u,Ax〉 � r‖Ax‖2
E∗ , ∀x ∈ D(A). (2.7)

Without loss of generality we can assume that the constant r ∈ (0, 1/2] since if A
is r̂-quasi inverse strongly monotone (or r̂-inverse strongly monotone), then we can find
r ∈ (0, 1/2] such that r̂ ≥ r and then r̂‖Ax‖2

E∗ ≥ r‖Ax‖2
E∗ (or r̂‖Ax −Ay‖2

E∗ ≥ r‖Ax −Ay‖2
E∗)

for all r̂ > 0 (i.e., A is r-quasi inverse strongly monotone).
The following is the example of φ-quasi-strict pseudocontractions in the framework of

a smooth and strictly convex Banach space E.
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Example 2.2. Let E be a smooth and strictly convex Banach space E with dual E∗ and J a
normalized duality mapping. Let α ∈ [0, 1], and define the mapping Aα : E → E by

Aα(x) = αx, ∀x ∈ E. (2.8)

It follows that the mapping JAα : E → E∗ with the set of zero points is given as

(JAα)−1(0) = {z ∈ E : 0 = JAα(z) = J(αz) = αJz}

=

{
{0}, if 0 < α ≤ 1,
E, if α = 0.

(2.9)

Thus for each u ∈ (JAα)
−1(0) and r ∈ (0, 1/2] if 0 < α ≤ 1, we obtain

〈x − u, JAαx〉 = 〈x − 0, JAαx〉 = 〈x, J(αx)〉 = 〈x, αJ(x)〉 = α‖x‖2

≥ α2‖x‖2 = 〈αx, J(αx)〉 = 〈Aαx, J(Aαx)〉 = ‖Aαx‖2

= ‖JAαx‖2
E∗

≥ r‖JAαx‖2
E∗ , ∀x ∈ E.

(2.10)

On the other hand, if α = 0, we have 〈x − u, JAαx〉 = 0 = r‖0‖2
E∗ = r‖JAαx‖2

E∗ , for all x ∈ E.
Therefore, JAα is r-quasi inverse strongly monotone. So, we can define the following set:

Q =
{
JÃ : E → E∗ |

〈
x − u, JÃx

〉
≥ r

∥∥∥JÃx
∥∥∥

2

E∗
, ∀x ∈ E, u ∈

(
JÃ

)−1
(0)

}
, (2.11)

where Ã : E → E and r ∈ (0, 1/2] (note that JAα ∈ Q/= ∅). In the same way, let Â : E → E,
and define

L =
{
JÂ ∈ Q | J

(
x − Âx

)
= Jx − JÂx,

〈
x, JÂx

〉
=
〈
Âx, Jx

〉
, ∀x ∈ E

}
. (2.12)

We claim that JAα ∈ L. Note that JAα ∈ Q, and let us consider

J(x −Aαx) = J(x − αx) = (1 − α)Jx = Jx − αJx = Jx − J(αx)

= Jx − JAαx.
(2.13)

Furthermore, it is also found that

〈x, JAαx〉 = 〈x, J(αx)〉 = 〈αx, Jx〉 = 〈Aαx, Jx〉. (2.14)

This means that JAα ∈ L/= ∅. So, we have the claim.
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Now, we pick arbitrarily JÂ ∈ L and claim that (I − Â) : E → E is a φ-quasi-strict
pseudocontraction (i.e., ∃k ∈ [0, 1) s.t. φ(q, (I − Â)x) � φ(q, x) + kφ(x, (I − Â)x) for all x ∈ E

and q ∈ F(I − Â)).
Since JÂ ∈ L, we have

∥
∥
∥Âx

∥
∥
∥

2
=
〈
Âx, JÂx

〉
=
〈
x −

(
I − Â

)
x, Jx −

(
Jx − JÂx

)〉

=
〈
x −

(
I − Â

)
x, Jx

〉
−
〈
x −

(
I − Â

)
x, J

(
I − Â

)
x
〉

= ‖x‖2 −
〈(

I − Â
)
x, Jx

〉
−
〈
x, J

(
I − Â

)
x
〉
+
∥
∥
∥
(
I − Â

)
x
∥
∥
∥

2

=
(
‖x‖2 − 2

〈
x, J

(
I − Â

)
x
〉
+
∥
∥
∥
(
I − Â

)
x
∥
∥
∥

2
)
+
〈
x, J

(
I − Â

)
x
〉
−
〈(

I − Â
)
x, Jx

〉

= φ
(
x,

(
I − Â

)
x
)
+ 〈x, Jx〉 −

〈
x, JÂx

〉
− 〈x, Jx〉 +

〈
Âx, Jx

〉

= φ
(
x,

(
I − Â

)
x
)
.

(2.15)

Note that L ⊂ Q, and thus (JÂ)−1(0)/= ∅. It is not difficult to check that (JÂ)−1(0) =
F(I − Â). Therefore, for each q ∈ F(I − Â), we have

φ
(
q,
(
I − Â

)
x
)
=
∥∥q

∥∥2 − 2
〈
q, J

(
I − Â

)
x
〉
+
∥∥∥
(
I − Â

)
x
∥∥∥

2

=
∥∥q

∥∥2 − 2
〈
q, Jx − JÂx

〉
+
∥∥∥
(
I − Â

)
x
∥∥∥

2

=
(∥∥q

∥∥2 − 2
〈
q, Jx

〉
+ ‖x‖2

)
− ‖x‖2 + 2

〈
q, JÂx

〉
+
∥∥∥
(
I − Â

)
x
∥∥∥

2

= φ
(
q, x

) − ‖x‖2 − 2
〈
x − q, JÂx

〉
+ 2

〈
x, JÂx

〉
+
∥∥∥
(
I − Â

)
x
∥∥∥

2

≤ φ
(
q, x

) − ‖x‖2 − 2r
∥∥∥JÂx

∥∥∥
2
+ 2〈x, Jx〉 − 2

〈
x, Jx − JÂx

〉
+
∥∥∥
(
I − Â

)
x
∥∥∥

2

= φ
(
q, x

) − 2r
∥∥∥Âx

∥∥∥
2
+
(
‖x‖2 − 2

〈
x, J

(
I − Â

)
x
〉
+
∥∥∥
(
I − Â

)
x
∥∥∥

2
)

= φ
(
q, x

) − 2rφ
(
x,

(
I − Â

)
x
)
+ φ

(
x,

(
I − Â

)
x
)

= φ
(
q, x

)
+ (1 − 2r)φ

(
x,

(
I − Â

)
x
)

= φ
(
q, x

)
+ kφ

(
x,

(
I − Â

)
x
)
,

(2.16)

where k := (1 − 2r). So, we obtain the desired result.
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Next, we claim that the mapping (I−Aα) as mentioned previously is closed. Let {xn} ⊂
E such that xn → x; then we have

(I −Aα)xn = xn −Aαxn = xn − αxn = (1 − α)xn

−→ (1 − α)x as n −→ ∞.
(2.17)

Moreover, (I − Aα)x = x − Aαx = x − αx = (1 − α)x. This shows that (I − Aα) is a closed
mapping.

Remark 2.3. A relatively nonexpansive mapping is a φ-quasi-strict pseudocontraction, but the
converse may be not true.

Example 2.4. Let E be a reflexive, strictly convex, and smooth Banach space. Let A ⊂ E × E∗

be a maximal monotone mapping such that A−1(0) is nonempty. Then, Jr = (J + rA)−1J is
a closed and φ-quasi-strict pseudocontraction from E onto D(A) with constant k = 0 and
F(Jr) = A−1(0).

Example 2.5. Let ΠC be the generalized projection from a smooth, strictly convex, and
reflexive Banach space E onto a nonempty closed convex subset C of E. Then, ΠC is a closed
and φ-quasi-strict pseudocontraction from E onto C with constant k = 0 and F(ΠC) = C.

For solving the equilibrium problem for a bifunction Θ : C × C → R, let us assume
that Θ satisfies the following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C,

(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C,

(A3) for each x, y, z ∈ C,

limt↓0 Θ
(
tz + (1 − t)x, y

) ≤ Θ
(
x, y

)
, (2.18)

(A4) for each x ∈ C, y �→ Θ(x, y) is convex and lower semicontinuous.

Lemma 2.6 (Blum and Oettli [19]). Let C be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, and let Θ be a bifunction of C ×C into R satisfying (A1)–(A4).
Let r > 0 and x ∈ E. Then, there exists z ∈ C such that

Θ
(
z, y

)
+

1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.19)
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Lemma 2.7 (Takahashi and Zembayashi [24]). Let C be a closed convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E, and let Θ be a bifunction from C × C to R

satisfying (A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{
z ∈ C : Θ

(
z, y

)
+

1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
(2.20)

for all x ∈ C. Then, the following hold:

(i) Tr is single valued,

(ii) Tr is firmly nonexpansive-type mapping, that is, for any x, y ∈ H,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
, (2.21)

(iii) F(Tr) = EP(Θ),

(iv) EP(Θ) is closed and convex

Lemma 2.8 (Takahashi and Zembayashi [24]). LetC be a closed convex subset of a smooth, strictly
convex and reflexive Banach space E, let Θ be a bifunction from C ×C to R satisfying (A1)–(A4), and
let r > 0. Then, for x ∈ E and q ∈ F(Tr),

φ
(
p, Trx

)
+ φ(Trx, x) ≤ φ

(
p, x

)
. (2.22)

Lemma 2.9 (Zhang [31]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E. Let A : C → E∗ be a continuous and monotone mapping, ϕ : C → R a lower
semi-continuous and convex function, and Θ a bifunction from C × C to R satisfying (A1)–(A4). For
r > 0 and x ∈ E, there exists u ∈ C such that

Θ
(
u, y

)
+
〈
Au, y − u

〉
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C. (2.23)

Define a mapping Kr : C → C as follows:

Kr(x) =
{
u ∈ C : Θ

(
u, y

)
+
〈
Au, y − u

〉
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C

}

(2.24)

for all x ∈ C. Then, the following conclusions hold:

(1) Kr is single valued,

(2) Kr is firmly nonexpansive type, that is, for all x, y ∈ E,

〈
Krx −Kry, JKrx − JKry

〉 ≤ 〈
Krx −Kry, Jx − Jy

〉
, (2.25)

(3) F(Kr) = GMEP(Θ, A, ϕ),

(4) GMEP(Θ, A, ϕ) is closed and convex,

(5) φ(p,Krx) + φ(Krx, x) ≤ φ(p, x) ∀p ∈ F(Kr), x ∈ E.

The following lemmas are crucial for the proofs of the main results in this paper.
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Lemma 2.10. Let E be a reflexive, strictly convex, and smooth Banach space. Assume that C is a
nonempty closed convex subset of E. Let T : C → C be a φ-quasi-strict pseudocontraction, and let
Kr : C → C be as in Lemma 2.9 such that Ω := F(T) ∩ GMEP(Θ, A, ϕ)/= ∅. Then

φ(x,KrTx) + φ(KrTx, Tx) ≤ 2
1 − k

〈
x − p, Jx − JTx

〉
+ 2

〈
x − p, JTx − JKrTx

〉
(2.26)

for all x ∈ C and p ∈ Ω.

Proof. Let x ∈ C and p ∈ Ω. By the φ-quasi-strict pseudocontractility of T and (2.4) we have

φ
(
p, Tx

) ≤ φ
(
p, x

)
+ kφ(x, Tx)

⇔ φ
(
p, x

)
+ φ(x, Tx) + 2

〈
p − x, Jx − JTx

〉 ≤ φ
(
p, x

)
+ kφ(x, Tx)

⇔ φ(x, Tx) ≤ 2
1 − k

〈
x − p, Jx − JTx

〉
.

(2.27)

It follows from (2.4), Lemma 2.9 (5), and (2.27) that

φ
(
p, x

)
+ φ(x,KrTx) + 2

〈
p − x, Jx − JKrTx

〉

= φ
(
p,KrTx

)

≤ φ
(
p, Tx

) − φ(KrTx, Tx)

≤ φ
(
p, x

)
+ kφ(x, Tx) − φ(KrTx, Tx)

≤ φ
(
p, x

)
+ 2

k

1 − k

〈
x − p, Jx − JTx

〉 − φ(KrTx, Tx),

(2.28)

and then

φ(x,KrTx) + φ(KrTx, Tx)

≤ 2
k

1 − k

〈
x − p, Jx − JTx

〉
+ 2

〈
x − p, Jx − JKrTx

〉

= 2
k

1 − k

〈
x − p, Jx − JTx

〉
+ 2

〈
x − p, Jx − JTx

〉
+ 2

〈
x − p, JTx − JKrTx

〉

=
(

2
k

1 − k
+ 2

)
〈
x − p, Jx − JTx

〉
+ 2

〈
x − p, JTx − JKrTx

〉

=
2

1 − k

〈
x − p, Jx − JTx

〉
+ 2

〈
x − p, JTx − JKrTx

〉
.

(2.29)

Lemma 2.11 (Alber and Reich [10]). Let C be a nonempty closed convex subset of a smooth Banach
space E, x0 ∈ C, and x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0, ∀y ∈ C. (2.30)
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Lemma 2.12 (Alber [30]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed convex subset of E, and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.31)

3. Main Result

Theorem 3.1. Let E be a reflexive, strictly convex, and smooth Banach space such that E and E∗ have
the property (K). Assume that C is a nonempty closed convex subset of E. Let T : C → C be a
closed and φ-quasi-strict pseudocontraction, Θ a bifunction from C × C to R satisfying (A1)–(A4),
ϕ : C → R a lower semi-continuous and convex function, and A : C → E∗ a continuous and
monotone mapping such that Ω := F(T) ∩ GMEP(Θ, A, ϕ)/= ∅. Define a sequence {xn} in C by the
following algorithm:

x0 ∈ E, chosen arbitrarily,

C1 = C,

x1 = ΠC1(x0),

un ∈ C such that

Θ
(
un, y

)
+
〈
Aun, y − un

〉
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − JTxn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(xn, un) + φ(un, Txn)

≤ 2
1 − k

〈xn − z, Jxn − JTxn〉 + 2〈xn − z, JTxn − Jun〉
}
,

xn+1 = ΠCn+1(x0),

(3.1)

where k ∈ [0, 1) and rn > 0 for all n ∈ N with lim infn→∞ rn > 0. Then, {xn} converges strongly to
ΠΩ(x0).

Proof. The proof is divided into seven steps.
Step 1. Show that Ω is closed and convex.
From step 1 of Zhou and Gao [25], F(T) is closed and convex and by Lemma 2.9(4)

GMEP(Θ, A, ϕ) is closed and convex. So, Ω := F(T) ∩ GMEP(Θ, A, ϕ) is closed and convex.
Step 2. Show that Cn is closed and convex for all n ≥ 1.
For n = 1, C1 = C is closed and convex. Assume that Ck is closed and convex for some

k ∈ N. For z ∈ Ck+1, one obtains that

φ(xk, uk) + φ(uk, Txk) ≤ 2
1 − k

〈xk − z, Jxk − JTxk〉 + 2〈xk − z, JTxk − Juk〉. (3.2)

It is not hard to see that the continuity and linearity of 〈·, Jxk − JTxk〉 and 〈·, JTxk − Juk〉
allow Ck+1 to be closed and convex. Then, for all n ≥ 1, Cn is closed and convex.

Step 3. Show that Ω ⊂ Cn for all n ≥ 1.
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It is obvious that Ω := F(T) ∩ GMEP(Θ, A, ϕ) ⊂ C = C1. Suppose that Ω ⊂ Ck for some
k ∈ N. For any p ∈ Ω, we have p ∈ Ck. Notice that xk = ΠCk(x0), and then by Lemma 2.9 we
obtain uk = KrkTxk. So, it follows from Lemma 2.10 that

φ(xk, uk) + φ(uk, Txk) ≤ 2
1 − k

〈
xk − p, Jxk − JTxk

〉
+ 2

〈
xk − p, JTxk − Juk

〉
. (3.3)

This means that p ∈ Ck+1. By mathematical induction, Ω ⊂ Cn for all n ≥ 1. Therefore, Ω ⊂⋂∞
n=1 Cn =: D/= ∅.

Step 4. Show that limn→∞φ(xn, x0) exists.
By xn = ΠCnx0 and Lemma 2.12, we have

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(w,x0) − φ(w,xn) ≤ φ(w,x0), (3.4)

for each w ∈ Ω ⊂ Cn and for all n ≥ 1. Therefore, the sequence {φ(xn, x0)} is bounded.
On the other hand, noticing that xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn,

φ(xn, x0) = minz∈Cn φ(z, x0) ≤ φ(xn+1, x0) for all n ≥ 1. Therefore, φ(xn, x0) is nondecreasing.
It follows that the limit of φ(xn, x0) exists.

Step 5. Show that xn → q as n → ∞, where q = ΠDx0.
Since xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn for any positive integer n and by Lemma 2.12, we

have

φ(xn+1, xn) = φ(xn+1,ΠCnx0) ≤ φ(xn+1, x0) − φ(ΠCnx0, x0) = φ(xn+1, x0) − φ(xn, x0). (3.5)

Letting n → ∞ in (3.5), one has φ(xn+1, xn) → 0 as n → ∞. Without loss of generality, we
can assume that xn → q weakly as n → ∞ (passing to a subsequence if necessary). It is
easy to show that q ∈ Cn for all n ≥ 1. Hence q ∈ ⋂∞

n=1 Cn = D. Noticing that φ(xn, x0) ≤
φ(xn+1, x0) ≤ φ(q, x0), we have

(
q, x0

) ≤ lim inf
n→∞

φ(xn, x0) ≤ lim sup
n→∞

φ(xn, x0) ≤ φ
(
q, x0

)
, (3.6)

which implies that φ(xn, x0) → φ(q, x0) as n → ∞. Hence ‖xn‖ → ‖q‖. By the property (K)
of E, we have xn → q. From Lemma 2.11, we have

〈
xn − y, Jx0 − Jxn

〉 ≥ 0, ∀y ∈ D. (3.7)

Hence

〈
q − y, Jx0 − Jq

〉 ≥ 0, ∀y ∈ D, (3.8)

which implies that q = ΠDx0.
Step 6. Show that q ∈ Ω.
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We prove first that {Txn} and {un} = {KrnTxn} are bounded. Indeed, taking p ∈ Ω =
F(T) ∩ GMEP(Θ, A, ϕ) ⊂ Cn+1, we have

∥
∥p

∥
∥2 − 2

∥
∥p

∥
∥‖Txn‖ + ‖Txn‖2

=
(∥∥p

∥
∥ − ‖Txn‖

)2 ≤ φ
(
p, Txn

)

≤ φ
(
p, xn

)
+ kφ(xn, Txn)

≤ φ
(
p, xn

)
+

2k
1 − k

〈
xn − p, Jxn − JTxn

〉

≤ φ
(
p, xn

)
+

2k
1 − k

∥
∥xn − p

∥
∥‖xn‖ + 2k

1 − k

∥
∥xn − p

∥
∥‖Txn‖.

(3.9)

Then

‖Txn‖2 ≤
(
φ
(
p, xn

) − ∥∥p
∥∥2 +

2k
1 − k

∥∥xn − p
∥∥‖xn‖

)
+
(

2k
1 − k

∥∥xn − p
∥∥ + 2

∥∥p
∥∥
)
‖Txn‖

≤ M +K‖Txn‖ = M +
1
2
(2K‖Txn‖)

≤ M +
1
2

(
K2 + ‖Txn‖2

)
= M +

1
2
K2 +

1
2
‖Txn‖2,

(3.10)

where M := sup{φ(p, xn) − ‖p‖2 + (2k/(1 − k))‖xn − p‖‖xn‖ : n ∈ N} and K := sup{(2k/(1 −
k))‖xn − p‖ + 2‖p‖ : n ∈ N}. Thus

‖Txn‖2 ≤ 2M +K2 (3.11)

for all n ∈ N. Therefore {Txn} is bounded. Note that φ(p,KrnTxn) ≤ φ(p, Txn) for all n ∈ N.
Therefore {un} = {KrnTxn} is also bounded. From xn+1 ∈ Cn+1, one has

φ(xn, un) + φ(un, Txn) ≤ 2
1 − k

〈xn − xn+1, Jxn − JTxn〉 + 2〈xn − xn+1, JTxn − Jun〉. (3.12)

By Step 5, we obtain that xn+1 − xn → 0. Taking limit on both sides of (3.12), we obtain
φ(xn, un) + φ(un, Txn) → 0 as n → ∞. Noting that 0 ≤ (‖xn‖ − ‖un‖)2 ≤ φ(xn, un), 0 ≤
(‖un‖ − ‖Txn‖)2 ≤ φ(un, Txn), and ‖xn‖ → ‖q‖, it is implied that

∥∥q
∥∥ = lim

n→∞
‖xn‖ = lim

n→∞
‖un‖ = lim

n→∞
‖Txn‖, (3.13)

and consequently

∥∥Jq
∥∥ = lim

n→∞
‖Jxn‖ = lim

n→∞
‖Jun‖ = lim

n→∞
‖JTxn‖. (3.14)
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This implies that {J(un)} and {J(Txn)} are bounded. Since E is reflexive, E∗ is also reflexive.
So we can assume that

J(un) −→ f ∈ E∗ (3.15)

weakly. On the other hand, in view of the reflexivity of E, one has J(E) = E∗, which means
that, for f ∈ E∗, there exists xf ∈ E, such that Jxf = f . It follows that

φ(xn, un) = ‖xn‖2 − 2〈xn, J(un)〉 + ‖un‖2 = ‖xn‖2 − 2〈xn, J(un)〉 + ‖J(un)‖2. (3.16)

Taking lim infn→∞ on both sides of the equality above, we have

0 ≥ ∥
∥q

∥
∥2 − 2

〈
q, f

〉
+
∥
∥f

∥
∥2

=
∥∥q

∥∥2 − 2
〈
u0, Jxf

〉
+
∥∥Jxf

∥∥2

= φ
(
q, xf

)
.

(3.17)

Therefore φ(q, xf) = 0 and consequently q = xf , which implies that f = Jq. Hence

J(un) −→ Jq ∈ E∗ (3.18)

weakly. Since ‖J(un)‖ → ‖Jq‖ and E∗ has the property (K), we have

∥∥J(un) − Jq
∥∥ −→ 0. (3.19)

Noting that J−1 : E∗ → E is demicontinuous, we have

un −→ q ∈ E (3.20)

weakly. Since ‖un‖ → ‖q‖ and E has the property (K), we obtain that un → q as n → ∞.
Similarly, it is not difficult to show that Txn → q as n → ∞. From xn → q and the closeness
property of T , we have Tq = q.

Next, we want to show that q ∈ GMEP(Θ, A, ϕ). Define G : C × C → R by G(x, y) =
Θ(x, y) + 〈Ax, y − x〉 + ϕ(y) − ϕ(x) for all x, y ∈ C. It is not hard to verify that G satisfies
conditions (A1)–(A4). It follows from un = KrnTxn and (A2) that

1
rn

〈
y − un, Jun − Jxn

〉 ≥ G
(
y, un

)
, ∀y ∈ C. (3.21)

By using (A4) and lim infn→∞rn > 0, we obtain 0 ≥ G(y, q) for all y ∈ C. For t ∈ (0, 1] and
y ∈ C, let yt = ty + (1 − t)q. So, from (A1) and (A4), we have

0 = G
(
yt, yt

)
= G

(
yt, ty + (1 − t)q

) ≤ tG
(
yt, y

)
+ (1 − t)G

(
yt, q

) ≤ tG
(
yt, y

)
. (3.22)
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Dividing by t, we have

G
(
yt, y

) ≥ 0, ∀y ∈ C. (3.23)

From (A3) we have 0 ≤ limt→ 0G(yt, y) = limt→ 0G(ty + (1− t)q, y) ≤ G(q, y) for all y ∈ C, and
hence q ∈ GMEP(Θ, A, ϕ). So, q ∈ F(T) ∩ GMEP(Θ, A, ϕ) = Ω.

Step 7. Show that q = ΠΩx0.
It follows from Steps 5 and 6 that

φ
(
q, x0

) ≤ φ(ΠΩx0, x0) ≤ φ
(
q, x0

)
, (3.24)

which implies that φ(ΠΩx0, x0) = φ(q, x0). Hence, q = ΠΩx0. Then {xn} converges strongly to
q = ΠΩx0. This completes the proof.

If T is closed φ-quasi-nonexpansive, then Theorem 3.1 is reduced to the following
corollary.

Corollary 3.2. Let E be a reflexive, strictly convex, and smooth Banach space such that E and E∗ have
the property (K). Assume that C is a nonempty closed convex subset of E. Let T : C → C be a φ-
closed quasi-nonexpansive mapping,Θ a bifunction fromC×C to R satisfying (A1)–(A4), ϕ : C → R

a lower semi-continuous and convex function, andA : C → E∗ a continuous and monotone mapping
such that Ω := F(T) ∩ GMEP(Θ, A, ϕ)/= ∅. Define a sequence {xn} in C by the following algorithm:

x0 ∈ E, chosen arbitrarily,

C1 = C,

x1 = ΠC1(x0),

un ∈ C such that

Θ
(
un, y

)
+
〈
Aun, y − un

〉
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − JTxn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(xn, un) + φ(un, Txn) ≤ 2〈xn − z, Jxn − Jun〉

}
,

xn+1 = ΠCn+1(x0),

(3.25)

where rn > 0 for all n ∈ N with lim infn→∞ rn > 0. Then {xn} converges strongly toΠΩ(x0).

If E = H is a Hilbert space, then Theorem 3.1 is reduced to the following corollary.

Corollary 3.3. Let H be a Hilbert space. Assume that C is a nonempty closed convex subset of H.
Let T : C → C be a closed and φ-quasi-strict pseudocontraction, Θ a bifunction from C × C to R

satisfying (A1)–(A4), ϕ : C → R a lower semi-continuous and convex function, and A : C → H
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a continuous and monotone mapping such that Ω := F(T) ∩ GMEP(Θ, A, ϕ)/= ∅. Define a sequence
{xn} in C by the following algorithm:

x0 ∈ H, chosen arbitrarily,

C1 = C,

x1 = ΠC1(x0),

un ∈ C such that,

Θ
(
un, y

)
+
〈
Aun, y − un

〉
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − Txn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : ‖xn − un‖2 + ‖un − Txn‖2

≤ 2
1 − k

〈xn − z, xn − Txn〉 + 2〈xn − z, Txn − un〉
}
,

xn+1 = ΠCn+1(x0),

(3.26)

where k ∈ [0, 1) and rn > 0 for all n ∈ N with lim infn→∞ rn > 0. Then {xn} converges strongly to
ΠΩ(x0).

If A = 0 and ϕ = 0, then we have the following corollary.

Corollary 3.4. Let E be a reflexive, strictly convex, and smooth Banach space such that E and E∗ have
the property (K). Assume that C is a nonempty closed convex subset of E. Let T : C → C be a closed
and φ-quasi-strict pseudocontraction and Θ a bifunction from C × C to R satisfying (A1)–(A4) such
that Λ := F(T) ∩ EP(Θ)/= ∅. Define a sequence {xn} in C by the following algorithm:

x0 ∈ E, chosen arbitrarily,

C1 = C,

x1 = ΠC1(x0),

un ∈ C such that

Θ
(
un, y

)
+

1
rn

〈
y − un, Jun − JTxn

〉 ≥ 0 ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(xn, un) + φ(un, Txn)

≤ 2
1 − k

〈xn − z, Jxn − JTxn〉 + 2〈xn − z, JTxn − Jun〉
}
,

xn+1 = ΠCn+1(x0),

(3.27)

where k ∈ [0, 1) and rn > 0 for all n ∈ N with lim infn→∞rn > 0. Then {xn} converges strongly to
ΠΩ(x0).
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Corollary 3.5 ([25, Theorem 3.1]). Let E be a reflexive, strictly convex and smooth Banach space
such that E and E∗ have the property (K). Assume that C is a nonempty closed convex subset of E.
Let T : C → C be a φ-closed quasi-strict pseudocontraction. Define a sequence {xn} in C by the
following algorithm:

x0 ∈ E, chosen arbitrarily,

C1 = C,

x1 = ΠC1(x0),

un ∈ C such that

Cn+1 =
{
z ∈ Cn : φ(xn, Txn) ≤ 2

1 − k
〈xn − z, Jxn − JTxn〉

}
,

xn+1 = ΠCn+1(x0)

(3.28)

where k ∈ [0, 1). Then {xn} converges strongly toΠΩ(x0).

Proof. Put Θ = 0, A = 0, ϕ = 0, and rn = 1 for all n ≥ 1 in Theorem 3.1. Then, Krn = ΠC for all
n � 1. So, un = ΠCTxn for all n � 1 (note that x1 = ΠCx0). Since xn = ΠCnx0 ∈ Cn ⊂ C and then
Txn ∈ C for all n � 1, we have un = Txn for all n � 1. Thus φ(xn, un)+φ(un, Txn) = φ(xn, Txn)
and JTxn − Jun = 0 for all n ≥ 1. For this reason, (1.12) is a special case of (3.1). Applying
Theorem 3.1, we have the desired result.

Remark 3.6. It is well known that every uniformly convex and uniformly smooth Banach
space satisfies all assumptions of Banach space in Theorem 3.1. On the other hand, in general,
Musielak-Orlicz space [26] need not be uniformly convex or uniformly smooth, however, any
strictly convex, reflexive and smooth Musielak-Orlicz space [26] satisfies all Banach-space
assumptions of Theorem 3.1. It can be written as the following diagram:

Reflexive, strictly convex, smooth Banach spaces with the property (K)

uniformly convex and uniformly smooth Banach spaces
⇑ ⇑

For this reason, Theorem 3.1 can be viewed as a more general one and can be applied
widely in both the fixed point problems and the equilibrium problems.
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