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We investigate the existence of multiple positive solutions for a class of boundary value problems
of nonlinear differential equation with Caputo’s fractional order derivative. The existence results
are obtained by means of the Avery-Peterson fixed point theorem. It should be point out that this
is the first time that this fixed point theorem is used to deal with the boundary value problem of
differential equations with fractional order derivative.

1. Introduction

In this paper, we consider the existence and multiple existence of positive solutions for fol-
lowing boundary value problem of differential equation involving the Caputo’s fractional
order derivative

Dα
0+u(t) = f

(
t, u(t), Dβ

0+u(t)
)
, t ∈ (0, 1),

u(0) + u′(0) = 0, u(1) + u′(1) = 0,
(1.1)

where 1 < α < 2, 0 < β < α−1 and f : C([0, 1]×R+×R,R+). HereDα
0+ is the Caputo’s derivative

of fractional order.
Due to the development of the theory of fractional calculus and its applications,

such as in the fields of control theory, blood flow phenomena, Bode’s analysis of feedback
amplifiers, aerodynamics, and polymer rheology and many work on fractional calculus,
fractional order differential equations has appeared [1–7]. Recently, there have been many
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results concerning the solutions or positive solutions of boundary value problems for
nonlinear fractional differential equations, see [8–28] and references along this line.

For example, Bai and Lü [12] considered the following Dirichlet boundary value prob-
lem of fractional differential equation:

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1), u(0) = 0 = u(1), 1 < α ≤ 2. (1.2)

By means of different fixed-point theorems on cone, some existence and multiplicity results
of positive solutions were obtained. Jiang and Yuan [20] improved the results in [12] by
discussing some new positive properties of the Green function for problem (1.2). By using
the fixed point theorem on a cone due to Krasnoselskii, the authors established the existence
results of positive solution for problem (1.2). Recently, Caballero et al. [21] obtained the
existence and uniqueness of positive solution for singular boundary value problem (1.2).
The existence results were established in the case that the nonlinear term f may be singular
at t = 0. As to positive solutions of problem (1.1), under the case that the nonlinear term was
not involved with the derivative of the function u(t), Zhang [13] obtained the existence and
multiplicity results of positive solutions by means of a fixed-point theorem on cones.

There are also some results concerning multipoint boundary value problems for dif-
ferential equations of fractional order. Bai [23] investigated the existence and uniqueness of
positive solution for three-point boundary value problem

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1), u(0) = 0, u(1) = βu

(
η
)
, (1.3)

where 1 < α ≤ 2, η ∈ (0, 1), 0 < βηα−1 < 1. In [23], the uniqueness of positive solution was
obtained by the use of contraction map principle and some existence results of positive
solutions were established by means of the fixed point index theory. Very recently, Wang et al.
[26] considered the boundary value problem of fractional differential equation with integral
condition

Dα
0+u(t) + q(t)f(t, u(t)) = 0, t ∈ (0, 1), n − 1 < α < n,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
∫1

0
u(s)dA(s),

(1.4)

where α > 2,
∫1
0 u(s)dA(s) was given by Riemann-Stieltjes integral with a signed measure.

By using the fixed point theorem, the existence of positive solution for this problem was
established.

However, in this work, the derivative of the unknown function u(t) was not involved
in the nonlinear term explicitly. To our best knowledge, there are few papers considering the
positive solution of boundary value problem of nonlinear fractional differential equations
which the derivative of the unknown function u(t) is involved in the nonlinear term. In
[29], Guo and Ge proved a new fixed point theorem, which can be regarded as an extension
of Krasnoselskii’s fixed point theorem in a cone. By applying this new theorem, Guo and
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Ge obtained the existence of positive solutions for second-order three-point boundary value
problem

u′′ + f
(
t, u(t), u′(t)

)
= 0, t ∈ [0, 1],

u(0) = 0, u(1) = αu
(
η
)
, η ∈ (0, 1),

(1.5)

where f depended on the first order derivative of u. Very recently, Yang et al. [30] considered
following boundary value problem

Dα
0+u(t) = f

(
t, u(t), u′(t)

)
, t ∈ (0, 1),

u(0) + u′(0) = 0, u(1) + u′(1) = 0.
(1.6)

By means of Schauder’s fixed point theorem and the fixed point theorem duo to Guo and Ge,
some results on the existence of positive solutions were obtained.

In [31], Avery and Peterson gave an new triple fixed point theorem, which can be
regarded as an extension of Leggett-Williams fixed point theorem. By using this method,
many results concerning the existence of at least three positive solutions of boundary value
problems of differential equation with integer order were established, see [32–37]. For
example, by using the Avery-Peterson fixed point theorem, Yang et al. [32] established the
existence of at least three positive solutions of second-order multipoint boundary value
problem

u′′ + f
(
t, u(t), u′(t)

)
= 0, t ∈ [0, 1],

u′(0) =
m−2∑
i=1

βiu
′(ξi), u(1) =

m−2∑
i=1

αiu(ξi).
(1.7)

But by using the Avery-Peterson fixed point theorem, the nonlinear terms are often
assumed to be nonnegative to ensure the concavity or convexity of the unknown function.
When the differential equations of fractional order are considered, we cannot derive the
concavity or convexity of function u(t) by the sign of its fractional order derivative. Thus
the Avery-Peterson fixed point theorem cannot directly be used to consider the boundary
value problem of nonlinear differential equation with fractional order where the derivative
of the unknown function u(t) is involved in the nonlinear term explicitly.

In this paper, by obtaining some new inequalities of the unknown function and
defining a special cone, we overcome the difficulties brought by the lack of the concavity
or convexity of unknown function u(t). By an application of Avery-Peterson fixed point
theorem, the existence of at least three positive solutions of problem (1.1) is established. It
should be pointed out that it is the first time that the Avery-Peterson fixed point theorem is
used to deal with the positive solutions of boundary value problem of differential equations
with fractional order derivative.
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2. Preliminary Results

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function u(t) :
(0,∞) → R is given by

Iα0+u(t) =
1

Γ(α)

∫ t
0
(t − s)α−1u(s)ds (2.1)

provided the right side is point-wise defined on (0,∞).

Definition 2.2. The Caputo’s fractional derivative of order α > 0 of a continuous function
u(t) : (0,∞) → R is given by

Dα
0+u(t) =

1
Γ(n − α)

∫ t
0

u(n)(s)

(t − s)α−n+1
ds, (2.2)

where n − 1 < α ≤ n, provided that the right side is point-wise defined on (0,∞).

Lemma 2.3. Let α > 0. Then the fractional differential equation Dα
0+u(t) = 0 has solutions

u(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1, ci ∈ R, i = 0, 1, . . . , n − 1. (2.3)

Lemma 2.4. Let α > 0. Then

Iα0+D
α
0+u(t) = u(t)c0 + c1t + c2t

2 + · · · + cn−1tn−1, ci ∈ R, i = 1, 2, . . . , n − 1. (2.4)

Definition 2.5. Let E be a real Banach space over R. A nonempty convex closed set P ⊂ E is
said to be a cone provided that

(1) au ∈ P , for all u ∈ P , a ≥ 0,

(2) u,−u ∈ P implies u = 0.

Definition 2.6. An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Definition 2.7. The map α is said to be a continuous nonnegative convex functional on cone P
of a real Banach space E provided that α : P → [0,+∞) is continuous and

α
(
tx + (1 − t)y) ≤ tα(x) + (1 − t)α(y), x, y ∈ P, t ∈ [0, 1]. (2.5)

Definition 2.8. The map β is said to be a continuous nonnegative concave functional on cone
P of a real Banach space E provided that β : P → [0,+∞) is continuous and

β
(
tx + (1 − t)y) ≥ tβ(x) + (1 − t)β(y), x, y ∈ P, t ∈ [0, 1]. (2.6)
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Let γ and θ be nonnegative continuous convex functionals on P , α a nonnegative
continuous concave functional on P , and ψ a nonnegative continuous functional on P. Then
for positive numbers a, b, c, and d, we define the following convex sets:

P
(
γ, d
)
=
{
x ∈ P | γ(x) < d},

P
(
γ, α, b, d

)
=
{
x ∈ P | b ≤ α(x), γ(x) ≤ d},

P
(
γ, θ, α, b, c, d

)
=
{
x ∈ P | b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

(2.7)

and a closed set

R
(
γ, ψ, a, d

)
=
{
x ∈ P | a ≤ ψ(x), γ(x) ≤ d}. (2.8)

Lemma 2.9 (see [31]). Let P be a cone in Banach space E. Let γ , θ be nonnegative continuous
convex functionals on P , α a nonnegative continuous concave functional on P , and ψ a nonnegative
continuous functional on P satisfying

ψ(λx) ≤ λψ(x), for 0 ≤ λ ≤ 1, (2.9)

such that for some positive numbers l and d,

α(x) ≤ ψ(x), ‖x‖ ≤ lγ(x), (2.10)

for all x ∈ P(γ, d). Suppose T : P(γ, d) → P(γ, d) is completely continuous and there exist positive
numbers a, b, c with a < b such that

(S1) {x ∈ P(γ, θ, α, b, c, d)|α(x) > b}/= ∅ and α(Tx) > b for x ∈ P(γ, θ, α, b, c, d);
(S2) α(Tx) > b for x ∈ P(γ, α, b, d) with θ(Tx) > c;
(S3) 0 /∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P(γ, d) such that

γ(xi) ≤ d, i = 1, 2, 3; b < α(x1); a < ψ(x2), α(x2) < b; ψ(x3) < a.
(2.11)

3. Main Results

Lemma 3.1 (see [30]). Given y(t) ∈ C[0, 1], then boundary value problem

Dα
0+u(t) = y(t), u(0) + u′(0) = 0, u(1) + u′(1) = 0 (3.1)
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is equivalent to

u(t) =
∫ t
0

(
(1 − s)α−1(1 − t) + (1 − s)α−1

Γ(α)
+
(1 − s)α−2(1 − t)

Γ(α − 1)

)
y(s)ds

+
∫1

t

(
(1 − s)α−1(1 − t)

Γ(α)
+
(1 − s)α−2(1 − t)

Γ(α − 1)

)
y(s)ds

=
∫1

0
G(t, s)y(s)ds,

(3.2)

where

G(t, s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − s)α−1(1 − t) + (1 − s)α−1
Γ(α)

+
(1 − s)α−2(1 − t)

Γ(α − 1)
, 0 ≤ s ≤ t ≤ 1,

(1 − s)α−1(1 − t)
Γ(α)

+
(1 − s)α−2(1 − t)

Γ(α − 1)
, 0 ≤ t ≤ s ≤ 1.

(3.3)

Lemma 3.2. Given y(t) ∈ C[0, 1], assume that u(t) is a solution of boundary value problem

Dα
0+u(t) = y(t), u(0) + u′(0) = 0, u(1) + u′(1) = 0. (3.4)

Then

Dβu(t) =
∫ t
0

(
(t − s)α−β−1
Γ
(
α − β) − t1−β(1 − s)α−2(α − s)

Γ(α)Γ
(
2 − β)

)
y(s)ds

+
∫1

t

− t
1−β(1 − s)α−2(α − s)

Γ(α)Γ
(
2 − β) y(s)ds.

(3.5)

Proof. From Lemmas 2.3 and 2.4, we get that

u(t) =
∫ t
0

(t − s)α−1
Γ(α)

y(s)ds − C1 − C2t, u′(t) =
∫ t
0

(t − s)α−2
Γ(α − 1)

y(s)ds − C2. (3.6)

The boundary condition u(0) + u′(0) = 0 implies that C1 + C2 = 0. Considering the boundary
condition u(1) + u′(1) = 0, we have

C2 = −C1 =
1

Γ(α)

∫1

0
(1 − s)α−1y(s)ds + 1

Γ(α − 1)

∫1

0
(1 − s)α−2y(s)ds. (3.7)
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From the definition of the Caputo derivative of fractional order, we see

Dβu(t) = Dβ

(∫ t
0

(1 − s)α−1
Γ(α)

y(s)ds − C1 − C2t

)

=
∫ t
0

(t − s)α−β−1
Γ
(
α − β) y(s)ds − C2

Γ
(
2 − β) t

1−β

=
∫ t
0

(
(t − s)α−β−1
Γ
(
α − β) − t1−β(1 − s)α−2(α − s)

Γ(α)Γ
(
2 − β)

)
y(s)ds

+
∫1

t

− t
1−β(1 − s)α−2(α − s)

Γ(α)Γ
(
2 − β) y(s)ds.

(3.8)

Lemma 3.3 (see [30]). The function G(t, s) satisfies the following conditions:

(1) G(t, s) ∈ C([0, 1] × [0, 1)), G(t, s) > 0, for t, s ∈ (0, 1);

(2) there exist a positive function γ(s), K(s) ∈ C(0, 1) such that

max
0≤t≤1

≤ K(s), s ∈ (0, 1), min
s∈[1/3, 2/3]

G(t, s) ≥ γ(s)K(s), 0 < s < 1, (3.9)

where

K(s) =
2(1 − s)α−1

Γ(α)
+
(1 − s)α−2
Γ(α − 1)

, (3.10)

γ(s) =
1
3
(1 − s)α−1 + (α − 1)(1 − s)α−2
2(1 − s)α−1 + (α − 1)(1 − s)α−2

>
1
6
, s ∈ [0, 1). (3.11)

Lemma 3.4. Assume that y(t) > 0 and u(t) is a solution of boundary value problem (3.1). There
exists a positive constant γ0 such that

max
0≤t≤1

|u(t)| ≤ γ0 max
0≤t≤1

Dβ|u(t)|. (3.12)

Proof. From Lemma 3.2,

max
0≤t≤1

∣∣∣Dβu(t)
∣∣∣ = max

0≤t≤1

∣∣∣∣∣
∫ t
0

(
(t − s)α−β−1
Γ
(
α − β) − t1−β(1 − s)α−2(α − s)

Γ(α)Γ
(
2 − β)

)
y(s)ds

−
∫1

t

t1−β(1 − s)α−2(α − s)
Γ(α)Γ

(
2 − β) y(s)ds

∣∣∣∣∣
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≥ max
0≤t≤1

∣∣∣Dβu(1)
∣∣∣ =
∫1

0

(
(1 − s)α−2(α − s)
Γ(α)Γ

(
2 − β) − (1 − s)α−β−1

Γ
(
α − β)

)
y(s)ds

=
∫1

0
k(s)y(s)ds.

(3.13)

Denote

h(s) =
K(s)
k(s)

=
2(1 − s)α−1/Γ(α) + (1 − s)α−2/Γ(α − 1)

(1 − s)α−2(α − s)/Γ(α)Γ(2 − β) − (1 − s)α−β−1/Γ(α − β)

=
2(1 − s)/Γ(α) + 1/Γ(α − 1)

(α − s)/Γ(α)Γ(2 − β) − (1 − s)1−β/Γ(α − β)
.

(3.14)

By a simple computation, we have

h(s) ≤ 2/Γ(α) + 1/Γ(α − 1)

(α − s0)/Γ(α)Γ
(
2 − β) − (1 − s0)1−β/Γ

(
α − β)

=
2/Γ(α) + 1/Γ(α − 1)(

(α − 1)
(
1 − β) − β((1 − β)Γ(α)Γ(2 − β)/Γ(α − β))1/β

)
/
(
1 − β)Γ(α)Γ(α − β)

= γ0 > 0.
(3.15)

Thus,

max
0≤t≤1

|u(t)| = max
0≤t≤1

∫1

0
G(t, s)y(s)ds ≤

∫1

0
K(s)y(s)ds ≤

∫1

0
γ0k(s)y(s)ds ≤ γ0 max

0≤t≤1

∣∣∣Dβu(t)
∣∣∣.

(3.16)

Let the Banach space E = {u(t) ∈ C[0, 1],Dβu(t) ∈ C[0, 1]} be endowed with the norm

‖u‖ = max
{
max
0≤t≤1

|u(t)|,max
0≤t≤1

∣∣∣Dβu(t)
∣∣∣
}
, u ∈ E. (3.17)

We define the cone P ⊂ E by

P =
{
u ∈ E | u(t) ≥ 0, min

1/3≤t≤2/3
u(t) ≥ 1

6
max
0≤t≤1

u(t),max
0≤t≤1

u(t) ≤ γ0 max
0≤t≤1

∣∣∣Dβu(t)
∣∣∣
}
. (3.18)
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Denote the positive constants

M =
∫1

0
K(s)ds =

2
Γ(α + 1)

+
1

Γ(α)
,

N =
1

Γ
(
α − β + 1

) + 1
Γ
(
2 − β)

(
1

Γ(α)
+

1
Γ(α + 1)

)
.

(3.19)

Lemma 3.5. Let T : P → E be the operator defined by

Tu(t) :=
∫1

0
G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds. (3.20)

Then T : P → P is completely continuous.

Proof. The operator T is nonnegative and continuous in view of the nonnegativeness and
continuity of functions G(t, s) and f(t, u(t), Dβ

0+u(t)). Let Ω ⊂ K be bounded. Then there
exists a positive constant R1 > 0 such that ‖u‖ ≤ R1, u ∈ Ω. Denote

R = max
0≤t≤1, u∈Ω

∣∣∣f
(
t, u(t), Dβ

0+u(t)
)∣∣∣ + 1. (3.21)

Then for u ∈ Ω, we have

|(Tu)(t)| ≤
∫1

0
G(t, s)

∣∣∣f
(
s, u,D

β

0+u
)∣∣∣ds ≤

∫1

0
K(s)

∣∣∣f
(
s, u,D

β

0+u
)∣∣∣ds

≤ R
∫1

0
K(s)ds =MR,

∣∣∣Dβ

0+(Tu)(t)
∣∣∣ =

∣∣∣∣∣
1

Γ
(
α − β)

∫ t
0
(t − s)α−β−1f

(
s, u(s), Dβ

0+u(s)
)
ds

− t1−β

Γ
(
2 − β)

(
1

Γ(α − 1)

∫1

0
(1 − s)α−2f

(
s, u,D

β

0+u
)
ds

+
1

Γ(α)

∫1

0
(1 − s)α−1f

(
s, u,D

β

0+u
)
ds

)∣∣∣∣∣

≤
[

1(
α − β)Γ(α − β)

+
1

Γ
(
2 − β)

(
1

Γ(α − 1)

∫1

0
(1 − s)α−2ds + 1

Γ(α)

∫1

0
(1 − s)α−1ds

)]
× R

=NR.

(3.22)
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Hence T(Ω) is bounded. On the other hand, for u ∈ Ω, t1, t2 ∈ [0, 1], one has

|Tu(t2) − Tu(t1)| =
∣∣∣∣∣
∫1

0
G(t1, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

−
∫1

0
G(t2, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

∣∣∣∣∣

≤
∫ t1
0
|G(t2, s) −G(t1, s)|

∣∣∣f
(
s, u(s), Dβ

0+u(s)
)∣∣∣ds

+
∫ t2
t1

|G(t2, s) −G(t1, s)|
∣∣∣f
(
s, u(s), Dβ

0+u(s)
)∣∣∣ds

+
∫1

t2

|G(t2, s) −G(t1, s)|
∣∣∣f
(
s, u(s), Dβ

0+u(s)
)∣∣∣ds

≤
[
2(t2 − t1)
Γ(α)

+
tα2 − tα1
Γ(α + 1)

]
× R,

∣∣∣Dβ

0+(Tu(t2)) −D
β

0+(Tu(t1))
∣∣∣ =
∣∣∣∣∣

1
Γ
(
α − β)

(∫ t2
0
(t2 − s)α−β−1f

(
s, u,D

β

0+u
)
ds

−
∫ t1
0
(t1 − s)α−β−1f

(
s, u,D

β

0+u
)
ds

)

+

(
t
1−β
1 − t1−β2

)

Γ
(
2 − β)

(
1

Γ(α − 1)

∫1

0
(1 − s)α−2f

(
s, u,D

β

0+u
)
ds

+
1

Γ(α)

∫1

0
(1 − s)α−1f

(
s, u,D

β

0+u
)
ds

)∣∣∣∣∣

≤
R ×
∣∣∣tα−β2 − tα−β1

∣∣∣
(
α − β)Γ(α − β)

+
R

Γ
(
2 − β)

(
1

Γ(α − 1)

∫1

0
(1 − s)α−2ds + 1

Γ(α)

∫1

0
(1 − s)α−1

)

×
∣∣∣t1−β2 − t1−β1

∣∣∣

≤ R(
α − β)Γ(α − β)

∣∣∣tα−β2 − tα−β1

∣∣∣

+
R

Γ
(
2 − β)

(
1

Γ(α + 1)
+

1
Γ(α)

)∣∣∣t1−β2 − t1−β1

∣∣∣.
(3.23)

Thus,

‖Tu(t2) − Tu(t1)‖ −→ 0, for t1 −→ t2. (3.24)
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By means of the Arzela-Ascoli theorem, T is completely continuous. Furthermore, for u ∈ P ,
we have

min
1/3≤t≤2/3

Tu(t) = min
1/3≤t≤2/3

∫1

0
G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥ 1
6

∫1

0
K(s)f

(
s, u(s), Dβ

0+u(s)
)
ds

=
1
6
max
0≤t≤1

Tu(t),

max
0≤t≤1

|u(t)| =
∫1

0
G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≤
∫1

0
K(s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≤
∫1

0
γ0k(s)f

(
s, u(s), Dβ

0+u(s)
)
ds

= γ0max
0≤t≤1

∣∣∣Dβu(t)
∣∣∣.

(3.25)

Thus, T : P → P is completely continuous.
Let the continuous nonnegative concave functional α, the the continuous nonnegative

convex functionals γ , θ, and the continuous nonnegative functional ψ be defined on the cone
by

γ(u) = max
0≤t≤1

∣∣∣Dβu(t)
∣∣∣, θ(u) = ψ(u) = max

0≤t≤1
|u(t)|, α(u) = min

1/3≤t≤2/3
|u(t)|. (3.26)

By Lemmas 3.3 and 3.4, the functionals defined above satisfy that

1
6
θ(u) ≤ α(u) ≤ θ(u) = ψ(u), ‖u‖ ≤ γ1γ(u), u ∈ P, (3.27)

where γ1 = max{γ0, 1}. Therefore condition (2.10) of Lemma 2.9 is satisfied.
Assume that there exist constants 0 < a, b, d with a < b < (M/6N)d, c = 6b such that

(A1) f(t, u, v) ≤ d/N, (t, u, v) ∈ [0, 1] × [0, γ1d] × [−d, d],

(A2) f(t, u, v) > 6b/M, (t, u, v) ∈ [0, 1] × [b, 6b] × [−d, d],

(A3) f(t, u, v) < a/M, (t, u, v) ∈ [0, 1] × [0, a] × [−d, d].
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Theorem 3.6. Under assumptions (A1)–(A3), problem (1.1) has three positive solutions u1, u2, u3
satisfying

max
0≤t≤1

∣∣∣Dβu(t)
∣∣∣ ≤ d, i = 1, 2, 3; b < min

1/3≤t≤2/3
|u1(t)|;

a < max
0≤t≤1

|u2(t)|, min
1/3≤t≤2/3

|u2(t)| < b; max
0≤t≤1

|u3(t)| ≤ a.
(3.28)

Proof. Problem (1.1) has a solution u = u(t) if and only if u solves the operator equation

u(t) =
∫1

0
G(t, s)f

(
s, u(s), Dβu(s)

)
ds = (Tu)(t). (3.29)

For u ∈ P(γ, d), we have γ(u) = max0≤t≤1|Dβu(t)| < d. From assumption (A1), we obtain

f
(
t, u(t), Dβu(t)

)
≤ d

N
. (3.30)

Thus

γ(Tu) = max
0≤t≤1

∣∣∣Dβ(Tu)
∣∣∣

=

∣∣∣∣∣
1

Γ
(
α − β)

∫ t
0
(t − s)α−β−1f

(
s, u,D

β

0+u
)
ds

− t1−β

Γ
(
2 − β)

(
1

Γ(α − 1)

∫1

0
(1 − s)α−2f

(
s, u,D

β

0+u
)
ds

+
1

Γ(α)

∫1

0
(1 − s)α−1f

(
s, u,D

β

0+u
)
ds

)∣∣∣∣∣

≤
[

1(
α − β)Γ(α − β)

+
1

Γ
(
2 − β)

(
1

Γ(α − 1)

∫1

0
(1 − s)α−2ds + 1

Γ(α)

∫1

0
(1 − s)α−1ds

)]
× d

N
= d.

(3.31)

Hence, T : P(γ, d) → P(γ, d).
The fact that the constant function u(t) = 6b ∈ P(γ, θ, α, b, c, d) and α(6b) > b implies

that {u ∈ P(γ, θ, α, b, c, d|α(u) > b)}/= ∅.
For u ∈ P(γ, θ, α, b, c, d), we have b ≤ u(t) ≤ 6b and |Dβu(t)| < d for 0 ≤ t ≤ 1. From

assumption (A2),

f
(
t, u(t), Dβu(t)

)
>

6b
M

. (3.32)
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Thus

α(Tu) = min
1/3≤t≤2/3

∫1

0
G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥ 1
6

∫1

0
K(s)f

(
s, u(s), Dβu(s)

)
ds

≥ 1
6

∫1

0
K(s)ds × 6b

M
= b,

(3.33)

which means α(Tu) > b, for all u ∈ P(γ, θ, α, b, 6b, d). These ensure that condition (S1) of
Lemma 2.9 is satisfied. Secondly, for all u ∈ P(γ, α, b, d)with θ(Tu) > 6b,

α(Tu) ≥ 1
6
θ(Tu) >

1
6
× c = 1

6
× 6b = b. (3.34)

Thus, condition (S2) of Lemma 2.3 holds. Finally we show that (S3) also holds. We see that
ψ(0) = 0 < a and 0 /∈ R(γ, ψ, a, d). Suppose that u ∈ R(γ, ψ, a, d) with ψ(x) = a. Then by
assumption (A3),

ψ(Tu) = max
0≤t≤1

|(Tu)(t)| =
∫1

0
G(t, s)f

(
s, u(s), Dβu(s)

)
ds

≤
∫1

0
K(s)ds × a

M
= a.

(3.35)

Thus, all conditions of Lemma 2.9 are satisfied. Hence problem (1.1) has at least three positive
concave solutions u1, u2, u3 satisfying (3.28).

4. Example

Consider the nonlinear FBVPs

Dα
0+u(t) = f

(
t, u(t), Dβ

0+u(t)
)
, t ∈ (0, 1),

u(0) + u′(0) = 0, u(1) + u′(1) = 0,
(4.1)

where α = 1.6, β = 0.5, n = 2 and

f(t, u, v) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
π4

et +
1
10
u4 +

1
100

sin
(

v

10000

)
, 0 ≤ u ≤ 10,

1
π4

et + 1000 +
1
100

sin
(

v

10000

)
, u > 10.

(4.2)

Choose a = 1, b = 3, d = 10000. By a simple computation, we obtain that

γ0 ≈ 8.7149, γ1 ≈ 8.7149, M ≈ 2.5181, N ≈ 2.8672. (4.3)
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We can check that the nonlinear term f(t, u, v) satisfies

(1) f(t, u, v) < d/N, (t, u, v) ∈ [0, 1] × [0, 87149] × [−10000, 10000],
(2) f(t, u, v) > 6b/M, (t, u, v) ∈ [0, 1] × [3, 18] × [−10000, 10000],
(3) f(t, u, v) < a/M, (t, u, v) ∈ [0, 1] × [0, 1] × [−10000, 10000].

Then all assumptions of Theorem 3.6 are satisfied. Thus problem (4.1) has at least three
positive solutions u1(t), u2(t), u3(t) satisfying

max
0≤t≤1

∣∣∣Dβ

0+u(t)
∣∣∣ ≤ 10000, i = 1, 2, 3;

3 < min
1/2≤t≤1

|u1(t)|, 1 < max
0≤t≤1

|u2(t)|,

min
1/2≤t≤1

|u2(t)| < 3, max
0≤t≤1

|u3(t)| ≤ 1.

(4.4)
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