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We investigate the existence of ground-state solutions for a class of N-Laplacian equation with
critical growth in R

N . Our proof is based on a suitable Trudinger-Moser inequality, Pohozaev-
Pucci-Serrin identity manifold, and mountain pass lemma.

1. Introduction

Consider the followingN-Laplacian equation:

−ΔNu + |u|N−2u = f(u), in R
N,

u > 0, in R
N, u ∈W1,N

(
R
N
)
,

(1.1)

whereN ≥ 2. ΔNu = div(|∇u|N−2∇u) is theN-Laplacian, the nonlinear term f(u) has critical
growth.

The interest in these problems lies in that fact that the order of the Laplacian is the
same as the dimension N of the underlying space. The classical case of this problem that
N = 2, and the the problem (1.1) reduces to

−Δu + u = f(u), in R
2, (1.2)

has been treated by Atkinson and Peletier [1] and Berestycki and Lions [2]. They obtained
the existence of ground-state solution which the nonlinear term f(u) is subcritical growth.



2 Abstract and Applied Analysis

Alves et al. [3] extend their results to the critical growth. As N/= 2, do Ó and Medeiros [4]
consider the followingN-Laplacian equation problem:

−ΔNu = g(u), in R
N, (1.3)

where g : R �→ R has a subcritical growth and obtain a mountain pass characterization of
the ground-state solution for the problem (1.3). In the present paper, we will improve and
complement some of the results cited above.

Assume the function f : R �→ R is continuous and satisfies the following conditions:

(g1) lims→ 0+(f(s)/s|s|N−2) = 0;

(g2) There exist constants α0, b1, b2 > 0 such that |f(s)| ≤ b1|s|N−1+b2[exp(α0|s|N/(N−1))−
SN−2(α0, s)], where SN−2(α0, s) =

∑N−2
k=0 (α

k
0/k!)|s|Nk/(N−1);

(g3) There exist λ > 0 and q > N such that f(s) ≥ λsq−1, for every s ≥ 0.

Remark 1.1. Condition (g2) implies that f has a critical growth with critical exponent α0.
Consider the energy functional I :W1,N(RN) �→ R

I(u) =
1
N

∫

RN

(
|∇u|N + |u|N

)
dx −

∫

RN

F(u)dx, (1.4)

where F(s) =
∫s
0 f(t)dt. By a ground-state solution, we mean a solution such ω ∈ W1,N(RN)

such that I(ω) ≤ I(u) for every nontrivial solution u of the problem (1.1). Let Cq > 0 denote
the best constant of Sobolev embeddings:

W1,N
(
R
N
)
↪→ Lq

(
R
N
)
, (1.5)

for q ∈ (N,+∞), that is,

Cq

[∫

RN

|u|qdx
]N/q

≤
∫

RN

(
|∇u|N + |u|N

)
dx, (1.6)

for all u ∈W1,N(RN).

Now we state our main theorem in this paper.

Theorem 1.2. If f satisfies (g1), (g2), and (g3), with

λ >

(
q −N
q

)(q−N)/N

C
q/N
q , (1.7)

then the problem (1.1) possesses a nontrivial ground-state solution.



Abstract and Applied Analysis 3

In this paper, we complement some results [4] from subcritical case to the critical case.
Furthermore, the ground-state solution to the problem (1.1) is obtained without assuming
that the function

s �→ f(s)

|s|N−1 (1.8)

is increasing for s > 0 (see [5]), and the so-called Ambrosetti-Rabinowitz condition: there
exists θ > N, such that for all x ∈ R

N ,

0 < θF(x, u) ≤ uf(x, u). (1.9)

The paper is organized as follows. Section 2 contains some technical results which
allows us to give a variational approach for our results. In Section 3, we prove our main
results.

2. The Variational Framework

For 1 ≤ p ≤ ∞, Lp(RN) denotes the Lebesgue spaces with the norm ‖u‖Lp(RN) = (
∫
RN |u|pdx)1/p,

W1,p(RN) denotes the Sobolev spaces with the norm ‖u‖W1,p(RN) = (
∫
RN (|∇u|p+ |u|p)dx)1/p. As

p =N, we have the following version of Trudinger-Moser inequality.

Lemma 2.1 (see [6]). IfN ≥ 2, α > 0 and u ∈W1,N(RN), then

∫

RN

[
exp

(
α|u|N/(N−1)

)
− SN−2(α, u)

]
dx <∞. (2.1)

Moreover, if ‖∇u‖N
LN(RN) ≤ 1, ‖u‖LN(RN) ≤ M < ∞ and α < αN , then there exists a constant C,

which depends only onN,M, and α, such that

∫

RN

[
exp

(
α|u|N/(N−1)

)
− SN−2(α, u)

]
dx ≤ C(N,M,α), (2.2)

where αN =Nω
1/(N−1)
N−1 and ω1/(N−1) is the measure of the unit sphere in R

N .

In the sequel, since we seek positive solutions, and assume that f(s) = 0 for s ≤ 0.
Consider the following minimization problem:

min
{

1
N

∫

RN

|∇u|Ndx :
∫

RN

G(u)dx = 0
}
, (2.3)

where g(s) = f(s) − s|s|N−2, G(s) =
∫s
0 g(t)dt = F(s) − (1/N)sN . Since the problem (1.1) is an

autonomous problem, under the Schwarz symmetric process, we can minimize the problem
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(2.3) on the space W1,N
rad (RN), the subspace of W1,N(RN) formed by radially symmetric

functions. Indeed, let u∗ be the Schwarz symmetrization of u, we have

∫

RN

G(u∗)dx =
∫

RN

G(u)dx,
∫

RN

|∇u∗|Ndx ≤
∫

RN

|∇u|Ndx. (2.4)

Hence, we canminimize the problem (2.3) on the spaceW1,N
rad (RN) (see [7]). Now, we defined

the following notations

m = inf
{
I(u) : u is nontrivial solution of the problem (1.1)

}

A = inf
{

1
N

∫

RN

|∇u|Ndx :
∫

RN

G(u)dx = 0
}

b = inf
γ∈Γ

max
t∈[0,1]

I
(
γ(t)

)
,

(2.5)

where Γ = {γ ∈ C([0, 1],W1,N
rad (RN)) : γ(0) = 0, I(γ(1)) < 0}.

We recall that Pohozaev-Pucci-Serrin identity shows that any solutions u of the
problem (1.1) should satisfies the Pohozaev-Pucci-Serrin identity:

(
N − p)

∫

RN

|∇u|pdx =Np

∫

RN

G(u)dx. (2.6)

Then, as p =N, we have
∫
RN G(u)dx = 0.

Hence, we have the Pohozaev identity manifold:

P =
{
u ∈W1,N

(
R
N
)
\ {0} :

(
N − p)

∫

RN

|∇u|pdx =Np

∫

RN

G(u)dx
}

=
{
u ∈W1,N

(
R
N
)
\ {0} :

∫

RN

G(u)dx = 0
}
.

(2.7)

So, we have

A = inf
u∈P

1
N

∫

RN

|∇u|Ndx, m = inf
u∈τ

I(u), (2.8)

where τ = {u ∈W1,N(RN) \ {0} : I ′(u) = 0}.
In what follows, we will show that A is attained, and afterwards we prove that

m = A = b, (2.9)

thereby proving that the problem (1.1) has a ground-state solution.
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3. The Proof of Theorem 1.2

In this section, we prove that A is attained, the equality (2.9) is satisfied. Hence the proof of
Theorem 1.2 is obtained.

In the following, we consider the following minimax value:

c = inf
0/=v∈W1,N(RN)

max
t≥0

I(tv). (3.1)

Now, we show a sufficient condition, on a sequence {vn} to get a convergence like
F(vn) → F(v) in L1(RN).

Lemma 3.1. Assume that f satisfies (g1) and (g2), and let {vn} be a sequence in W1,N
rad (RN) such

that ‖∇vn‖NLN(RN) ≤ 1, ‖vn‖LN(RN) ≤M <∞, then we have

∫

RN

F(vn)dx −→
∫

RN

F(v)dx, (3.2)

where vn ⇀ v inW1,N(RN).

Proof. Without loss of generality, we assume that there exist v ∈W1,N
rad (RN) such that

vn ⇀ v, in W1,N
rad

(
R
N
)
,

vn ⇀ v, a.e. in R
N.

(3.3)

Let v∗ is the Schwarz symmetrization of v, then we have

∫

RN

v
[
exp

(
α0|v|N/(N−1)

)
− SN−2(α0, v)

]
dx =

∫

RN

v∗
[
exp

(
α0|v∗|N/(N−1)) − SN−2(α0, v∗)

]
dx,

∫

RN

|v|Ndx =
∫

RN

|v∗|Ndx.
(3.4)

From (g1), we obtain that for ε > 0, there exists δ > 0, such that

f(s) ≤ ε|s|N−1, for |s| < δ, (3.5)

so, we have

F(s) ≤ ε

N
|s|N, for |s| < δ. (3.6)

From (g2), we obtain

F(s) ≤ C1|s|N + C2|s|
[
exp

(
α0|s|N/(N−1)

)
− SN−2(α0, u)

]
, for |s| ≥ δ. (3.7)
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There two estimates yield

F(s) ≤ C3|s|N + C2|s|
[
exp

(
α0|s|N/(N−1)

)
− SN−2(α0, u)

]
, for s > 0. (3.8)

On one hand, from Lemma 2.1, we obtain that there exists a constantC, which depends
only onN,M, and α such that

∫

RN

exp
(
α|vn|N/(N−1)

)
≤ C. (3.9)

When ‖∇vn‖NLN(RN) ≤ 1, ‖vn‖LN(RN) ≤M <∞ and α < αN . Hence, we have

∫

|x|≤r
F(vn) ≤ C3

∫

RN

|v∗
n|Ndx + C2

∫

|x|≤r
|v∗
n|
[
exp

(
α0|v∗

n|N/(N−1)) − SN−2(α0, v∗
n)
]
dx

≤ C3M
N + C2

∫

|x|≤r
|v∗
n| exp

(
α0|v∗

n|N/(N−1))dx

≤ C3M
N + C3

(∫

|x|≤r
|v∗
n|μ

)1/μ(∫

|x|≤r
exp

(
βα0|v∗

n|N/(N−1))dx
)1/β

≤ C3M
N + C4M

(∫

|x|≤r
exp

(
βα0|v∗

n|N/(N−1))dx
)1/β

≤ C5,

(3.10)

where Ci (i = 2, 3, 4, 5) are positive constants, the continuous imbedding W1,N(RN) ↪→
Lμ(RN), 1/μ + 1/β = 1 and βα0 < αN .

Then, by Dominated convergence theorem, we obtain

∫

|x|≤r
F(vn)dx −→

∫

|x|≤r
F(v)dx. (3.11)

On the other hand,

∫

|x|>r
F(vn)dx ≤ C3

∫

|x|>r
|vn|Ndx + C2

∫

|x|>r
|vn|

[
exp

(
α0|vn|N/(N−1)

)
− SN−2(α0, vn)

]
dx

∫

|x|>r
|vn|

[
exp

(
α0|vn|N/(N−1)

)
− SN−2(α0, vn)

]
dx

=
∞∑

j=N−1

α
j

0

j!

∫

|x|>r
|vn| · |vn|Nj/(N−1)dx

=
∞∑

j=N−1

α
j

0

j!

∫

|x|>r
|v∗
n||v∗

n|Nj/(N−1)dx,

(3.12)
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where v∗
n is the Schwarz symmetrization of vn. Notice that the estimate

∫

|x|>r

1

|x|1+Nj/(N−1)dx = ωN−1

∫∞

r

tN−1

t1+Nj/(N−1)dt

=
(

ωN−1
Nj/(N − 1) −N + 1

)
rN−1−Nj/(N−1)

≤ ωN−1
r

,

(3.13)

for all j ≥N − 1, together with the Radial Lemma [4] leads to

∞∑
j=N−1

α
j

0

j!

∫

|x|>r
|v∗
n||v∗

n|Nj/(N−1)dx

≤M
(

N

ωN−1

)1/N ∞∑
j=N−1

α
j

0

j!

(
N

ωN−1

)j/(N−1)
MNj/(N−1)

∫

|x|>r
|x|−1−Nj/(N−1) dx

≤ C(N)
r

.

(3.14)

Thus, given δ > 0, there exists r > 0 such that
∫

|x|>r
|vn|Ndx < δ,

∫

|x|>r

[
exp

(
α0|vn|N/(N−1)

)
− SN−2(α0, vn)

]
dx < δ. (3.15)

Which implies that
∫

|x|>r
F(vn)dx ≤ Cδ,

∫

|x|>r
F(v)dx ≤ Cδ. (3.16)

Using the estimate

∣∣∣∣
∫

RN

(F(vn) − F(v))dx
∣∣∣∣ ≤

∣∣∣∣∣
∫

|x|≤r
(F(vn) − F(v))dx

∣∣∣∣∣ +
∣∣∣∣∣
∫

|x|>r
(F(vn) − F(v))dx

∣∣∣∣∣, (3.17)

we get

lim
n→∞

∣∣∣∣
∫

RN

F(vn) −
∫

RN

F(v)dx
∣∣∣∣ ≤ Cδ, (3.18)

Hence, we obtain that
∫

RN

F(vn)dx −→
∫

RN

F(v)dx. (3.19)
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Lemma 3.2. The numbers A and c satisfy the inequality A ≤ c.

Proof. For each v ∈ W1,N(RN) \ {0}, since we only consider the nontrivial solutions of the
problem (1.1), we divide them into two cases to consider.

Case 1. Let v+ = max{v, 0}/= 0, we define the function h : R → R by

h(t) =
∫

RN

G(tv)dx =
∫

RN

[
F(tv) − tNvN

N

]
dx. (3.20)

By (g1), we obtain that there exists δ > 0, 0 < c0 < 1 such that |s| < δ, and
∣∣f(s)∣∣ < c0|s|N−1. (3.21)

Hence

h(t) ≤
∫

RN

∫ tv

0
c0|s|N−1dx − 1

N

∫

RN

tNvNdx

=
c0
N

∫

RN

|tv|Ndx − 1
N

∫

RN

|tv|Ndx,
(3.22)

we obtain that h(t) < 0 for t small enough. On the other hand, by (g2), we obtain that h(t) > 0
for t large enough. In this way, there exists t0 > 0 such that h(t0) = 0, That is, t0v ∈ P. Hence

A ≤ 1
N

∫

RN
|∇(t0v)|Ndx = I(t0v) ≤ max

t≥0
I(tv). (3.23)

Case 2. Let v+ = max{v, 0} = 0, since f(s) = 0 for all s < 0, we obtain

max
t≥0

I(tv) = +∞. (3.24)

As a consequence,

A ≤ c. (3.25)

Combining Cases 1 and 2, we obtain that A ≤ c.

Lemma 3.3. The number A defined by (2.8) is positive, that is, A > 0.

Proof. Clearly, A ≥ 0. Assume by contradiction that A = 0 and let {un} be a minimizing
sequence inW1,N(RN) to A, that is,

1
N

∫

RN

|∇un|Ndx −→ A = 0 with
∫

RN

G(un)dx = 0. (3.26)
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For each λn > 0, set vn(x) = un(x/λn) satisfying

1
N

∫

RN

|∇vn|Ndx =
1
N

∫

RN

|∇vn|Ndx. (3.27)

Similarly, we have

∫

RN

G(vn)dx = λNn

∫

RN

G(un)dx = 0,

∫

RN

|vn|N dx = λNn

∫

RN

|un|Ndx.
(3.28)

We choose λNn = 1/
∫
RN |un|Ndx, so

∫
RN |vn|Ndx = 1. Then we get

1
N

∫

RN

|∇vn|Ndx −→ A = 0,

∫

RN

|vn|Ndx = 1,
∫

RN

G(vn)dx = 0.

(3.29)

In what follows, we study in the spaceW1,N
rad (RN). Firstly, we assume that there exists

v ∈W1,N
rad (RN) such that vn ⇀ v inW1,N

rad (RN).
On one hand, since (1/N)

∫
RN |∇vn|N → A = 0, then ∃N0 > 0, for all 0 < ε < 1,

when n > N0, we have
∫
RN |∇vn|Ndx < ε < 1 and we also know that

∫
RN |vn|Ndx = 1, so

‖vn‖LN(RN) ≤M <∞. From Lemma 3.1, we have

∫

RN

F(vn)dx −→
∫

RN

F(v)dx. (3.30)

Note that

∫

RN

G(vn)dx =
∫

RN

(
F(vn) − 1

N
|vn|N

)
dx = 0, (3.31)

so we have

∫

RN

F(vn)dx =
1
N

∫

RN

|vn|Ndx =
1
N
. (3.32)

Hence, we have

∫

RN

F(v)dx =
1
N
. (3.33)
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It implies that v /= 0. On the other hand, since vn ⇀ v in W1,N
rad (RN), and the space

W1,N
rad (RN) is a reflexible Banach space, we have

lim
n→∞

inf
1
N

∫

RN

|∇vn|Ndx ≥ 1
N

∫

RN

|∇v|Ndx ≥ 0. (3.34)

Since

lim
n→∞

inf
1
N

∫

RN

|∇vn|Ndx = A = 0, (3.35)

we get

1
N

∫

RN

|∇v|Ndx = 0. (3.36)

From which it follows that v = 0, we have an absurd. Hence, we have

A > 0. (3.37)

Lemma 3.4. If λ > (q −N/q)(q−N)/NC
q/N
q , then c < 1/N.

Proof. From (g3), we have f(s) > λsq−1, for all s ≥ 0. Nowwe choose ψ ∈ W1,N
rad (R

N) such that

ψ ≥ 0,
∥∥ψ∥∥Nq = C−1

q ,
∥∥ψ∥∥W1,N(RN) = 1. (3.38)

Hence, we have

c ≤ max
t≥0

I
(
tψ

)
= max

t≥0

{
1
N

∫

RN

(∣∣∇(
tψ

)∣∣N +
∣∣tψ∣∣N

)
dx −

∫

RN

F
(
tψ

)
dx

}

= max
t≥0

{
tN

N
−
∫

RN

∫ tψ

0
f(s)dsdx

}

≤ max
t≥0

{
tN

N
− λ

∫

RN

∫ tψ

0
sq−1dsdx

}

= max
t≥0

{
tN

N
− λtq

q

∫

RN

ψqdx

}
.

(3.39)

Let K(t) = tN/N − (λtq/q)
∫
RN ψ

qdx, then K(t) is continuous function, we have

K′(t) = tN−1 − λtq−1
∫

RN

ψqdx = 0. (3.40)
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By a simple calculation, when t0 = (1/λ
∫
RN ψ

qdx)1/(q−N) > 0, we have

max
t>0

K(t) = K(t0) =
1
N

(
1

λ
∫
RN ψqdx

)N/(q−N)

−
(
λ

q

∫

RN

ψqdx

)(
1

λ
∫
RN ψqdx

)q/(q−N)

=
q −N
Nq

λ−N/(q−N)C
(q/N)·(N/(q−N))
q

<
q −N
Nq

(
q −N
q

)((q−N)/N)·(−N/(q−N))

C
(q/N)(−N/(q−N))
q C

q/(q−N)
q

=
1
N
.

(3.41)

Hence, we have

c <
1
N
. (3.42)

Lemma 3.5. The number A is attained, that is, there exists u ∈ W1,N
rad (RN) such that A =∫

RN |∇u|Ndx and
∫
RN G(u)dx = 0.

Proof. Let {un} be a minimizing sequence inW1,N
rad (RN) for A, that is,

1
N

∫

RN

|∇un|Ndx −→ A (n −→ ∞),
∫

RN

G(un)dx = 0. (3.43)

Arguing as in Lemma 3.3, we assume that
∫
RN |un|Ndx = 1. From (3.43), Lemmas 3.3 and 3.4,

we obtain

lim
n→∞

∫

RN

|∇un|Ndx =NA ≤Nc < 1. (3.44)

From Lemma 3.1,

∫

RN

F(un)dx −→
∫

RN

F(u)dx, (3.45)

where un ⇀ u in W1,N(RN), as n → ∞.
By (3.43) and (3.45), we have

∫

RN

F(un)dx =
1
N

∫

RN

|un|Ndx =
1
N
,

∫

RN

F(u)dx =
1
N
.

(3.46)
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It implies that

u/= 0, (3.47)

1
N

∫

RN

|∇u|Ndx ≤ lim
n→∞

inf
1
N

∫

RN

|∇un|Ndx = A, (3.48)

∫

RN

|u|Ndx ≤ lim
n→∞

inf
∫

RN

|un|Ndx = 1. (3.49)

From (3.48) and (3.49), we have

∫

RN

G(u)dx =
∫

RN

F(u)dx − 1
N

∫

RN

|u|Ndx =
1
N

− 1
N

∫

RN

|u|Ndx ≥ 0. (3.50)

If
∫
RN G(u)dx /= 0, from (3.50), we have

∫
RN G(u)dx > 0. Consider the function h defined in

Lemma 3.2 relative to the function:

h(t) =
∫

RN

G(tu)dx. (3.51)

We concludes that h(t) < 0 for t small enough. On the other hand, h(1) =
∫
RN G(u)dx > 0. In

this way, we obtain that there is t0 ∈ (0, 1) such that h(t0) = 0, that is,

∫

RN

G(t0u)dx = 0. (3.52)

Hence, from (3.48),

0 <
1
N

∫

RN

|∇(t0u)|Ndx =
1
N
tN0

∫

RN

|∇u|Ndx ≤ tN0 A < A. (3.53)

However, from (3.52), we have t0u ∈ P. Hence, we obtain

1
N

∫

RN

|∇(t0u)|Ndx ≥ A. (3.54)

Which is contradictory with (3.53).
Thus, we obtain

∫

RN

G(u)dx = 0. (3.55)

It implies u ∈ P and

1
N

∫

RN

|∇u|Ndx ≥ A. (3.56)
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From (3.48) and (3.56), we obtain that

1
N

∫

RN

|∇u|Ndx = A, (3.57)

with
∫
RN G(u)dx = 0, u /= 0.
We obtain that A is attained.

Proof of Theorem 1.2. From Lemma 3.5, there is u ∈W1,N
rad (RN) \ {0} such that

1
N

∫

RN

|∇u|Ndx = A,
∫

RN

G(u)dx = 0. (3.58)

we will prove thatm = b = A.
By Lagrange multipliers, there exists ρ ∈ R, such that

∫

RN

|∇u|N−2∇u∇vdx = ρ
∫

RN

g(u)v dx, (3.59)

for every v ∈W1,N(RN).
Define the rescaled function uρ1/N = u(ρ−1/Nx), which is a nontrivial solution of (1.1)

with
∫

RN

∣∣∣∇uρ1/N
∣∣∣
N
dx =

∫

RN

|∇u|Ndx,
∫

RN

G
(
uρ1/N

)
dx = ρ

∫

RN

G(u)dx = 0.

(3.60)

Thus, we have

m ≤ I
(
uρ1/N

)
=

1
N

∫

RN

∣∣∣∇uρ1/N
∣∣∣
N
dx −

∫

RN

G
(
uρ1/N

)
dx =

1
N

∫

RN

|∇u|Ndx = A. (3.61)

So, we have

m ≤ A. (3.62)

For each γ ∈ Γ, one has γ([0, 1]) ∩ P /= ∅ from [4]. We obtain that there exists t0 ∈ [0, 1]
such that γ(t0) ∈ P, that is, γ(t0) satisfied that

∫
RN G(γ(t0))dx = 0 and then

A ≤ 1
N

∫

RN

∣∣∇γ(t0)
∣∣Ndx − 1

N

∫

RN

G
(
γ(t0)

)
dx = I

(
γ(t0)

)
. (3.63)

Hence A ≤ I(γ(t0)) ≤ maxt∈[0,1]I(γ(t)) for every γ ∈ Γ, we obtain that

A ≤ b. (3.64)

From (3.62) and (3.64), we obtain thatm ≤ A ≤ b.
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On the other hand, for every nontrivial solution ω ∈ W1,N(RN) of the problem (1.1),
there exists a path γω ∈ Γ such thatω ∈ γω([0, 1]) and maxt∈[0,1]I(γω(t)) = I(ω). Consequently,
b ≤ I(ω), b ≤ m.

In conclusion, we obtain

m = A = b. (3.65)

Hence, the function uρ1/N is a ground-state solution of the problem (1.1).
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