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The existence of a pullback random attractor is established for a stochastic three-component
reversible Gray-Scott system on unbounded domains. The Gray-Scott system is recast as a random
dynamical system and asymptotic compactness which is illustrated by using uniform, a priori
estimates for far-field values of solutions and a cutoff technique.

1. Introduction

Consider the asymptotic behavior of solutions of the following stochastic three-component
reversible Gray-Scott systemwithmultiplicative noise defined in the entire space R

n×R
n×R

n:

∂ũ

∂t
= d1�ũ − (F + k)ũ + ũ2ṽ −Gũ3 +Nw̃ + f1(x) + σũ ◦ dBt

dt
,

∂ṽ

∂t
= d2�ṽ − Fṽ − ũ2ṽ +Gũ3 + f2(x) + σṽ ◦ dBt

dt
,

∂w̃

∂t
= d3�w̃ − (F +N)w̃ + kũ + f3(x) + σw̃ ◦ dBt

dt
,

(1.1)

with initial data

ũ(0, x) = ũ0(x), ṽ(0, x) = ṽ0(x), w̃(0, x) = w̃0(x), x ∈ R
n, (1.2)
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where all the parameters are given positive constants; fi (i = 1, 2, 3) are nonlinear functions
satisfying certain conditions; Bt is a two-sided real-valued Wiener process on a probability
space (Ω,F,P), Ω = {ω ∈ C(R,R) : ω(0) = 0}, the Borel σ-algebra F on Ω is generated by the
compact open topology (see [1]), and P is the correspondingWiener measure on F; ◦ denotes
the Stratonovich sense of the stochastic term.

Historically, when w̃ = 0, G = 0, f1 = f3 = 0, f2 = F and there are no random
terms (σ = 0), system (1.1) reduces to the two-component Gray-Scott system which signified
one of the Brussels schools led by the renowned physical chemist and Nobel Prize laureate
(1977), Ilya Prigogine, which originated from describing an isothermal, cubic autocatalytic,
continuously fed, and diffusive reactions of two chemicals (see [2–6]). The three-component
reversible Gray-Scott model was firstly introduced by Mahara et al., which is based on the
scheme of two reversible chemical or biochemical reactions [7]. Then in [8], You took some
nondimensional transformations, the three-component reversible system was reduced to the
system (1.1) without random forces. In [8], You considered the existence of global attractor
for the system (1.1) with Neumann boundary condition on a bounded domain of space
dimension n ≤ 3 by the method of the rescaling and grouping estimation.

Stochastic differential equations of this type arise from many chemical or biochemical
systems when random spatiotemporal forcing is taken into consideration. These random
perturbations are intrinsic effects in a variety of settings and spatial scales. They may be
most obviously influential at the microscopic and smaller scales, but indirectly they play
an important role in macroscopic phenomena. Recently, Gu [9] gave the existence of a
compact random attractor for stochastic three-component reversible Gray-Scott system with
multiplicative white noise in a bounded domain of R

n (n ≤ 3) when f1 = f3 = 0, f2 = F
in system (1.1). As pointed in [10], the discussion of the same or similar coupled reaction-
diffusion systems on a higher dimensional domain with the space dimension n > 3 and on an
unbounded domain is still open to the best of our knowledge. Here, we intend to investigate
the dynamical behavior of the system (1.1) on unbounded domains and give a partly answer
to the problems proposed in [10]. It is worth mentioning that Sobolev embedding is not
compact on domains of infinite volume. This introduces a major obstacle for proving the
existence of random attractors for partial differential equations on unbounded domains. For
some deterministic equations, the difficulty caused by the unboundedness of domains can
be overcome by the energy equation approach which developed by Ball in [11, 12] and used
by many authors (see, e.g., [13–15]). In this paper, we will use the uniform estimates on the
far-field values of solutions to circumvent the difficulty caused by the unboundedness of the
domain. This idea was developed in [16] to prove the asymptotic compactness of solutions
for autonomous parabolic equations on R

n, and later extended to nonautonomous equations
(see, e.g., [17–19]) and stochastic equations (see, e.g., [20–22]). Here, we will use the method
of tail-estimates to investigate the asymptotic behavior of system (1.1)with initial data (1.2).

The paper is organized as follows. In the next section, we recall the fundamental
concepts and results for pullback random attractors for random dynamical systems. In
Section 3, we define a cocycle for the stochastic three-component reversible Gray-Scott system
on R

n × R
n × R

n. Section 4 is devoted to deriving the uniform estimates of solutions for
large space and time variables. In the last section, we give the asymptotic compactness of
the solution by using uniform estimates on the tails of solutions and then prove the existence
of a pullback random attractor.

The following notations will be used throughout the paper. We denote by ‖ ·‖ and (, ·, )
the norm and inner product in L2(Rn) or H = [L2(Rn)]3. Let U = [L6(Rn)]3; E = [H1(Rn)]3;
‖ · ‖L6 and ‖ · ‖U denote the norm in L6(Rn) and U.
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2. Preliminaries

In this section, we recall some basic concepts related to random attractors for random
dynamical systems. We refer the reader to [1, 23, 24] for more details.

Let (X, ‖ · ‖X) be a separable Hilbert space with Borel σ-algebra B(X), and let (Ω,F,P)
be a probability space.

Definition 2.1. (Ω,F,P, (θt)t∈R
) is called a metric dynamical system if θ : R×Ω �→ Ω is (B(R)×

F,F)-measurable and θ0 is the identity on Ω, θs+t = θtθs for all s, t ∈ R and θtP = P for all
t ∈ R.

Definition 2.2. A stochastic process {ϕ(t, ω)}t≥0, ω∈Ω is a continuous random dynamical system
(RDS) over (Ω,F,P, (θt)t∈R

) if ϕ is (B[0,∞) × F × B(X),B(X))-measurable, and for all ω ∈ Ω,

(i) the mapping ϕ(t, ω) : X �→ X, x �→ ϕ(t, ω)x is continuous for every t ≥ 0;

(ii) ϕ(0, ω) is the identity on X;

(iii) (cocycle property) ϕ(s + t, ω) = ϕ(t, θsω)ϕ(s,ω) for all s, t ≥ 0.

Definition 2.3. (i) A set-valued mapping ω �→ B(ω) ⊂ X (we may write it as B(ω) for short) is
said to be a random set if the mapping ω �→ distX(x, B(ω)) is measurable for any x ∈ X.

(ii) A random set B(ω) is said to be bounded if there exist x0 ∈ X and a random
variable r(ω) > 0 such that B(ω) ⊂ {x ∈ X : ‖x − x0‖X ≤ r(ω), x0 ∈ X} for all ω ∈ Ω.

(iii)A random set B(ω) is called a compact random set if B(ω) is compact for allω ∈ Ω.
(iv) A random bounded set B(ω) ⊂ X is called tempered with respect to (θt)t∈R

if for
a.e. ω ∈ Ω limt→+∞e−γtsupx∈B(θ−tω)‖x‖X = 0 for all γ > 0. A random variable ω �→ r(ω) ∈ R

is said to be tempered with respect to (θt)t∈R
if for a.e. ω ∈ Ω, limt→+∞e−γtsupt∈R

|r(θ−tω)| =
0 for all γ > 0.

We consider a continuous RDS {ϕ(t, ω)}t≥0,ω∈Ω over (Ω,F,P, (θt)t∈R
) and D the set of

all tempered random sets of X.

Definition 2.4. A random set K(ω) is called an absorbing set in D if for all B ∈ D and a.e.
ω ∈ Ω there exist tB(ω) > 0 such that

ϕ(t, θ−tω)B(θ−tω) ⊂ K(ω) ∀ t ≥ tB(ω). (2.1)

Definition 2.5. A random setA is called a globalD-random attractor (orD-pullback attractor)
for {ϕ(t, ω)}t≥0, ω∈Ω if the following hold:

(i) A is a random compact set, that is ω �→ d(x,A(ω)) is measurable for every x ∈ X
andA(ω) is compact for a.e. ω ∈ Ω;

(ii) A is strictly invariant, that is, forω ∈ Ω and all t ≥ 0 one has ϕ(t, ω)A(ω) = A(θtω);

(iii) A attracts all sets in D, that is, for all B ∈ D and a.e. ω ∈ Ωwe have

lim
t→+∞

d
(

ϕ(t, θ−tω)B(θ−tω), A(ω)
)

= 0, (2.2)

where d(Y,Z) = supy∈Y infz∈Z‖y − z‖X is the Hausdorff semimetric (Y ⊆ X,Z ⊆ X).



4 Abstract and Applied Analysis

Proposition 2.6 (see [24]). Let K(ω) ∈ D be a random absorbing set for the continuous RDS
(ϕ(t))t≥0, which is closed and satisfies for a.e. ω ∈ Ω the following asymptotic compactness condition:
each sequence xn ∈ ϕ(tn, θ−tnω,K(θ−tnω)) with tn → ∞ has a convergent subsequence in X. Then,
the cocycle ϕ has a unique global random attractor.

A(ω) =
⋂

τ≥tK(ω)

⋃

t≥τ
ϕ(t, θt(ω), K(θt(ω))). (2.3)

3. RDS Generated by Stochastic Three-Component Reversible
Gray-Scott System

In this section, we will give the basic setting of system (1.1) and show that it generates a
random dynamical system. Let (Ω,F,P) be a probability space as in Section 1. Define (θt)t∈R

on Ω via θtω(·) = ω(· + t) − ω(t), t ∈ R, then (Ω,F,P, (θt)t∈R
) is an ergodic metric dynamical

system (see [1, 23]).
Denote g̃ = (ũ, ṽ, w̃)T , system (1.1) with initial data (1.2) can be rewritten as

∂g̃

∂t
= Ag̃ + ˜Λ

(

g̃
)

+ f(x) + σg̃ ◦ dBt

dt
, t > 0,

g̃(0, x) = g̃0(x), x ∈ R
n,

(3.1)

where

A =

⎛

⎝

d1 0 0
0 d2 0
0 0 d3

⎞

⎠�, ˜Λ
(

g̃
)

=

⎛

⎝

−(F + k)ũ + ũ2ṽ −Gũ3 +Nw̃
−Fṽ − ũ2ṽ +Gũ3

kũ − (F +N)w̃

⎞

⎠, (3.2)

and f(x) = (f1(x), f2(x), f3(x))
T, here T denotes the transposition.

For our purpose, it is convenient to transform the problem (3.1) into a deterministic
system with a random parameter and then show that it generates a random dynamical
system.

Before performing this transformation, we need to recall some properties of the
Ornstein-Uhlenbeck processes. Let

z(θtω) = −
∫0

−∞
eτθtω(τ)dτ, t ∈ R, ω ∈ Ω. (3.3)

We know that z(θtω) is an Ornstein-Uhlenbeck process on (Ω,F,P, (θt)t∈R
) and solves the

following one-dimensional stochastic differential equation (see [25] for details):

dz = −zdt + dBt, z(−∞) = 0, ∀t ≥ 0, ω ∈ Ω, (3.4)
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where Bt(ω) = B(t, ω) = ω(t) for ω ∈ Ω, t ∈ R. In fact, from [1, 26], we know that the random
variable z(ω) is tempered, and there is a θt-invariant set ˜Ω ⊂ Ω of full P measure such that
for ω ∈ ˜Ω, t �→ z(θtω) is continuous in t; furthermore,

lim
t→±∞

|z(θtω)|
t

= lim
t→±∞

1
t

∫ t

0
z(θsω)ds = 0. (3.5)

Let

u(t) = α(t)ũ(t)

v(t) = α(t)ṽ(t) with α(t) = e−σz(θtω)

w(t) = α(t)w̃(t),

(3.6)

then system (3.1) can be written as

∂u

∂t
= d1�u − (F + k − σz(θtω))u + α−2(t)u2v −Gα−2(t)u3 +Nw + α(t)f1,

∂v

∂t
= d2�v − (F − σz(θtω))v − α−2(t)u2v +Gα−2(t)u3 + α(t)f2,

∂w

∂t
= d3�w − (F +N − σz(θtω))w + ku + α(t)f3,

(3.7)

that is, g(t, ·) = (u(t, ·), v(t, ·), w(t, ·)), t > 0 satisfies

dg

dt
= Ag + Λ

(

g,ω
)

+ α(t)f(x), t > 0,

g(0, x) = g0(x) = e−σz(ω)g̃0(x), x ∈ R
n,

(3.8)

where

Λ
(

g,ω
)

=

⎛

⎝

−(F + k − σz(θtω))u + α−2(t)u2v −Gα−2(t)u3 +Nw
−(F − σz(θtω))v − α−2(t)u2v +Gα−2(t)u3

−(F +N − σz(θtω))w + ku

⎞

⎠. (3.9)

We will consider (3.8) for ω ∈ ˜Ω and still use Ω instead of ˜Ω from now on.
As in the case of a bounded domain with Dirichlet boundary conditions which are

studied in [27], forΛ : E∩U �→ H is locally Lipschitz continuous and f ∈ H∩U, by a Galerkin
method, one can show that for P-a.e. ω ∈ Ω and for all g0 ∈ H, (3.8) has a unique solution
g(·, ω, g0) ∈ C([0,∞),H) ∩ L2((0, T);E) with g(0, ω, g0) = g0 for every T > 0. Similarly to
[28], because of the continuous nonlinearity Λ, one may take the domain to be a sequence
of balls with radius approaching ∞ to deduce the existence of a weak solution to (3.8) on
R

n ×R
n ×R

n. Furthermore, one may get that g(t, ω, g0) is unique and continuous with respect
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to g0 in H for all t ≥ 0. Then, (3.8) generates a continuous random dynamical system (ϕ(t))t≥0
over (Ω,F,P, (θt)t∈R

) according to the conditions (i)–(iii) in Definition 2.2, where

ϕ
(

t, ω, g̃0
)

= g
(

t, ω, g0
)

, ∀(t, ω, g̃0
) ∈ R

+ ×Ω × H. (3.10)

We now define a mapping φ : R
+ ×Ω × H → H by

φ
(

t, ω, g̃0
)

= g̃
(

t, ω, g̃0
)

= g
(

t, ω, e−σz(ω)g̃0
)

eσz(θtω), (3.11)

for all (t, ω, g̃0) ∈ R
+ ×Ω × H.

Then φ is a continuous random dynamical system associated with problem (3.1) on
R

n × R
n × R

n.
We remark that the two random dynamical systems are conjugated to each other; thus,

the inverse transformation of ϕ is a solution of the original system. For more details on the
conjugate theory of stochastic and random differential equations, we can refer to [29]. Thus,
in the following sections, we only need to consider the existence of a random attractor of ϕ.

4. Uniform Estimates of Solutions

In this section, we establish the uniform estimates on the solution of the stochastic Gray-Scott
system on R

n × R
n × R

n when t → ∞ in order to derive the existence of a bounded random
absorbing set and the asymptotic compactness of the random dynamical system associated
with the problem. Particularly when time is sufficiently large, we will show that the tails of
the solutions for large space variables are uniformly small.

We always assume that D is the collection of all tempered subsets of H with respect to
(Ω,F,P, (θt)t∈R

). The next lemma implied that ϕ has a random absorbing set in D.

Lemma 4.1. Assume that f ∈ H. Then, there exists a random ball {A(ω)} ∈ D centered at 0 with
radius R(ω) > 0 such that {A(ω)} is a random absorbing set for ϕ in D, that is, for any {B(ω)} ∈ D
and P-a.e. ω ∈ Ω, there is TB(ω) > 0 such that

ϕ(t, θ−tω, B(θ−tω)) ⊆ A(ω) ∀t > TB(ω). (4.1)

Proof. Define

W(t, x) =
N

k
w(t, x), μ =

k

N
, (4.2)

then the system (3.8) becomes

∂u

∂t
= d1�u − (F + k − σz(θtω))u + α−2(t)u2v −Gα−2(t)u3 + kW + α(t)f1, (4.3)

∂v

∂t
= d2�v − (F − σz(θtω))v − α−2(t)u2v +Gα−2(t)u3 + α(t)f2, (4.4)

μ
∂W

∂t
= μd3�W − (μF + k − μσz(θtω)

)

W + ku + α(t)f3. (4.5)
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Take the inner products ((4.3),Gu(t)), ((4.4),v(t)), and ((4.5),GW(t)). Then summing up the
resulting equalities, we get

d

dt

(

G‖u‖2 + ‖v‖2 + μG‖W‖2
)

+ 2d1G‖∇u‖2 + 2d2‖∇v‖2

+ 2μGd3‖∇W‖2 + 2
(

G(F + k)‖u‖2 + F‖v‖2 +G
(

μF + k
)‖W‖2

)

= 4kG
∫

Rn

uWdx + 2
∫

Rn

α(t)uf1dx + 2
∫

Rn

α(t)vf2dx + 2
∫

Rn

α(t)Wf3dx

+ 2σz(θtω)
(

G‖u‖2 + ‖v‖2 + μG‖W‖2
)

− 2α−2(t)
∫

Rn

(

Gu2 − uv
)2
dx,

(4.6)

that is,

d

dt

(

G‖u‖2 + ‖v‖2 + μG‖W‖2
)

+ 2d1G‖∇u‖2 + 2d2‖∇v‖2 + 2μGd3‖∇W‖2

≤ (2σz(θtω) − F)
(

G‖u‖2 + ‖v‖2 + μG‖W‖2
)

+
α2(t)
GF

(

∥

∥f1
∥

∥

2 +G
∥

∥f2
∥

∥

2 +
1
μ

∥

∥f3
∥

∥

2
)

.

(4.7)

Let c1 = max{1, G, 1/μ}/GFmin {1, G, 1/μ} and apply Gronwall lemma to (4.7) for t ≥ 0, we
have

∥

∥g
(

t, ω, g0(ω)
)∥

∥

2 ≤ e2σ
∫ t
0 z(θsω)ds−Ft∥

∥g0(ω)
∥

∥

2

+ c1
∥

∥f
∥

∥

2
e2σ

∫ t
0 z(θsω)ds−Ft

∫ t

0
e−2σz(θsω)−2σ ∫s0 z(θτω)dτ+Fsds.

(4.8)

By substituting ω with θ−tω in (4.8), it yields that

∥

∥g
(

t, θ−tω, g0(θ−tω)
)∥

∥

2

≤ e2σ
∫ t
0 z(θs−tω)ds−Ft∥

∥g0(θ−tω)
∥

∥

2

+ c1
∥

∥f
∥

∥

2
e2σ

∫ t
0 z(θs−tω)ds−Ft

∫ t

0
e−2σz(θs−tω)−2σ ∫s0 z(θτ−tω)dτ+Fsds

≤ e2σ
∫0
−t z(θsω)ds−Ft∥

∥g0(θ−tω)
∥

∥

2

+ c1
∥

∥f
∥

∥

2
∫0

−t
e−2σz(θsω)−2σ ∫0s z(θτω)dτ+Fsds
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≤ e2σ
∫0
−t z(θsω)ds−Ft∥

∥g0(θ−tω)
∥

∥

2

+ c1
∥

∥f
∥

∥

2
∫0

−∞
e−2σz(θsω)−2σ ∫0s z(θτω)dτ+Fsds.

(4.9)

By (3.5), we obtain

∫0

−∞
e−2σz(θsω)−2σ ∫0s z(θτω)dτ+Fsds < +∞. (4.10)

Notice that B(ω) ∈ D is tempered, then for any g0(θ−tω) ∈ B(θ−tω),

lim
t→+∞

e2σ
∫0
−t z(θsω)ds−Ft∥

∥g0(θ−tω)
∥

∥

2 = 0. (4.11)

Denote

R
2
(ω) = 1 + c1

∥

∥f
∥

∥

2
∫0

−∞
e−2σz(θsω)−2σ ∫0s z(θτω)dτ+Fsds, (4.12)

then {A(ω)} ∈ D is a random absorbing set for ϕ in D, which completes the proof.

Lemma 4.2. Assume that f ∈ H. Then there exists a tempered random variable ˜R(ω) > 0 such that
for any B(ω) ∈ D and g0(ω) ∈ B(ω), there exists a TB(ω) > 0 such that the solution ϕ of (3.8)
satisfies for P-a.e. ω ∈ Ω, for all t ≥ TB(ω),

∫ t+1

t

∥

∥∇ϕ(s, θ−t−1ω, g0(θ−t−1ω))
∥

∥

2
ds ≤ ˜R(ω). (4.13)

Proof. By replacing t and ω with ˜T and θ−tω in (4.8), for ˜T > 0, we get

∥

∥

∥g
(

˜T, θ−tω, g0(θ−tω)
)∥

∥

∥

2

≤ e2σ
∫
˜T
0 z(θs−tω)ds−F ˜T∥

∥g0(θ−tω)
∥

∥

2

+ c1
∥

∥f
∥

∥

2
e2σ

∫
˜T
0 z(θs−tω)ds−Ft

∫
˜T

0
e−2σz(θs−tω)−2σ ∫s0 z(θτ−tω)dτ+Fsds.

(4.14)
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Multiplying both sides of (4.14) with e2σ
∫ t
˜T
z(θs−tω)ds−F(t−˜T), we have for t ≥ ˜T

e2σ
∫ t
˜T
z(θs−tω)ds−F(t−˜T)

∥

∥

∥g
(

˜T, θ−tω, g0(θ−tω)
)∥

∥

∥

2

≤ e2σ
∫ t
0 z(θs−tω)ds−Ft∥

∥g0(θ−tω)
∥

∥

2

+ c1
∥

∥f
∥

∥

2
∫
˜T

0
e−2σz(θs−tω)+2σ

∫ t
s z(θτ−tω)dτ+F(s−t)ds.

(4.15)

Apply Gronwall lemma to (4.7) again and denote d0 = min{d1, d2, d3}, c2 = 1/d0, then for all
t ≥ ˜T ,

∥

∥g
(

t, ω, g0(ω)
)∥

∥

2 ≤ e2σ
∫ t
˜T
z(θsω)ds−F(t−˜T)

∥

∥

∥g
(

˜T,ω, g0(ω)
)∥

∥

∥

2

+ c1
∥

∥f
∥

∥

2
∫ t

˜T

e−2σz(θsω)+2σ
∫ t
s z(θτω)dτ+F(s−t)ds

− 2d0

∫ t

˜T

e2σ
∫ t
s z(θτω)dτ+F(s−t)∥

∥∇g
(

s,ω, g0(ω)
)∥

∥

2
ds,

(4.16)

which implies that

∫ t

˜T

e2σ
∫ t
s z(θτω)dτ+F(s−t)∥

∥∇g
(

s,ω, g0(ω)
)∥

∥

2
ds

≤ c2
2
e2σ

∫ t
˜T
z(θsω)ds−F(t−˜T)

∥

∥

∥g
(

˜T,ω, g0(ω)
)∥

∥

∥

2

+
c1c2
2
∥

∥f
∥

∥

2
∫ t

˜T

e−2σz(θsω)+2σ
∫ t
s z(θτω)dτ+F(s−t)ds.

(4.17)

Replacing ω in (4.17) with θ−tω and by (4.15), we obtain

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ+F(s−t)∥

∥∇g
(

s, θ−tω, g0(θ−tω)
)∥

∥

2
ds

≤ c2
2
e2σ

∫ t
˜T
z(θs−tω)ds−F(t−˜T)

∥

∥

∥g
(

˜T, θ−tω, g0(θ−tω)
)∥

∥

∥

2

+
c1c2
2
∥

∥f
∥

∥

2
∫ t

˜T

e−2σz(θs−tω)+2σ
∫ t
s z(θτ−tω)dτ+F(s−t)ds

≤ c2
2
e2σ

∫ t
0 z(θs−tω)ds−Ft∥

∥g0(θ−tω)
∥

∥

2

+
c1c2
2
∥

∥f
∥

∥

2
∫ t

0
e−2σz(θs−tω)+2σ

∫ t
s z(θτ−tω)dτ+F(s−t)ds
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=
c2
2
e2σ

∫0
−t z(θsω)ds−Ft∥

∥g0(θ−tω)
∥

∥

2

+
c1c2
2
∥

∥f
∥

∥

2
∫0

−t
e−2σz(θsω)+2σ

∫0
s z(θτω)dτ+Fsds.

(4.18)

By substituting t and ˜T for t + 1 and t in (4.18), we find that

∫ t+1

t

e2σ
∫ t+1
s z(θτ−t−1ω)dτ+F(s−t−1)∥

∥∇g
(

s, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

2
ds

≤ c2
2
e2σ

∫0
−t−1 z(θsω)ds−F(t+1)∥

∥g0(θ−t−1ω)
∥

∥

2

+
c1c2
2
∥

∥f
∥

∥

2
∫0

−t−1
e−2σz(θsω)+2σ

∫0
s z(θτω)dτ+Fsds.

(4.19)

We know for s ∈ [t, t + 1],

∫ t+1

t

e2σ
∫ t+1
s z(θτ−t−1ω)dτ+F(s−t−1)∥

∥∇g
(

s, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

2
ds

≥
∫ t+1

t

e
−2σmax

0≤τ≤1
|z(θτω)|−F∥

∥∇g
(

s, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

2
ds.

(4.20)

Due to (3.5) and the temperedness of g0(ω), there exists a TB(ω) > 0 such that for t ≥ TB(ω),
and by (4.19) and (4.20), we get

∫ t+1

t

∥

∥∇g
(

s, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

2
ds

≤ c2
2
e
2σ
∫0
−t−1 z(θsω)ds+2σmax

0≤τ≤1
|z(θτω)|−Ft∥

∥g0(θ−t−1ω)
∥

∥

2

+
c1c2
2
∥

∥f
∥

∥

2
∫0

−t−1
e
−2σz(θsω)+2σmax

0≤τ≤1
|z(θτω)|+2σ ∫0s z(θτω)dτ+F(s+1)

ds

≤ 1 +
c1c2
2
∥

∥f
∥

∥

2
∫0

−∞
e
−2σz(θsω)+2σmax

0≤τ≤1
|z(θτω)|+2σ ∫0s z(θτω)dτ+F(s+1)

ds

:= ˜R(ω).

(4.21)

By (3.5) again, we have ˜R(ω) is tempered and the proof is completed.

We need the proposition to prove the next result.
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Proposition 4.3. Assume that f ∈ H ∩ U. Then, there exists a tempered random variable ̂R(ω) > 0
such that for any B(ω) ∈ D and g0(ω) ∈ B(ω), there exists a TB(ω) > 0 such that the solution ϕ of
(3.8) satisfies for P-a.e. ω ∈ Ω for all t ≥ TB(ω)

∫ t+1

t

∥

∥ϕ
(

s, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

6
U
ds ≤ ̂R(ω). (4.22)

Proof. Let V (t, x) = v(t, x)/G, then (4.3)–(4.5) can be written as

∂u

∂t
= d1�u − (F + k − σz(θtω))u + α−2(t)u2v −Gα−2(t)u3 + kW + α(t)f1,

∂V

∂t
= d2�V − (F − σz(θtω))V − α−2(t)u2V + α−2(t)u3 +

1
G
α(t)f2,

μ
∂W

∂t
= μd3�W − (μF + k − μσz(θtω)

)

W + ku + α(t)f3.

(4.23)

Taking the inner products of (4.23) with u5(t), GV 5(t), and W5(t), and summing up the
resulting equalities, we get

1
6
d

dt

(

‖u‖6L6 +G‖V ‖6L6 + μ‖W‖6L6

)

+ 5
(

d1

∥

∥

∥u2∇u
∥

∥

∥

2
+ d2G

∥

∥

∥V 2∇V
∥

∥

∥

2
+ μd3G

∥

∥

∥W2∇W
∥

∥

∥

2
)

= −(F + k − σz(θtω))‖u‖6L6 −G(F − σz(θtω))‖V ‖6L6

− (μF + k − μσz(θtω)
)‖W‖6L6 + k

∫

Rn

u5Wdx + k

∫

Rn

uW5dx

−Gα−2(t)
∫

Rn

(

u8 − u7V − u3V 5 + u2V 6
)

dx

+
∫

Rn

α(t)f1u5dx +
∫

Rn

α(t)f2V 5dx +
∫

Rn

α(t)f3W5dx,

(4.24)

that is,

d

dt

(

‖u‖6L6 +G‖V ‖6L6 + μ‖W‖6L6

)

≤ −6(F − σz(θtω))‖u‖6L6 − 6G(F − σz(θtω))‖V ‖6L6 − 6
(

μF − μσz(θtω)
)‖W‖6L6

+ 6
∫

Rn

α(t)f1u5dx + 6
∫

Rn

α(t)f2V 5dx + 6
∫

Rn

α(t)f3W5dx

≤ (6σz(θtω) − F)‖u‖6L6 +G(6σz(θtω) − F)‖V ‖6L6 + μ(6σz(θtω) − F)‖W‖6L6

+
1
F5

α6(t)
(

∥

∥f1
∥

∥

6
L6 +

1
G5

∥

∥f2
∥

∥

6
L6 +

1
μ5

∥

∥f3
∥

∥

6
L6

)

.

(4.25)
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Furthermore, let

c3 =
max

{

1, 1/G5, 1/μ5}

F5 min
{

1, 1/G5, 1/μ5
} , (4.26)

and apply Gronwall lemma, for ν ≥ 0, we can deduce from (4.25) that

∥

∥g
(

ν,ω, g0(ω)
)∥

∥

6
U
≤ e6σ

∫ν
0 z(θsω)ds−Fν∥

∥g0(ω)
∥

∥

6
U

+ c3
∥

∥f
∥

∥

6
U
e6σ

∫ν
0 z(θsω)ds−Fν

∫ν

0
e−6σz(θsω)−6σ ∫s0 z(θτω)dτ+Fsds.

(4.27)

Letting TB(ω) be a positive variable in Lemma 4.2, t ≥ TB(ω), integrating (4.27) for ν ∈ (t, t+1),
we have

∫ t+1

t

∥

∥g
(

ν,ω, g0(ω)
)∥

∥

6
U
dT ≤ e6σ

∫ t+1
0 z(θsω)ds−Ft∥

∥g0(ω)
∥

∥

6
U

+ c3
∥

∥f
∥

∥

6
U
e6σ

∫ t+1
0 z(θsω)ds−Ft

∫ t+1

0
e−6σz(θsω)−6σ ∫s0 z(θτω)dτ+Fsds.

(4.28)

Replacing ω by θ−t−1ω in (4.28), we obtain

∫ t+1

t

∥

∥g
(

ν, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

6
U
dν

≤ e6σ
∫ t+1
0 z(θs−t−1ω)ds−Ft∥

∥g0(θ−t−1ω)
∥

∥

6
U

+ c3
∥

∥f
∥

∥

6
U
e6σ

∫ t+1
0 z(θs−t−1ω)ds−Ft

∫ t+1

0
e−6σz(θs−t−1ω)−6σ ∫s0 z(θτ−t−1ω)dτ+Fsds

≤ e6σ
∫0
−t−1 z(θsω)ds−Ft∥

∥g0(θ−t−1ω)
∥

∥

6
U

+ c3
∥

∥f
∥

∥

6
U
e6σ

∫0
−t−1 z(θsω)ds−Ft

∫0

−t−1
e−6σz(θsω)−6σ ∫0s z(θτω)dτ+Fsds

≤ 1 + c3
∥

∥f
∥

∥

6
U

∫0

−∞
e−6σz(θsω)−6σ ∫0s z(θτω)dτ+Fsds

:= ̂R(ω).

(4.29)

The last but one line in (4.29) due to B(ω) ∈ D is tempered, then for any g0(θ−t−1ω) ∈
B(θ−t−1ω) ⊂ B(θ−tω),

lim
t→+∞

e6σ
∫0
−t−1 z(θsω)ds−Ft∥

∥g0(θ−t−1ω)
∥

∥

6
U
= 0. (4.30)

The proof is completed.
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Lemma 4.4. Assume that f ∈ H ∩ U. Then, there exists a tempered random variable ˜R(ω) > 0 such
that for any B(ω) ∈ D and g0(ω) ∈ B(ω), there exists a TB(ω) > 0 such that the solution ϕ of (3.8)
satisfies for P-a.e. ω ∈ Ω, for all t ≥ TB(ω),

∥

∥∇ϕ
(

t, θ−tω, g0(θ−tω)
)∥

∥

2 ≤ R(ω). (4.31)

Proof. Taking the inner products of (4.3)–(4.5) with −Δu,−Δv,−ΔW , respectively, and
summing up the three resulting equalities, we have

1
2
d

dt

(

‖∇u‖2 + ‖∇v‖2 + μ‖∇W‖2
)

+ d1‖�u‖2 + d2‖�v‖2 + μd3‖�W‖2

+ (F + k − σz(θtω))‖∇u‖2 + (F − σz(θtω))‖∇v‖2

+
(

μF + k − μσz(θtω)
)‖∇W‖2

= −α−2(t)
∫

Rn

u2v�udx +Gα−2(t)
∫

Rn

u3�udx

+ α−2(t)
∫

Rn

u2v�vdx −Gα−2(t)
∫

Rn

u3�vdx − 2k
∫

Rn

u�Wdx

−
∫

Rn

α(t)Δuf1dx −
∫

Rn

α(t)Δvf2dx −
∫

Rn

α(t)ΔWf3dx.

(4.32)

By Hölder inequality, it yields

d

dt

(

‖∇u‖2 + ‖∇v‖2 + μ‖∇W‖2
)

+ (F − 2σz(θtω))
(

‖∇u‖2 + ‖∇v‖2 + μ‖∇W‖2
)

≤
(

2
d1

+
2
d2

)

α−4(t)
∫

Rn

u4v2dx +
(

2
d1

+
2
d2

)

G2α−4(t)
∫

Rn

u6dx

+
1
d1

α2(t)
∥

∥f1
∥

∥

2 +
1
d2

α2(t)
∥

∥f2
∥

∥

2 +
1

μd3
α2(t)

∥

∥f3
∥

∥

2

≤ 1
d0

(

8
3
+ 4G2

)

α−4(t)
(

‖u‖6L6 + ‖v‖6L6

)

+
1
d0

α2(t)
∥

∥f
∥

∥

2
,

(4.33)

which implies that

d

dt

∥

∥∇g
∥

∥

2 ≤ (2σz(θtω) − F)
∥

∥∇g
∥

∥

2 + c4α
−4(t)

∥

∥g
∥

∥

6
U
+ c5α

2(t)
∥

∥f
∥

∥

2
, (4.34)

where c4 = c2(8/3 + 4G2)/min{1, 1/μ} and c5 = c2/min{1, 1/μ}.
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Let TB(ω) be a positive variable in Lemma 4.2, t ≥ TB(ω) and s ∈ (t, t + 1). Then
integrate (4.34) over (s, t + 1), we get

∥

∥∇g
(

t + 1, ω, g0(ω)
)∥

∥

2

≤ ∥∥∇g
(

s,ω, g0(ω)
)∥

∥

2 +
∫ t+1

s

(2σz(θτω) − F)
∥

∥∇g
(

τ,ω, g0(ω)
)∥

∥

2
dτ

+ c4

∫ t+1

s

α−4(τ)
∥

∥g
(

τ,ω, g0(ω)
)∥

∥

6
U
dτ

+ c5

∫ t+1

s

α2(τ)
∥

∥f
∥

∥

2
dτ.

(4.35)

Now integrating (4.35) with respect to s over (t, t + 1), we find that

∥

∥∇g
(

t + 1, ω, g0(ω)
)∥

∥

2 ≤ (1 − F)
∫ t+1

t

∥

∥∇g
(

τ,ω, g0(ω)
)∥

∥

2
dτ

+ 2σ
∫ t+1

t

z(θτω)
∥

∥∇g
(

τ,ω, g0(ω)
)∥

∥

2
dτ

+ c4

∫ t+1

t

α−4(τ)
∥

∥g
(

τ,ω, g0(ω)
)∥

∥

6
U
dτ

+ c5

∫ t+1

t

α2(τ)
∥

∥f
∥

∥

2
dτ.

(4.36)

Since z(ω) is tempered and z(θtω) is continuous in t, there exists a tempered variable r(ω)
such that

|z(θtω)| ≤ e|t|r(ω), ∀t ∈ R
n. (4.37)

Then, replacing ω with θ−t−1ω, by Lemma 4.2 and Proposition 4.3, it follows in (4.36)
that

∥

∥∇g
(

t + 1, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

2

≤ (1 − F)
∫ t+1

t

∥

∥∇g
(

τ, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

2
dτ

+ 2σ
∫ t+1

t

z(θτ−t−1ω)
∥

∥∇g
(

τ, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

2
dτ

+ c4

∫ t+1

t

e4σz(θτ−t−1ω)∥
∥g
(

τ, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

6
U
dτ

+ c5

∫ t+1

t

e−2σz(θτ−t−1ω)∥
∥f
∥

∥

2
dτ
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≤ (1 − F + 2eσr(ω))
∫ t+1

t

∥

∥∇g
(

τ, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

2
dτ

+ c4e
4σmax

−1≤τ≤0
|z(θτω)|

∫ t+1

t

∥

∥g
(

τ, θ−t−1ω, g0(θ−t−1ω)
)∥

∥

6
U
dτ

+ c5

∫0

−1
e−2σz(θτω)∥

∥f
∥

∥

2
dτ

≤ (1 − F + 2eσr(ω)) ˜R(ω) + c4e
4σmax

−1≤τ≤0
|z(θτω)|

̂R(ω)

+ c5

∫0

−1
e−2σz(θτω)∥

∥f
∥

∥

2
dτ

:= R(ω).

(4.38)

Note that f ∈ H ∩ U. It is easy to see that R(ω) is tempered. This completes the proof.

Lemma 4.5. Assume that f ∈ H. Let {B(ω)} ∈ D and g0(ω) ∈ B(ω). Then, for every ε > 0, there
exist T ∗ = T(ε,ω, B) > 0 andK∗ = K(ε,ω) > 0 such that the solution ϕ of problem (3.8) satisfies for
P-a.e. ω ∈ Ω, for all t ≥ T ,

∫

|x|≥K∗

∣

∣ϕ
(

t, θ−tω, g0(θ−tω)
)∣

∣

2
dx ≤ ε. (4.39)

Proof. Choose a smooth cutoff function satisfying 0 ≤ ρ(s) ≤ 1 for s ∈ R
+ and ρ(s) = 0 for

0 ≤ s ≤ 1, ρ(s) = 1 for s ≥ 2. Suppose there exists a constant c such that |ρ′(s)| ≤ c for s ∈ R
+.

Taking the inner product of (4.3), (4.4), and (4.5)with Gρ(|x|2/K2)u, ρ(|x|2/K2)v and
Gρ(|x|2/K2)W in L2(Rn), respectively, we get

G

2
d

dt

∫

Rn

ρ

(

|x|2
K2

)

|u|2dx − d1G

∫

Rn

ρ

(

|x|2
K2

)

u�udx

+G(F + k − σz(θtω))
∫

Rn

ρ

(

|x|2
K2

)

|u|2dx

= G

∫

Rn

ρ

(

|x|2
K2

)

α−2(t)u3vdx −G2
∫

Rn

ρ

(

|x|2
K2

)

α−2(t)u4dx

+ kG

∫

Rn

ρ

(

|x|2
K2

)

uWdx +G

∫

Rn

ρ

(

|x|2
K2

)

α(t)f1udx,
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1
2
d

dt

∫

Rn

ρ

(

|x|2
K2

)

|v|2dx − d2

∫

Rn

ρ

(

|x|2
K2

)

v�vdx + (F − σz(θtω))
∫

Rn

ρ

(

|x|2
K2

)

|v|2dx

= −
∫

Rn

ρ

(

|x|2
K2

)

α−2(t)u2v2dx +G

∫

Rn

ρ

(

|x|2
K2

)

α−2(t)vu3dx

+
∫

Rn

ρ

(

|x|2
K2

)

α(t)f2vdx,

μG

2
d

dt

∫

Rn

ρ

(

|x|2
K2

)

|W |2dx − μGd3

∫

Rn

ρ

(

|x|2
K2

)

W�Wdx

+G
(

μF + k − σz(θtω)
)

∫

Rn

ρ

(

|x|2
K2

)

|W |2dx

= kG

∫

Rn

ρ

(

|x|2
K2

)

Wudx +G

∫

Rn

ρ

(

|x|2
K2

)

α(t)f3Wdx.

(4.40)

Adding up the three equalities, we have

d

dt

(

G

∫

Rn

ρ

(

|x|2
K2

)

|u|2dx +
∫

Rn

ρ

(

|x|2
K2

)

|v|2dx + μG

∫

Rn

ρ

(

|x|2
K2

)

|W |2dx
)

− 2

(

d1G

∫

Rn

ρ

(

|x|2
K2

)

u�udx + d2

∫

Rn

ρ

(

|x|2
K2

)

v�vdx + μGd3

∫

Rn

ρ

(

|x|2
K2

)

W�Wdx

)

+G(F − 2σz(θtω))
∫

Rn

ρ

(

|x|2
K2

)

|u|2dx

+ (F − 2σz(θtω))
∫

Rn

ρ

(

|x|2
K2

)

|v|2dx +G
(

μF − 2σz(θtω)
)

∫

Rn

ρ

(

|x|2
K2

)

|W |2dx

≤ G

2F
α2(t)

∫

Rn

ρ

(

|x|2
K2

)

∣

∣f1(x, t)
∣

∣

2
dx +

G

2μF
α2(t)

∫

Rn

ρ

(

|x|2
K2

)

∣

∣f3(x, t)
∣

∣

2
dx

+
1
2F

∫

Rn

α2(t)ρ

(

|x|2
K2

)

∣

∣f2(x, t)
∣

∣

2
dx.

(4.41)

We know that

∫

Rn

ρ

(

|x|2
K2

)

u�udx ≤ −
∫

Rn

ρ

(

|x|2
K2

)

|∇u|2dx +
c6
K

(

‖u‖2 + ‖∇u‖2
)

, (4.42)
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where c6 is a positive constant which depends on c. Then from (4.41) and (4.42), we get

d

dt

(

G

∫

Rn

ρ

(

|x|2
K2

)

|u|2dx +
∫

Rn

ρ

(

|x|2
K2

)

|v|2dx + μG

∫

Rn

ρ

(

|x|2
K2

)

|W |2dx
)

+G(F − 2σz(θtω))
∫

Rn

ρ

(

|x|2
K2

)

|u|2dx + (F − 2σz(θtω))
∫

Rn

ρ

(

|x|2
K2

)

|v|2dx

+G
(

μF − 2σz(θtω)
)

∫

Rn

ρ

(

|x|2
K2

)

|W |2dx

≤ G

2F
α2(t)

∫

Rn

ρ

(

|x|2
K2

)

∣

∣f1(x, t)
∣

∣

2
dx +

G

2μF
α2(t)

∫

Rn

ρ

(

|x|2
K2

)

∣

∣f3(x, t)
∣

∣

2
dx

+
1
2F

∫

Rn

α2(t)ρ

(

|x|2
K2

)

∣

∣f2(x, t)
∣

∣

2
dx +

2d0c6
K

(

G‖u‖2 + ‖v‖2 + μG‖W‖2
)

+
2d0c6
K

(

G‖∇u‖2 + ‖∇v‖2 + μG‖∇W‖2
)

.

(4.43)

Defining

c7 =
max

{

1, G,G/μ
}

min
{

1, G,G/μ
} , c8 = 2d0c6c7, d0 = max{d1, d2, d3}, (4.44)

and by Gronwall lemma, for any t ≥ ˜T , we obtain

∫

Rn

ρ

(

|x|2
K2

)

∣

∣g
(

t, ω, g0(ω)
)∣

∣

2
dx

≤ e2σ
∫ t
˜T
z(θτω)dτ−F(t−˜T)

∫

Rn

ρ

(

|x|2
K2

)

∣

∣

∣g
(

˜T,ω, g0(ω)
)∣

∣

∣

2
dx

+ c7

∫ t

˜T

e2σ
∫ t
s z(θτω)dτ−F(t−s)−2σz(θsω)

∫

Rn

ρ

(

|x|2
K2

)

f2dx ds

+
c8
K

∫ t

˜T

e2σ
∫ t
s z(θτω)dτ−F(t−s)∥

∥g
(

s,ω, g0(ω)
)∥

∥

2
ds

+
c8
K

∫ t

˜T

e2σ
∫ t
s z(θτω)dτ−F(t−s)∥

∥∇g
(

s,ω, g0(ω)
)∥

∥

2
ds.

(4.45)



18 Abstract and Applied Analysis

By replacing ω by θ−tω, it then follows from (4.45) that

∫

Rn

ρ

(

|x|2
K2

)

∣

∣g
(

t, θ−tω, g0(θ−tω)
)∣

∣

2
dx

≤ e2σ
∫ t
˜T
z(θτ−tω)dτ−F(t−˜T)

∫

Rn

ρ

(

|x|2
K2

)

∣

∣

∣g
(

˜T, θ−tω, g0(θ−tω)
)∣

∣

∣

2
dx

+ c7

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ−F(t−s)−2σz(θs−tω)

∫

Rn

ρ

(

|x|2
K2

)

f2dx ds

+
c8
K

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ−F(t−s)∥

∥g
(

s, θ−tω, g0(θ−tω)
)∥

∥

2
ds

+
c8
K

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ−F(t−s)∥

∥∇g
(

s, θ−tω, g0(θ−tω)
)∥

∥

2
ds.

(4.46)

We now estimate each term in (4.46) on the right-hand side one by one. By substituting t by
˜T and ω by θ−tω in (4.8) and combine with the first term of (4.46), we get

e2σ
∫ t
˜T
z(θτ−tω)dτ−F(t−˜T)

∫

Rn

ρ

(

|x|2
K2

)

∣

∣

∣g
(

˜T, θ−tω, g0(θ−tω)
)∣

∣

∣

2
dx

≤ e2σ
∫ t
˜T
z(θτ−tω)dτ−F(t−˜T)

(

e2σ
∫
˜T
0 z(θs−tω)ds−F ˜T∥

∥g0(θ−tω)
∥

∥

2

+c1
∥

∥f
∥

∥

2
e2σ

∫
˜T
0 z(θs−tω)ds−F ˜T

∫
˜T

0
e−2σz(θs−tω)−2σ ∫s0 z(θτ−tω)dτ+Fsds

)

= e2σ
∫ t
0 z(θτ−tω)dτ−Ft∥

∥g0(θ−tω)
∥

∥

2

+ c1
∥

∥f
∥

∥

2
∫
˜T

0
e−2σz(θs−tω)+2σ

∫ t
s z(θτ−tω)dτ−F(t−s)ds.

(4.47)

Obviously, there exists T1 = T1(ε,ω, B) > ˜T such that for t > T1,

e2σ
∫ t
˜T
z(θτ−tω)dτ−F(t−˜T)

∫

Rn

ρ

(

|x|2
K2

)

∣

∣

∣g
(

˜T, θ−tω, g0(θ−tω)
)∣

∣

∣

2
dx ≤ ε. (4.48)
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For the second term on the right-hand side of (4.46), since f ∈ H, there exist T2 = T2(ε,ω, B) >
˜T and K1 = K1(ε,ω) > 0 such that for all t > T2 and K > K1, then

c7

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ−F(t−s)−2σz(θs−tω)

∫

Rn

ρ

(

|x|2
K2

)

f2dx ds

≤ c7

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ−F(t−s)−2σz(θs−tω)

∫

|x|≥K
ρ

(

|x|2
K2

)

f2dx ds

≤ ε.

(4.49)

For the third term, by replacing t by s and ω by θ−tω in (4.8)

c8
K

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ−F(t−s)∥

∥g
(

s, θ−tω, g0(θ−tω)
)∥

∥

2
ds

≤ c8
K

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ−F(t−s)

(

e2σ
∫s
0 z(θs−tω)ds−Fs∥

∥g0(θ−tω)
∥

∥

2

+c1
∥

∥f
∥

∥

2
e2σ

∫s
0 z(θs−tω)ds−Fs

∫ s

0
e−2σz(θν−tω)−2σ ∫ν0 z(θτ−tω)dτ+Fνdν

)

ds

≤ c8
K

(

t − ˜T
)

e2σ
∫ t
0 z(θs−tω)ds−Ft∥

∥g0(θ−tω)
∥

∥

2

+
c8c1
∥

∥f
∥

∥

2

K

∫ t

˜T

∫s

0
e−2σz(θν−tω)+2σ

∫ t
ν z(θτ−tω)dτ−F(t−ν)dν ds.

(4.50)

Since f ∈ H, there exist T3 = T3(ε,ω, B) > ˜T and K2 = K2(ε,ω) > 0 such that for all t > T3 and
K > K2, we have

c8
K

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ−F(t−s)∥

∥g
(

s, θ−tω, g0(θ−tω)
)∥

∥

2
ds ≤ ε. (4.51)

Finally, we estimate the last term on the right-hand side of (4.46). Since f ∈ H, by using (4.18),
there exist T4 = T4(ε,ω, B) > ˜T and K3 = K3(ε,ω) > 0 such that for all t > T4 and K > K3, we
obtain

c8
K

∫ t

˜T

e2σ
∫ t
s z(θτ−tω)dτ−F(t−s)∥

∥∇g
(

s, θ−tω, g0(θ−tω)
)∥

∥

2
ds ≤ ε. (4.52)

Now, denoting

T ∗ = max{T1, T2, T3, T4}, K∗ = max{K1, K2, K3}, (4.53)
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and combining with (4.48), (4.49), (4.51), and (4.52), we get

∫

|x|≥K∗
ρ

(

|x|2
K2

)

∣

∣g
(

t, θ−tω, g0(θ−tω)
)∣

∣

2
dx ≤ 4ε, (4.54)

which completes the proof.

5. Random Attractor

In this section, we will prove the existence of a D-random attractor for the RDS ϕ associated
with the stochastic Gray-Scott system (3.8) on H. According to Lemma 4.1 that ϕ has a closed
random absorbing set in D, which along with the D-pullback asymptotic compactness will
obtain the existence of a unique D-random attractor. Next, we will establish the D-pullback
asymptotic compactness of ϕ by using the uniform estimate on the tails of solutions.

Lemma 5.1. Assume that f ∈ H ∩ U. The RDS ϕ is D-pullback asymptotically compact in H, that
is, for P-a.e. ω ∈ Ω, the sequence {ϕ(tn, θ−tnω, g0,n(θ−tnω))} has a convergent subsequence in H if
tn → ∞, where {B(ω)} ∈ D and g0,n(θ−tnω) ∈ B(θ−tnω).

Proof. Combining with Lemmas 4.1 and 4.4, one can find that the proof is slightly a
modification of the proof of Lemma 5.2 in [22] (or see Lemma 5.1 in [20]). Thus, we omitted
it here.

We are now in the position to state the main result

Theorem 5.2. Assume that f ∈ H ∩ U. The random dynamical system ϕ has a unique D-random
attractor in H.

Proof. Notice that ϕ has a closed random absorbing set in D by Lemma 4.1 and the is D-
pullback asymptotically compact in H by Lemma 5.1. Hence, the existence of a unique D-
random attractor in H follows from Proposition 2.6 consequently.

Remark 5.3. In the original three-component reversible Gray-Scott system (see [8]), the first
constant F appearing in the second variable v-section does not depend on the space variable
x. Here we have to affiliate the constant F to f2(x), or else, it will give a obstacle to establish
the uniform estimates of solutions when t → ∞. For example, when estimating the term
2
∫

R
α(t)vf2dx, we have 2

∫

R
α(t)vf2dx ≤ F‖v‖2 + (f2

2α
2(t)/F)|Dom |, where |Dom | denotes

the volume of the domain. Actually, we know that it is maybe of infinite dimension on
unbounded domain, which is different from the bounded case discussed in [9].
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