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We investigate the asymptotic behavior of solutions for the heat equation in the weighted space
Yσ
0 (R

N) ≡ {ϕ ∈ C(RN) : lim|x|→∞(1 + |x|2)−σ/2ϕ(x) = 0}. Exactly, we find that the unbounded
function space Yσ

0 (R
N) with 0 < σ < N can provide a setting where complexity occurs in the

asymptotic behavior of solutions for the heat equation.

1. Introduction

In this paper, we consider the asymptotic behavior of solutions to the Cauchy problem of the
heat equation

∂u

∂t
−Δu = 0, (x, t) ∈ R

N × (0,∞),

u(x, 0) = u0(x), x ∈ R
N,

(1.1)

where N ≥ 1 and the initial value u0 ∈ Yσ
0 (R

N).
Whether complexity occurs in the asymptotic behavior of solutions for some evolution

equations or not mainly depends on the work spaces that one selects [1–9]. In the space
Lp(RN) with 1 ≤ p < ∞, the problem (1.1) under consideration is well posed and the
asymptotic behavior of the solutions is rather simple, reflecting the simple structure of the
heat equation. Considering, for instance, the problem (1.1)with the initial value u0 ∈ L1(RN),
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it is well-known that the solutions u(x, t) converge as t → ∞ toward a multiple of the
fundamental solution, the one which has the same integral,

u(x, t) = S(t)u0(x) = G(t) ∗ u0(x) −→ MG(x, t), (1.2)

where G(x, t) = (4πt)−N/2 exp(−|x|2/4t) andM =
∫
RN u0(x)dx, see [10, 11].

It was first found in 2002 [12] by Vázquez and Zuazua that the bounded function
space L∞(RN) provides a setting where complicated asymptotic behavior of solutions may
take place for the heat equation. In fact, they proved that, for any bounded sequence {gj , j =
1, 2, . . .} in L∞(RN), there exists an initial value u0 ∈ L∞(RN) and a sequence tjk → ∞ as
k → ∞ such that

u
(
t1/2jk

x, tjk

)
= S
(
tjk
)
u0
(
tjkx
) −→ S(1)gj(x) (1.3)

uniformly on any compact subset of R
N as k → ∞. Subsequently, Cazenave et al. showed

that, in the bounded continuous function space C0(RN), the solutions of the heat equation
may present more complex asymptotic behavior [13–15]. Meanwhile, considerable attention
has also been paid to study the complicated asymptotic behavior of solutions for the porous
medium equation and other evolution equations in some bounded function spaces such as
C0(RN) and L∞(RN) (see, e.g., [3, 7, 9, 12, 16] and the references therein).

In this paper we find that, even in the unbounded function space Yσ
0 (R

N)with 0 < σ <
N, the complicated asymptotic behavior of solutions for the heat equation can also occur. For
this purpose, we need to establish the L

p
σ–L∞

σ smoothing effect and other estimates for the
solutions of the problem (1.1) when the initial value u0 ∈ L

p
σ(RN) ≡ {ϕ : (1 + | · |2)−σ/2ϕ(·) ∈

Lp(RN)}with 1 < p ≤ ∞ or u0 ∈ Yσ
0 (R

N).
The rest of this paper is organized as follows. In the next section, we give some

definitions and some estimates of the solutions to the problem (1.1). Section 3 is devoted
to study the complicated asymptotic behavior of the solutions.

2. Main Estimates

In this section, we investigate some properties of solutions for the problem (1.1) when the
initial value u0 belongs to some weighted spaces. For these purposes, we first introduce the
mild solutions u(x, t) of the problem (1.1) which are defined as

u(x, t) = S(t)u0(x) = (4πt)−N/2
∫

RN

exp

(

−
∣∣x − y

∣∣2

4t

)

u0
(
y
)
dy. (2.1)

Letting σ ≥ 0 and 1 ≤ p ≤ ∞, we define two weighted spaces Yσ
0 (R

N) and L
p
σ(RN) as follows:

Yσ
0

(
R

N
)
≡
{
ϕ(x) ∈ C

(
R

N
)
: lim
|x|→∞

ϕ(x)
(
1 + |x|2

)−σ/2
= 0
}
,

L
p
σ

(
R

N
)
≡
{
ϕ : ϕ(·)

(
1 + |·|2

)−σ/2 ∈ Lp
(
R

N
)}

.

(2.2)
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Endowed with the obvious norms,

∥
∥ϕ
∥
∥
Yσ
0 (R

N) =
∥
∥
∥
∥ϕ(·)

(
1 + |·|2

)−σ/2∥∥
∥
∥
L∞(RN)

,

∥
∥ϕ
∥
∥
L
p
σ(RN) =

∥
∥
∥
∥ϕ(·)

(
1 + |·|2

)−σ/2∥∥
∥
∥
Lp(RN)

,

(2.3)

the spaces Yσ
0 (R

N) and L
p
σ(RN) are both Banach spaces. Notice that if σ = 0, then

Y 0
0

(
R

N
)
= C0

(
R

N
)
, L∞

0

(
R

N
)
= L∞

(
R

N
)
,

L
p

0

(
R

N
)
= Lp

(
R

N
)
.

(2.4)

Next we give the definition of the ω-limit set ωμ,β
σ (u0) which is our main study object in this

paper .

Definition 2.1. Let σ ≥ 0, μ, β > 0, and suppose that u0 ∈ Yσ
0 (R

N). The ω-limit set ωμ,β
σ (u0) is

given by

ω
μ,β
σ (u0) ≡

{
f ∈ Yσ

0

(
R

N
)
; ∃tn −→ ∞ s.t. Dμ,β√

tn
[S(tn)u0]

n→∞−−−−−→ f in Yσ
0

(
R

N
)}

. (2.5)

Here Dμ,β

λ
ϕ(x) ≡ λμϕ(λ2βx) for ϕ ∈ L1

loc(R
N) and λ > 0.

In the rest of this section, we will consider the properties of the solutions for the
problem (1.1)when the initial value u0 ∈ L

p
σ(RN) or u0 ∈ Yσ

0 (R
N).

The following theorem can be seen as some extension of the maximum principle for
the problem (1.1).

Theorem 2.2. Let 0 ≤ σ < ∞. Suppose that

u0 ∈ L∞
σ

(
R

N
)

(2.6)

and that u(x, t) = S(t)u0(x) are the mild solutions of the problem (1.1). Then

u(t) = S(t)u0 ∈ L∞
σ

(
R

N
)

for t > 0. (2.7)

Moreover, if t > 1, then

‖S(t)u0‖L∞
σ (RN) ≤ Ctσ‖u0‖L∞

σ (RN), (2.8)

or if 0 < t ≤ 1, then

‖S(t)u0‖L∞
σ (RN) ≤ C‖u0‖L∞

σ (RN). (2.9)



4 Abstract and Applied Analysis

Remark 2.3. Let σ = 0. From Theorem 2.2, we can obtain the well-known result (maximum
principle) that if u0 ∈ L∞

0 (R
N) = L∞(RN), then

‖S(t)u0‖L∞(RN) ≤ C‖u0‖L∞(RN). (2.10)

Proof. To prove this theorem, we need the fact that if

ϕ(x) = M
(
1 + |x|2

)σ/2
for some M > 0, (2.11)

then there exists a constant C such that

S(t)ϕ(x) ≤ C
(
1 + t + |x|2

)σ/2
, (2.12)

which proof can be found in [17]; we give the proof here for completeness. Consider the
following problem:

∂v

∂t
−Δv = 0, in R

N × (0,∞),

v(x, 0) = v0(x) = M|x|σ, in R
N.

(2.13)

For λ > 0, from (2.1), we can get that

D−σ/2,1/2
λ S(λt)v0(x) = λ−σ/2[S(λt)v0]

(
λ1/2x

)
= S(t)

[
D−σ/2,1/2

λ v0

]
(x) = S(t)v0(x). (2.14)

By the existence and the regularity theories of the solutions, we can obtain that, for t > 0,

0 < S(t)v0 ∈ C∞
(
(0,∞) × R

N
)
, (2.15)

see [10, 18]. Now taking t = 1, λ = s and g(x) = S(1)v0(x) in the expression (2.14), we have

S(s)v0(x) = sσ/2g
(
s−1/2x

)
. (2.16)

The fact that S(s)v0(x) ∈ C([0,∞) × R
N \ (0, 0)) clearly implies that, for |x| = 1,

sσ/2g
(
s−1/2x

)
= S(s)v0(x) −→ v0(x) = M|x|σ = M (2.17)

as s → 0. Let

y = s−1/2x. (2.18)
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So,

∣
∣y
∣
∣ −→ ∞ as s −→ 0. (2.19)

Therefore,

∣
∣y
∣
∣−σg

(
y
) −M −→ 0 (2.20)

as |y| → ∞. So, there exists constant 0 < C < ∞ such that

0 ≤ g(x) ≤ C
(
1 + |x|2

)σ/2
. (2.21)

By (2.16), we thus have

S(s)v0(x) ≤ C
(
s + |x|2

)σ/2
. (2.22)

Notice that

0 ≤ ϕ(x) ≤ C(1 + v0(x)). (2.23)

Therefore, by comparison principle and (2.22), we can get that, for all t ≥ 0, there exists
constant C > 0 such that

0 ≤ S(t)ϕ(x) ≤ C
(
1 + t + |x|2

)σ/2
. (2.24)

So we complete the proof of (2.12). For any t > 0, from (2.1) and (2.12), we thus obtain that

|u(x, t)| = |S(t)u0(x)| =
∣∣∣∣(4πt)

−N/2
∫

RN

exp(−|x−y|2/4t)u0
(
y
)
dy
∣∣∣∣

=
∣∣∣∣(4πt)

−N/2
∫

RN

exp(−|x−y|2/4t)
(
1 +
∣∣y
∣∣2
)σ/2

u0
(
y
)(

1 +
∣∣y
∣∣2
)−σ/2

dy
∣∣∣∣

≤ ‖u0‖Yσ∞(RN)(4πt)
−N/2

∫

RN

exp(−|x−y|2/4t)
(
1 +
∣∣y
∣∣2
)σ/2

dy

≤ C
(
1 + t + |x|2

)σ/2
‖u0‖Yσ∞(RN).

(2.25)

Therefore, if t > 1, then

|u(x, t)| ≤ C
(
1 + |x|2

)σ/2
tσ‖u0‖Yσ∞(RN). (2.26)
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This clearly illustrates (2.8). If 0 < t ≤ 1, then

|u(x, t)| ≤ C
(
1 + |x|2

)σ/2
‖u0‖Yσ∞(RN). (2.27)

From this, we can get (2.9). So we complete the proof of this theorem.

Theorem 2.4 (Lp
σ–L∞

σ smoothing effect). Let 1 < p < ∞ and 0 ≤ σ < ∞. Suppose u0 ∈ L
p
σ(RN)

and that u(x, t) = S(t)u0(x) are the solutions of the problem (1.1). Then

u(t) = S(t)u0 ∈ L∞
σ

(
R

N
)

for t > 0. (2.28)

Moreover, if t > 1, then

‖S(t)u0‖L∞
σ (RN) ≤ Ctσ−N/2p‖u0‖Lp

σ(RN), (2.29)

or if 0 < t ≤ 1, then

‖S(t)u0‖L∞
σ (RN) ≤ Ct−N/2p‖u0‖Lp

σ(RN). (2.30)

Remark 2.5. If σ = 0, then Theorem 2.4 captures the result Lp–L∞ smoothing effect for the heat
equation.

Proof. For any t > 0, from (2.1) and Theorem 2.2, we thus obtain that

|u(x, t)| = |S(t)u0(x)| =
∣∣∣∣(4πt)

−N/2
∫

RN

exp(−|x−y|2/4t)u0
(
y
)
dy
∣∣∣∣

=
∣∣∣∣(4πt)

−N/2
∫

RN

exp(−|x−y|2/4t)
(
1 +
∣∣y
∣∣2
)σ/2

u0
(
y
)(

1 +
∣∣y
∣∣2
)−σ/2

dy
∣∣∣∣

≤
[
(4πt)−N/2

∫

RN

exp(−|x−y|2/4t)
(
1 +
∣∣y
∣∣2
)p′σ/2

dy
]1/p′

×
[
(4πt)−N/2

∫

RN

exp(−|x−y|2/4t)
(
1 +
∣∣y
∣∣2
)−pσ/2

u
p

0

(
y
)
dy
]1/p

≤ C
(
1 + t + |x|2

)σ/2
t−N/2p‖u0‖Lp

σ(RN).

(2.31)

Here 1/p + 1/p′ = 1. From this, we can get that, if t ≥ 1, then

‖u(t)‖L∞
σ (RN) ≤ Ctσ/2−N/2p‖u0‖Lp

σ(RN), (2.32)

or if 0 < t < 1, then

‖u(t)‖L∞
σ (RN) ≤ Ct−N/2p‖u0‖Lp

σ(RN). (2.33)

So we complete the proof of this theorem.
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In the following theorem, we consider the property of the solutions u(x, t) of (1.1)with
the initial data u0 ∈ Yσ

0 (R
N).

Theorem 2.6. Let 0 ≤ σ < ∞. If u0 ∈ Yσ
0 (R

N), then

S(t)u0 ∈ Yσ
0

(
R

N
)

for t ≥ 0. (2.34)

Proof. For σ = 0, the above theorem is a well-known result. So, in the rest of this proof, we
assume that 0 < σ < ∞. From (2.1), we have

(
1 + |x|2

)−σ/2
|u(x, t)|

=
(
1 + |x|2

)−σ/2∣∣
∣∣(4πt)

−N/2
∫

RN

exp(−|x−y|2/4t)u0
(
y
)
dy
∣
∣
∣∣

=
(
1 + |x|2

)−σ/2
∣∣∣∣∣
(4πt)−N/2

∫

|y|≤M
exp(−|x−y|2/4t)u0

(
y
)
dy

∣∣∣∣∣

+
(
1 + |x|2

)−σ/2
∣∣∣∣∣
(4πt)−N/2

∫

|y|≤M
exp(−|x−y|2/4t)u0

(
y
)
dy

∣∣∣∣∣

= I1(x) + I2(x).

(2.35)

For any ε > 0, from u0 ∈ Yσ
0 (R

N), we obtain that there exists an M > 0 such that if |y| > M,
then

∣∣∣∣u0
(
y
)(

1 +
∣∣y
∣∣2
)−σ/2∣∣∣∣ < ε. (2.36)

So, from (2.12), we have

I2(x) =
(
1 + |x|2

)−σ/2
∣∣∣∣∣
(4πt)−N/2

∫

|y|>M
exp(−|x−y|2/4t)u0

(
y
)(

1 +
∣∣y
∣∣2
)−σ/2(

1 +
∣∣y
∣∣2
)σ/2

dy

∣∣∣∣∣

≤
(
1 + |x|2

)−σ/2
sup
|y|>M

∣∣∣∣u0
(
y
)(

1 +
∣∣y
∣∣2
)−σ/2∣∣∣∣(4πt)

−N/2
∫

|y|>M
exp(−|x−y|2/4t)

(
1 +
∣∣y
∣∣2
)σ/2

dy

≤ C
(
1 + |x|2

)−σ/2(
1 + t + |x|2

)σ/2
ε.

(2.37)

So, if t > 1, then

I2(x) ≤ C
(
1 + |x|2

)−σ/2(
1 + t + |x|2

)σ/2
ε ≤ Ctσ/2ε, (2.38)
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or if 0 ≤ t ≤ 1, then

I2(x) ≤ C
(
1 + |x|2

)−σ/2(
1 + t + |x|2

)σ/2
ε ≤ Cε. (2.39)

Notice also that

u0 ∈ Yσ
0

(
R

N
)
⊂ C
(
R

N
)
. (2.40)

So, there exists a constant C such that

sup
|y|≤M

∣
∣u0
(
y
)∣∣ ≤ C. (2.41)

This means that

I1(x) =
(
1 + |x|2

)−σ/2
∣∣∣∣∣
(4πt)−N/2

∫

|y|≤M
exp(−|x−y|2/4t)u0

(
y
)
dy

∣∣∣∣∣
≤ C
(
1 + |x|2

)−σ/2
. (2.42)

So, there exists an M1 > 0 such that if |x| > M1, then

I1(x) < ε. (2.43)

Combining this with (2.35), (2.38), and (2.39), we can obtain that, for t ≥ 0,

u(t) = S(t)u0 ∈ Yσ
0

(
R

N
)
. (2.44)

So we complete the proof of this theorem.

3. Complicated Asymptotic Behavior

In this section, we investigate the asymptotic behavior of solutions for the problem (1.1) and
give the fact that the weighted space Yσ

0 (R
N) with 0 ≤ σ < N can provide a setting where

complexity occurs in the asymptotic behavior of solutions.

Theorem 3.1. Let μ > 0, σ ≥ 0, p > 1, and β > 1/2. If

μ + 2βσ <
N

p
,

f ∈ Yσ
0

(
R

N
)⋂

L
p
σ

(
R

N
)
,

(3.1)

then there exists an initial value u0 ∈ Yσ
0 (R

N) and a sequence tn → ∞ as n → ∞ such that

D
μ,β√
tn
S(tn)u0

n→∞−−−−−→ f in Yσ
0

(
R

N
)
. (3.2)

That is, f ∈ ω
μ,β
σ (u0).
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Proof. Suppose that a > 2 is a constant. Then let

λ1 = a,

λj = max
(
j2p/(N−p(μ+2βσ))λ(2βN−p(μ+2βσ))/(N−p(μ+2βσ))

j−1 ,
(
2jλj−1

)1/μ)
for j > 1.

(3.3)

Now we define the initial-value u0 as

u0(x) =
∞∑

j=1

λj
−μf

⎛

⎝ x

λ
2β
j

⎞

⎠ =
∞∑

j=1

D
μ,β

λ−1j
f(x). (3.4)

Let


 = max
(∥∥f
∥∥
Yσ
0 (R

N),
∥∥f
∥∥
L
p
σ(RN)

)
. (3.5)

So,

‖u0‖Yσ
0 (R

N) ≤
∞∑

j=1

λj
−μ

∥∥∥∥∥∥
f

⎛

⎝ 1

λ
2β
j

·
⎞

⎠

∥∥∥∥∥∥
Yσ
0 (R

N)

≤
∞∑

j=1

2−j
∥∥f(x)

∥∥
Yσ
0 (R

N) ≤ 
. (3.6)

Here we have used the fact that if 0 < λ ≤ 1, then

∥∥f(λ·)∥∥Yσ
0 (R

N) = sup
x∈RN

∣∣∣∣
(
1 + x2

)−σ/2
f(λx)

∣∣∣∣

= sup
x∈RN

∣∣∣∣∣∣
f(λx)

(
1 + |λx|2

)−σ/2
(

1 + |λx|2
1 + |x|2

)σ/2
∣∣∣∣∣∣

≤ sup
x∈RN

∣∣∣∣f(λx)
(
1 + |λx|2

)−σ/2∣∣∣∣

=
∥∥f
∥∥
Yσ
0 (R

N).

(3.7)

Therefore, the sequence of (3.4) is convergent in Yσ
0 (R

N). This means that

u0 ∈ Yσ
0

(
R

N
)
. (3.8)
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As a result of (2.1), we see that, for 0 < t < T < ∞,

D
μ,β

λn

[
S
(
λ2nt
)
u0

]
(x) = S

(
tλ

2−4β
n

)
(un + vn +wn) = S

(
tλ

2−4β
n

)
un + S

(
tλ

2−4β
n

)
vn + S

(
tλ

2−4β
n

)
wn,

(3.9)

where

un(x) =
n−1∑

j=1

D
μ,β

λn

[
D

μ,β

λ−1j
f(x)

]
= λ

μ
n

n−1∑

j=1

λj
−μf

⎛

⎝xλ
2β
n

λ
2β
j

⎞

⎠,

vn(x) = D
μ,β

λn

[
D

μ,β

λ−1n
f(x)

]
= f(x),

wn =
∞∑

j=n+1

D
μ,β

λn

[
D

μ,β

λ−1j
f(x)

]
= λ

μ
n

∞∑

j=n+1

λj
−μf

⎛

⎝xλ
2β
n

λ
2β
j

⎞

⎠.

(3.10)

Notice that, if λ ≥ 1, then

∥∥f(λ·)∥∥Yσ
p (RN) =

(∫

RN

∣∣∣∣
(
1 + |x|2

)−σ/2
f(λx)

∣∣∣∣

p

dx
)1/p

≤
⎛

⎝
∫

RN

∣∣∣∣∣∣
f(λx)

(
1 + |λx|2

)−σ/2
(

1 + |λx|2
1 + |x|2

)σ/2
∣∣∣∣∣∣

p

dx

⎞

⎠

1/p

≤ λσ
(∫

RN

∣∣∣∣f(λx)
(
1 + |λx|2

)−σ/2∣∣∣∣
p

dx
)1/p

= λσ−N/p
∥∥f
∥∥
Yσ
p (RN),

(3.11)

we thus obtain that

‖un‖Yσ
p (RN) ≤

n−1∑

j=1

(
λn
λj

)μ−2βN/p+2βσ
∥∥f
∥∥
Yσ
p (RN) ≤ n

(
λn
λn−1

)μ−2βN/p+2βσ∥∥f
∥∥
Yσ
p (RN). (3.12)

Consequently, for any t > 0, we can select N large enough to satisfy that if n > N, then

0 < λ
2−4β
n t < 1. (3.13)
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Here we have used the hypothesis β > 1/2. So, (2.30), (3.11), and (3.12) indicate

∥
∥
∥S
(
λ
2−4β
n t

)
un(x)

∥
∥
∥
Yσ
0 (R

N)

≤ C
(
λ
2−4β
n t

)−N/2p
‖un(x)‖Lp

σ(RN)

≤ Cλ
2βN/p−2βσ−μ
n−1 t−2N/p(n
)λμ−N/p+2βσ

n .

(3.14)

From (3.3), we thus obtain that

∥
∥
∥S
(
λ
2−4β
n t

)
un(x)

∥
∥
∥
Yσ
0 (R

N)
≤ Ct−2N/p
n−1 −→ 0 (3.15)

as n → ∞. From (3.7) and the definition of wn(x), we have

‖wn‖Yσ
0 (R

N) ≤
∥∥∥∥∥∥

∞∑

j=n+1

(
λn
λj

)μ

f

⎛

⎝
(

λn
λj

)2β

·
⎞

⎠

∥∥∥∥∥∥
Yσ
0 (R

N)

≤
∞∑

j=n+1

(
λn
λj

)μ


. (3.16)

Applying (2.9) to S(tλ2−4βn )wn, we thus have

∥∥∥S
(
tλ

2−4β
n

)
wn

∥∥∥
Yσ
0 (R

N)
≤ Cλ

μ
n

∞∑

j=n+1

λj+1
−μ ≤ C


∞∑

j=n+1

2−j −→ 0 (3.17)

as n → ∞. Here we have used (3.3) and the fact that 0 < λ
2−2β
n t < 1 for n > N. At present, we

want to verify the claim that, for 0 ≤ t < ∞,

(
S
(
λ
2−4β
n t

)
vn − f

)

Yσ
0 (R

N)

n→∞−−−−−→ 0. (3.18)

In fact, if 0 < t < ∞, then

∥∥∥S
(
λ
2−4β
n t

)
vn − f

∥∥∥
Yσ
0 (R

N)
≤ sup

|x|≤M

(
1 + |x|2

)−σ/2∣∣∣S
(
λ
2−4β
n t

)
vn(x) − f(x)

∣∣∣

+ sup
|x|>M

(
1 + |x|2

)−σ/2∣∣∣S
(
λ
2−4β
n t

)
vn(x)

∣∣∣ + sup
|x|>M

(
1 + |x|2

)−σ/2∣∣f(x)
∣∣.

(3.19)

Notice that

vn = f ∈ Yσ
0

(
R

N
)
. (3.20)
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Therefore, from Theorem 2.6, we have

S
(
λ
2−4β
n t

)
vn ∈ Yσ

0

(
R

N
)
. (3.21)

So, for any ε > 0, from (2.35), (2.39), and (2.43), we get that if n > N, there exists a constant
M independing on n and t such that

sup
|x|>M

(
1 + |x|2

)−σ/2∣∣
∣S
(
λ
2−4β
n t

)
vn(x)

∣
∣
∣ <

ε

3
,

sup
|x|>M

(
1 + |x|2

)−σ/2∣
∣f(x)

∣
∣ <

ε

3
.

(3.22)

The fact vn = f ∈ C(RN) means that

S(t)vn ∈ C
(
[0,∞) × R

N
)
. (3.23)

Therefore, for any ε > 0, there exists an N1 > 0 such that if n > N1, then

sup
|x|≤M

(
1 + |x|2

)−σ/2∣∣∣S
(
λ
2−4β
n t

)
vn(x) − f(x)

∣∣∣ <
ε

3
. (3.24)

So, from (3.19), (3.22), and (3.24), we thus obtain that

∥∥∥S
(
λ
2−4β
n t

)
vn − f

∥∥∥
Yσ
0 (R

N)
−→ 0 (3.25)

as n → ∞. From (3.9), (3.15), (3.17), and (3.18), we obtain that for any fixed 0 < t < ∞,

D
μ,β

λn
S
(
λ2nt
)
u0 = S

(
λ
2−2β
n t

)
(un + vn +wn)

n→∞−−−−−→ f in Yσ
0

(
R

N
)
. (3.26)

Equation (3.2) follows from (3.26) by setting t = 1 and tn = λ2n. The proof of this theorem is
complete.

Theorem 3.2. Let μ > 0, σ ≥ 0, and β > 1/2. If

0 < μ + 2βσ < N, (3.27)

then there exists an initial value u0 ∈ Yσ
0 (R

N) such that

ω
μ,β
σ (u0) = Yσ

0

(
R

N
)
. (3.28)

Remark 3.3. If σ = 0, the above results had been given by Cazenave et al. (see [15, Corollary
6.3]). So our results capture their results. Here we have used some of their ideas.
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Proof. By (3.27), there exists a constant p > 1 such that

μ + 2βσ <
N

p
. (3.29)

Therefore, there exists a countable dense subset F of Yσ
0 (R

N) such that

F ⊂ Yσ
0

(
R

N
)⋂

L
p
σ

(
R

N
)
. (3.30)

So, there exists a sequence {ϕj}j≥1 ⊂ F such that

(i) for any φ ∈ F, there exists a subsequence {ϕjk}k≥1 of the sequence {ϕj}j≥1 satisfying

ϕjk(x) = φ ∀k ≥ 1, (3.31)

(ii) there exists a constant C > 0 satisfying

max
(∥∥ϕj

∥∥
Yσ
0 (R

N),
∥∥ϕj

∥∥
L
p
σ(RN)

)
≤ Cj for j ≥ 1. (3.32)

Now we select a constant

a > 2 (3.33)

and then take

λj =

⎧
⎨

⎩

a if j = 1,

max
(
j4p/(N−p(μ+2βσ))λ(2βN−p(μ+2βσ))/(N−p(μ+2βσ))

j−1 ,
(
2jλj−1j

)1/μ) if j > 1.
(3.34)

The initial-value u0 is given by

u0(x) =
∞∑

j=1

λj
−μϕj

⎛

⎝ x

λ
2β
j

⎞

⎠ =
∞∑

j=1

D
μ,β

λ−1j
ϕj(x). (3.35)

From (3.7), (3.32), and (3.34), we have

‖u0‖Yσ
0 (R

N) ≤
∞∑

j=1

λj
−μ∥∥ϕj

∥∥
Yσ
0 (R

N) ≤ C
∞∑

j=1

2−j ≤ C. (3.36)

This means that the sequence (3.35) is convergent in Yσ
0 (R

N). So,

u0 ∈ Yσ
0

(
R

N
)
. (3.37)
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Similar to the proof of Theorem 2.2, we can prove that, for any φ ∈ F and 0 < t < ∞, there
exists a sequence λjk → ∞ as k → ∞ such that

D
μ,β

λjk
S
(
λ2jk t
)
u0 → φ in Yσ

0

(
R

N
)

(3.38)

as k → ∞. Let tnk = λ1/2nk
and t = 1 in (2.1); we thus have

D
μ,β√

tjk
S
(
tjk
)
u0 −→ φ in Yσ

0

(
R

N
)
. (3.39)

Therefore,

F ⊂ ω
μ,β
σ (u0) ⊂ Yσ

0

(
R

N
)
. (3.40)

Notice that F is dense in Yσ
0 (R

N) and that ωμ,β
σ (u0) is a closed subset of Yσ

0 (R
N). We thus

obtain from (3.40) that

ω
μ,β
σ (u0) = Yσ

0

(
R

N
)
. (3.41)

So we complete the proof of this theorem.

Remark 3.4. For any 0 ≤ σ < N, there exist constants μ > 0 and β > 1/2 such that

0 < μ + 2βσ < N. (3.42)

Therefore, from Theorem 3.2, we can get that the weighted space Yσ
0 (R

N) provides a
setting where complexity occurs in the asymptotic behavior of solutions for the problem (1.1).
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