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We establish a new solution operator for the following problem −ϕp(u′)′ = g, t ∈ (0, 1), u(0) = 0 =
u(1), where ϕp(x) = |x|p−2x, p > 1. g may be singular at the boundary or change signs or may not
be in L1(0, 1) so that this solution operator can cover larger class of g than previously known ones.
As an application, by checking complete continuity of the solution operator, we show the existence
of nontrivial solutions for p-Laplacian ϕp(u′)′ + λh(t)f(u(t)) = 0, t ∈ (0, 1), u(0) = 0 = u(1), where
λ > 0 a parameter and f ∈ C(R,R) and f(0) > 0 and h may change signs or may be beyond of
L1(0, 1).

1. Introduction

The solution operator approach has been used to show the existence of solutions for wide
class of nonlinear differential equations. As it is wellknown, a solution operator plays a key
role when we employ nonlinear analytic methods such as degree theory, fixed point index
theory, and bifurcation theory. In this paper, we are concerned with a solution operator for
one-dimensional p-Laplacian with a sign-changing singular weight.

Let us summarize a brief history about solution operators for one-dimensional p-
Laplacian with Dirichlet boundary condition

−ϕp

(
u′)′ = g, t ∈ (0, 1),

u(0) = 0 = u(1),
(A)

where ϕp(x) = |x|p−2x, p > 1, and g ∈ L1
loc(0, 1).
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First, when g ∈ L1(0, 1), a solution operator was introduced by Manásevich and
Mawhin [1, 2]. In this case, we know that all solutions of (A) are in C1[0, 1] so that by a solu-
tion of problem (A), we understand a function u ∈ C1[0, 1]with ϕp(u′) absolutely continuous
which satisfies (A). Key step of establishing a solution operator for this case is to show that,
for each g ∈ L1(0, 1), the equation

∫1

0
ϕ−1
p

(
a
(
g
)
+
∫ s

0
g(τ)dτ

)
dt = 0 (1.1)

has a unique solution a = a(g)where a : L1(0, 1) → R is a continuous function. Defining

G
(
g
)
(t) �

∫ t

0
ϕ−1
p

(
a
(
g
)
+
∫s

0
g(τ)dτ

)
ds, (1.2)

problem (A) can be equivalently written as u = G(g).
Secondly, when g ≥ 0 and satisfies

∫1/2

0
ϕ−1
p

(∫1/2

s

g(τ)dτ

)

ds +
∫1

1/2
ϕ−1
p

(∫ s

1/2
g(τ)dτ

)
ds < ∞, (1.3)

a solution operator was studied by Agarwal et al. [3]. We note that a function satisfying (1.3)
needs not be in L1(0, 1). In this case, we know that solutions of (A) may not be in C1[0, 1] so
that, by a solution of problem (A), we understand a function u ∈ C[0, 1]∩C1(0, 1)with ϕp(u′)
absolutely continuous which satisfies (A). Define a function x by

x(t) =
∫ t

0
ϕ−1
p

(∫ t

s

g(τ)dτ

)

ds −
∫1

t

ϕ−1
p

(∫ s

t

g(τ)dτ
)
ds (1.4)

for 0 < t < 1. It is easy to see that x is continuous, strictly increasing in (0, 1) and x(0+) < 0 <
x(1−). Thus, x has a unique zero in (0, 1), say Ag . Then, we see that

∫Ag

0
ϕ−1
p

(∫Ag

s

g(τ)dτ

)

ds =
∫1

Ag

ϕ−1
p

(∫s

Ag

g(τ)dτ

)

ds, (1.5)

and defining

G
(
g
)
(t) �

⎧
⎨

⎩

∫ t
0 ϕ

−1
p

(∫Ag

s g(τ)dτ
)
ds, 0 ≤ t ≤ Ag,

∫1
t ϕ

−1
p

(∫s
Ag

g(τ)dτ
)
ds, Ag ≤ t ≤ 1,

(1.6)

problem (A) can be equivalently written as u = G(g).
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Now let us consider the case that g may change signs and belongs to H ⊂ L1
loc(0, 1)

which is defined as

H =

{

g :
∫1/2

0
ϕ−1
p

(∫1/2

s

∣
∣g(τ)

∣
∣dτ

)

ds +
∫1

1/2
ϕ−1
p

(∫s

1/2

∣
∣g(τ)

∣
∣dτ
)
ds < ∞

}

. (1.7)

Defining g : (0, 1) → R by

g(t) =

⎧
⎪⎨

⎪⎩

t−α, 0 < t ≤ 1
2
,

−1, 1
2
< t < 1,

(1.8)

where 1 < α < p, it is not hard to check that g ∈ H, but g /∈ L1(0, 1).
For g ∈ H but g /∈ L1(0, 1), existence of solution for (1.1) is not known so that

Manásevich-Mawhin’s approach cannot be applied directly. For g sign changing, the uni-
queness of zeros of function x in (1.4) is not guaranteed so that Agarwal et al.’s approach
cannot be applied directly either. The aim of this paper is to introduce a new solution operator
for (A) under this situation.

As an application, we will make use of newly established solution operator to show
the existence of nontrivial solutions with respect to a parameter for the following type of
nonlinear problem

ϕp

(
u′)′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),
(Pλ)

where λ > 0 a parameter, h ∈ H, f ∈ C(R,R), and f(0) > 0.
This kind of problems can be classified as cases f(0) > 0, f(0) = 0, or f(0) < 0, and,

under additional nonlinear growth conditions, it is easy to see that bifurcation phenomena
usually happen for the case of f(0) > 0. In this paper, we will employ the global continuation
theorem to get an existence result. One of the major steps for proof is to show the complete
continuity of corresponding solution operator for (Pλ). There have been many studies for
f nonnegative with f(0) > 0 and h ≥ 0. Many authors are interested in finding positive
solutions mainly employing the fixed-point index theory on a cone. Since h may change
signs in our case, this method is not suitable. Hai [4] investigated semilinear boundary value
problems with a sign-changing weight; however, his method is also restricted to fit our quasi-
linear case.

The paper is organized as follow. In Section 2, we establish a solution operator for (A),
when g ∈ H. In Section 3, we prove the continuity and compactness of the solution operator
for problem (Pλ). In Section 4, we obtain the existence of non-trivial solutions for (Pλ).

2. A Solution Operator

In this section, we construct a new solution operator for (A).

Theorem 2.1. For each g ∈ H, there is a unique solution u ∈ C[0, 1] ∩ C1(0, 1) for (A).
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The proof follows the next two lemmas. We first show the existence of a solution for
(A).

Lemma 2.2. For each g ∈ H, there is a unique constant α = α(g) ∈ R such that a function u defined
by

u(t) =

⎧
⎪⎨

⎪⎩

∫ t
0 ϕ

−1
p

(
α +
∫1/2
s g(r)dr

)
ds, 0 ≤ t ≤ 1

2
,

∫1
t ϕ

−1
p

(
−α +

∫s
1/2 g(r)dr

)
ds,

1
2
≤ t ≤ 1,

(2.1)

satisfies u ∈ C[0, 1] ∩ C1(0, 1) and u solves (A). Furthermore, we have

∫1/2

0
ϕ−1
p

(

α +
∫1/2

s

g(r)dr

)

ds =
∫1

1/2
ϕ−1
p

(
−α +

∫ s

1/2
g(r)dr

)
ds. (2.2)

Remark 2.3. For a, b > 0,

ϕ−1
p (a + b) = (a + b)1/(p−1) ≤

{
a1/(p−1) + b1/(p−1), p > 2,
2(2−p)/(p−1)

(
a1/(p−1) + b1/(p−1)

)
, 1 < p ≤ 2.

(2.3)

Thus for 0 < t ≤ 1/2,

|u(t)| ≤ Cp

(∫ t

0
|α|1/(p−1)dt +

∫ t

0
ϕ−1
p

(∫1/2

s

∣∣g(r)
∣∣dr

)

ds

)

< ∞, (2.4)

where

Cp =

{
1, p > 2,
2(2−p)/(p−1), 1 < p ≤ 2.

(2.5)

Similarly, we get an upper bound of |u| on (1/2, 1). It is clear that u(0) = 0 = u(1).

Proof of Lemma 2.2. Define

vα(t) �
∫ t

0
ϕ−1
p

(

α +
∫1/2

s

g(r)dr

)

ds, 0 ≤ t ≤ 1
2
,

wα(t) �
∫1

t

ϕ−1
p

(
−α +

∫s

1/2
g(r)dr

)
ds,

1
2
≤ t ≤ 1.

(2.6)

Then, by Lebesgue dominated convergence theorem, we see that vα(1/2) and wα(1/2) are
continuous on α. Because of the strict monotonicity of ϕp, it is easy to show that vα(1/2) is
strictly increasing on α and wα(1/2) is strictly decreasing on α.
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We claim that vα(1/2) → ∞, wα(1/2) → −∞ as α → ∞, and vα(1/2) → −∞,
wα(1/2) → ∞ as α → −∞. Since (α/2) +

∫1/2
s g(r)dr > 0 for 1/3 ≤ s ≤ 1/2, for sufficiently

large α > 0, we have

vα

(
1
2

)
=
∫1/2

0
ϕ−1
p

(

α +
∫1/2

s

g(r)dr

)

ds

=
∫1/3

0
ϕ−1
p

(

α +
∫1/2

s

g(r)dr

)

ds +
∫1/2

1/3
ϕ−1
p

(

α +
∫1/2

s

g(r)dr

)

ds

≥ 1
6

(α
2

)1/(p−1)
+
∫1/3

0
ϕ−1
p

(∫1/2

s

g(r)dr

)

ds

≥ 1
6

(α
2

)1/(p−1)
−
∫1/2

0
ϕ−1
p

(∫1/2

s

∣∣g(r)
∣∣dr

)

ds −→ ∞,

(2.7)

as α → ∞. Since −α/2+ ∫s1/2 g(r)dr < 0 for 1/2 ≤ s ≤ 2/3, for sufficiently large α > 0, we have

wα

(
1
2

)
=
∫1

1/2
ϕ−1
p

(
−α +

∫s

1/2
g(r)dr

)
ds

=
∫2/3

1/2
ϕ−1
p

(
−α +

∫s

1/2
g(r)dr

)
ds +

∫1

2/3
ϕ−1
p

(
−α +

∫s

1/2
g(r)dr

)
ds

≤ −1
6

(α
2

)1/(p−1)
+
∫1

2/3
ϕ−1
p

(∫s

1/2
g(r)dr

)
ds

≤ −1
6

(α
2

)1/(p−1)
+
∫1

1/2
ϕ−1
p

(∫s

1/2

∣∣g(r)
∣∣dr
)
ds −→ −∞,

(2.8)

as α → ∞. Similarly, since α/2 +
∫1/2
s g(r)dr < 0 for 1/3 ≤ s ≤ 1/2, for negatively large α < 0,

we have

vα

(
1
2

)
=
∫1/2

0
ϕ−1
p

(

α +
∫1/2

s

g(r)dr

)

ds

=
∫1/3

0
ϕ−1
p

(

α +
∫1/2

s

g(r)dr

)

ds +
∫1/2

1/3
ϕ−1
p

(

α +
∫1/2

s

g(r)dr

)

ds

≤ −1
6

(−α
2

)1/(p−1)
+
∫1/3

0
ϕ−1
p

(∫1/2

s

g(r)dr

)

ds

≤ −1
6

(−α
2

)1/(p−1)
+
∫1/2

0
ϕ−1
p

(∫1/2

s

∣∣g(r)
∣∣dr

)

ds −→ −∞,

(2.9)
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as α → −∞. Since −α/2 +
∫s
1/2 g(r)dr > 0 for 1/2 ≤ s ≤ 2/3, for negatively large α < 0, we

have

wα

(
1
2

)
=
∫1

1/2
ϕ−1
p

(
−α +

∫ s

1/2
g(r)dr

)
ds

=
∫2/3

1/2
ϕ−1
p

(
−α +

∫ s

1/2
g(r)dr

)
ds +

∫1

2/3
ϕ−1
p

(
−α +

∫ s

1/2
g(r)dr

)
ds

≥ 1
6

(−α
2

)1/(p−1)
+
∫1

2/3
ϕ−1
p

(∫s

1/2
g(r)dr

)
ds

≥ 1
6

(−α
2

)1/(p−1)
−
∫1

1/2
ϕ−1
p

(∫s

1/2

∣
∣g(r)

∣
∣dr
)
ds −→ ∞,

(2.10)

as α → −∞. Thus, by intermediate value theorem, there is a unique α0 ∈ R such that
vα0(1/2) = wα0(1/2). Put

u(t) =

⎧
⎪⎨

⎪⎩

vα0(t), 0 ≤ t ≤ 1
2
,

wα0(t),
1
2
≤ t ≤ 1.

(2.11)

Then, u ∈ C[0, 1] ∩ C1(0, 1) and u solves (A).

From the uniqueness of α, the following is obvious.

Corollary 2.4. Suppose that α is a function defined in Lemma 2.2. Then, α has the following property:

α
(
λg
)
= λα

(
g
)
, (2.12)

for all λ ∈ R.

The following lemma guarantees the uniqueness of solutions for (A).

Lemma 2.5. Assume that, for i = 1, 2, ui ∈ C[0, 1] ∩ C1(0, 1) satisfies

−ϕp

(
u′)′ = gi, t ∈ (0, 1),

u(0) = 0 = u(1).
(Ai)

If g1 ≤ g2 or g2 ≤ g1 on [0, 1], then u1 ≤ u2 or u2 ≤ u1 on [0, 1], respectively.

Proof. We only prove the first case. We may use similar argument to show the second case.
Let ui be a solution of (Ai), i = 1, 2, and assume g1 ≤ g2 for 0 ≤ t ≤ 1. We want to show
u1(t) ≤ u2(t), 0 ≤ t ≤ 1. If this is false, then there exists t0 ∈ (0, 1) with u1(t0) > u2(t0).
Hence, there is an interval (a, b) ⊂ (0, 1) with t0 ∈ (a, b) such that u1(t) > u2(t), a < t < b
and u1(a) − u2(a) = u1(b) − u2(b) = 0. Let m = u1(B) − u2(B) be the positive maximum
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of u1(t) − u2(t) on [a, b]. Then, B ∈ [a, b] and u′
1(B) = u′

2(B). Integrating both sides (A1) and
(A2) over [s, B], a < s < B, we have

u′
1(s) = ϕ−1

p

(

ϕp

(
u′
1(B)

)
+
∫B

s

g1(r)dr

)

,

u′
2(s) = ϕ−1

p

(

ϕp

(
u′
2(B)

)
+
∫B

s

g2(r)dr

)

.

(2.13)

Integrating both sides of the above equalities over [a, B], we get

u1(B) − u1(a) =
∫B

a

ϕ−1
p

(

ϕp

(
u′
1(B)

)
+
∫B

s

g1(r)dr

)

ds,

u2(B) − u2(a) =
∫B

a

ϕ−1
p

(

ϕp

(
u′
2(B)

)
+
∫B

s

g2(r)dr

)

ds.

(2.14)

Thus, we obtain

0 < m = u1(B) − u2(B) ≤ 0, (2.15)

which is a contradiction. This completes the proof.

Let us define

G
(
g
)
(t) =

⎧
⎪⎨

⎪⎩

∫ t
0 ϕ

−1
p

(
α +
∫1/2
s g(r)dr

)
ds, 0 ≤ t ≤ 1

2
,

∫1
t ϕ

−1
p

(
−α +

∫s
1/2 g(r)dr

)
ds,

1
2
≤ t ≤ 1.

(2.16)

Then, problem (A) can be equivalently written as u = G(g).

3. Application: Compactness

In this and the following sections, as an application of new solution operator, we consider a
problem of one-dimensional p-Laplacian with a singular weight as follows:

ϕp

(
u′)′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),
(Pλ)

where λ > 0 a parameter, h ∈ H, and f ∈ C(R,R). Note that we do not need any other
assumptions on f except the continuity in this section. Employing the solution operator G
established in Section 2, we may rewrite (Pλ) equivalently as

u = G(λ, u), (3.1)
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where G : (0,∞) × C[0, 1] → C[0, 1] is defined by

G(λ, u)(t) �

⎧
⎪⎨

⎪⎩

∫ t
0 ϕ

−1
p

(
α
(
λhf(u)

)
+
∫1/2
s λh(r)f(u(r))dr

)
ds, 0 ≤ t ≤ 1

2
,

∫1
t ϕ

−1
p

(
−α(λhf(u)) + ∫s1/2 λh(r)f(u(r))dr

)
ds,

1
2
≤ t ≤ 1.

(3.2)

The purpose of this section is to show that G is completely continuous on (0,∞)×C[0, 1]. For
this, we need to know the properties of function α : (0,∞) × C[0, 1] → R.

Lemma 3.1. α sends bounded sets in (0,∞) × C[0, 1] into bounded sets in R.

Proof. Assume that {λn} and {un} are bounded on (0,∞) and C[0, 1], respectively. For
convenience, we denote αn = α(λnhf(un)). Suppose that {αn} is unbounded in R. Then, there
is a subsequence {αnk} such that αnk → ∞ or αnk → −∞ as k → ∞. Here, we consider
the first case αnk → ∞. We can prove the second case by the same argument. As in (2.2) of
Lemma 2.2, we have

∫1/2

0
ϕ−1
p

(

αnk +
∫1/2

s

λnkh(r)f(unk(r))dr

)

ds

=
∫1

1/2
ϕ−1
p

(
−αnk +

∫s

1/2
λnkh(r)f(unk(r))dr

)
ds.

(3.3)

As in the proof of Lemma 2.2, we get the following inequality for the left-hand side

0 ≤
∫1/2

0
ϕ−1
p

(

αnk −M

∫1/2

s

|h(r)|dr
)

ds

≤
∫1/2

0
ϕ−1
p

(

αnk +
∫1/2

s

λnkh(r)f(unk(r))dr

)

ds,

(3.4)

for sufficiently large k, where M = sup{|λnk |‖f(unk)‖∞}. On other hand, as in the proof of
Lemma 2.2, we get the following inequality for the right-hand side

∫1

1/2
ϕ−1
p

(
−αnk +

∫ s

1/2
λnkh(r)f(unk(r))dr

)
ds

≤
∫1

1/2
ϕ−1
p

(
−αnk +M

∫s

1/2
|h(r)|dr

)
ds < 0,

(3.5)

for sufficiently large k, and this is a contradiction.

Lemma 3.2. α is continuous on (0,∞) × C[0, 1].
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Proof. Assume that λn → λ in R and un → u in C[0, 1]. Then, there exists a constant M > 0
such that

|λn| + ‖un‖∞ ≤ M, ∀n. (3.6)

Lemma 3.1 implies that {α(λnhf(un))} is bounded in R. Hence, it has a convergent sub-
sequence denoted by {α(λnkhf(unk))}. Let

α
(
λnkhf(unk)

) −→ α̂ (3.7)

as k → ∞. As in (2.2) of Lemma 2.2, we have

∫1/2

0
ϕ−1
p

(

α
(
λnkhf(unk)

)
+
∫1/2

s

λnkh(r)f(unk(r))dr

)

ds

=
∫1

1/2
ϕ−1
p

(
−α(λnkhf(unk)

)
+
∫s

1/2
λnkh(r)f(unk(r))dr

)
ds.

(3.8)

By Lebesgue dominated convergence theorem, as k → ∞, we get

∫1/2

0
ϕ−1
p

(

α̂ +
∫1/2

s

λh(r)f(u(r))dr

)

ds =
∫1

1/2
ϕ−1
p

(
−α̂ +

∫s

1/2
λh(r)f(u(r))dr

)
ds. (3.9)

By the uniqueness of α, we obtain α̂ = α(λhf(u)), and this proves the continuity of α.

We have the following corollary using similar argument in the proof of Lemma 3.2.

Corollary 3.3. Let λn ∈ (0,∞) satisfy λn → 0 as n → ∞. Then, α(λn) → 0 as n → ∞.

Theorem 3.4. G is continuous and compact on (0,∞) × C[0, 1].
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Proof. First, we show the continuity of G. Assume that λn → λ on (0,∞) and un → u in
C[0, 1]. Then, from the continuity of α and Lebesgue dominated convergence theorem, we
have

‖G(λn, un) −G(λ, u)‖∞ = sup
0≤t≤1

|G(λn, un)(t) −G(λ, u)(t)|

≤ sup
0≤t≤1/2

∣
∣
∣
∣
∣

∫ t

0
ϕ−1
p

(

α
(
λnhf(un)

)
+
∫1/2

s

λnh(r)f(un(r))dr

)

−ϕ−1
p

(

α
(
λhf(u)

)
+
∫1/2

s

λh(r)f(u(r))dr

)

ds

∣
∣
∣
∣
∣

+ sup
1/2≤t≤1

∣
∣
∣
∣∣

∫1

t

ϕ−1
p

(
α
(
λnhf(un)

)
+
∫s

1/2
λnh(r)f(un(r))dr

)

−ϕ−1
p

(
α
(
λhf(u)

)
+
∫s

1/2
λh(r)f(u(r))dr

)
ds

∣∣∣∣ −→ 0.

(3.10)

Next, we show that G is uniformly bounded. Let M be a bounded subset of (0,∞) ×
C[0, 1], and let (λ, u) ∈ M, then using the fact that α sends bounded sets on (0,∞) × C[0, 1]
into bounded sets on R and taking M = sup{|λ|‖f(u)‖∞ : (λ, u) ∈ M}, we obtain

|G(λ, u)(t)| ≤

⎧
⎪⎨

⎪⎩

∫ t
0 ϕ

−1
p

(∣∣α
(
λhf(u)

)∣∣ +M
∫1/2
s |h(r)|dr

)
ds, 0 ≤ t ≤ 1

2
,

∫1
t ϕ

−1
p

(∣∣α
(
λhf(u)

)∣∣ +M
∫s
1/2|h(r)|dr

)
ds,

1
2
≤ t ≤ 1,

≤

⎧
⎪⎨

⎪⎩

∫1/2
0 ϕ−1

p

(
|K(M,h)| +M

∫1/2
s |h(r)|dr

)
ds < ∞, 0 ≤ t ≤ 1

2
,

∫1
1/2 ϕ

−1
p

(
|K(M,h)| +M

∫s
1/2|h(r)|dr

)
ds < ∞,

1
2
≤ t ≤ 1,

(3.11)

where K(M,h) is a constant and the above upper bound is independent of (λ, u) ∈ M.
Finally, we show that G(M) is equicontinuous. By Lemma 3.1, {α(λhf(u)) : (λ, u) ∈

M} is bounded so by taking N = sup{ϕ−1
p (|α(λhf(u))|) : (λ, u) ∈ M}, we obtain for 0 ≤

t1, t2 ≤ 1/2,

|G(λ, u)(t1) −G(λ, u)(t2)| ≤
∣∣∣∣∣

∫ t2

t1

ϕ−1
p

(

α
(
λhf(u)

)
+
∫1/2

s

λh(r)f(u(r))dr

)

ds

∣∣∣∣∣

≤ CpN|t2 − t1| + CpM

∫ t2

t1

ϕ−1
p

(∫1/2

s

|h(r)|dr
)

ds.

(3.12)
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Since h ∈ H, the above upper bound tends to 0 as |t1 − t2| does. For case 1/2 ≤ t1, t2 ≤ 1, we
may handle similar way. For case 0 ≤ t1 ≤ 1/2, 1/2 ≤ t2 ≤ 1 (or case 0 ≤ t2 ≤ 1/2, 1/2 ≤ t1 ≤ 1),
we can compute the following:

|G(λ, u)(t1) −G(λ, u)(t2)| =
∣
∣∣
∣
∣

∫ t1

0
ϕ−1
p

(

α
(
λhf(u)

)
+
∫1/2

s

λh(r)f(u(r))dr

)

ds

−
∫1

t2

ϕ−1
p

(
−α(λhf(u)) +

∫ s

1/2
λh(r)f(u(r))dr

)
ds

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫1/2

0
ϕ−1
p

(

α
(
λhf(u)

)
+
∫1/2

s

λh(r)f(u(r))dr

)

ds

−
∫1/2

t1

ϕ−1
p

(

α
(
λhf(u)

)
+
∫1/2

s

λh(r)f(u(r))dr

)

ds

−
[∫1

1/2
ϕ−1
p

(
−α(λhf(u)) +

∫ s

1/2
λh(r)f(u(r))dr

)
ds

−
∫ t2

1/2
ϕ−1
p

(
−α(λhf(u)) +

∫ s

1/2
λh(r)f(u(r))dr

)
ds

]∣∣∣∣∣

=

∣∣∣∣∣

∫ t2

1/2
ϕ−1
p

(
−α(λhf(u)) +

∫ s

1/2
λh(r)f(u(r))dr

)
ds

−
∫1/2

t1

ϕ−1
p

(

α
(
λhf(u)

)
+
∫1/2

s

λh(r)f(u(r))dr

)

ds

∣∣∣∣∣

≤ 2Cp

∫ t2

t1

{

ϕ−1
p

(∣∣α
(
λhf(u)

)∣∣)

+ M1

[

ϕ−1
p

(∫s

1/2
|h(r)|dr

)
+ ϕ−1

p

(∫1/2

s

|h(r)|dr
)]}

ds

≤ 2CpN|t2 − t1| + 2CpM1

∫ t2

t1

ϕ−1
p

(∫ s

1/2
|h(r)|dr

)

+ ϕ−1
p

(∫1/2

s

|h(r)|dr
)

ds,

(3.13)

where M1 = ϕ−1
p (M). Thus, by Arzela-Ascoli Theorem, G is compact, and the proof is com-

plete.
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4. Application: Existence

In this section, we show the existence of nontrivial solutions for problem (Pλ):

ϕp

(
u′)′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),
(Pλ)

where λ > 0 a parameter, h ∈ H, and f ∈ C(R,R). In addition, we assume that

(F) f(0) > 0 and f∞ ≡ lims→∞f(s)/sp−1 = 0.

Based on the solution operator and its complete continuity established in Section 3, we
show the existence of nontrivial solutions of (Pλ) for all λ > 0. We will employ the following
theorem the so-called global continuation theorem for the proof of our existence theorem.

Let X be a Banach space and G : R × X → R completely continuous with G(0, u) = 0,
and consider

u = G(λ, u). (4.1)

We denote S as the set of solutions for (4.1), R+ = [0,∞) and R
− = (−∞, 0].

Theorem 4.1 (see [5, Theorem 3.2]). LetX be a Banach space and G : R×X → X continuous and
compact and G(0, u) = 0. Then, S contains a pair of unbounded components C+,C− in R

+ × X and
R

− ×X, respectively, and C+ ∩ C− = {(0, 0)}.

We now state our main existence theorem.

Theorem 4.2. Assume that h ∈ H and f holds (F). Then (Pλ) has non-trivial solutions for all λ > 0.

Let us take X = C[0, 1] with the norm ‖ · ‖∞. We know that, to solve (Pλ), it is enough
to solve

u = G(λ, u), (4.2)

where G is defined in Section 3. And we have shown that G is continuous and compact in
Section 3. Since G(0, u) = 0 is obvious, employing Theorem 4.1, we obtain an unbounded
continuum C+. If we provide a priori boundedness of solutions for (Pλ), then the unbounded
continuum guarantees the existence of solutions for all λ > 0. Therefore, to complete the proof
of Theorem 4.2, we need to give a priori estimate of solutions for (Pλ).

Lemma 4.3. Assume that h ∈ H and f holds (F). Let (λ, u) be a solution for (Pλ) with λ ∈ (0,Λ].
Then, there exists a constant C(Λ) which depends only on Λ such that ‖u‖∞ ≤ C(Λ).
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Proof. Let us define a function K : (0,∞) × R → R which satisfies the following property:
K(λn, h) → 0 as λn → 0. Since h ∈ H, for given Λ > 0, there exists ε > 0 such that

Λp−1 max

{∫1/2

0
ϕ−1
p

(

|K(ε, h)| + ε

∫1/2

s

|h(r)|dr
)

ds,

∫1

1/2
ϕ−1
p

(
|K(ε, h)| + ε

∫s

1/2
|h(r)|dr

)
ds

}

<
1
2
.

(4.3)

Then, since f∞ = 0, for ε given above, there exists N > 0 such that for all swith |s| ≥ N,

∣∣f(s)
∣∣ ≤ ε|s|p−1. (4.4)

Since f is continuous on [−N,N], for N given above, there exists a maximum value M > 0
for |f | on [−N,N], that is, for all swith |s| ≤ N, we have |f(s)| ≤ M. Let us divide the interval
[0, 1] into I and J as

I := {t ∈ [0, 1] : |u(t)| ≥ N},
J := {t ∈ [0, 1] : |u(t)| ≤ N},

(4.5)

respectively. Then, we can estimate solution u as follows:

|u(t)| ≤

⎧
⎪⎨

⎪⎩

∫ t
0 ϕ

−1
p

(∣∣α
(
λhf(u)

)∣∣ +
∫1/2
s λ

∣
∣h(r)f(u(r))

∣∣dr
)
ds, 0 ≤ t ≤ 1

2
,

∫1
t ϕ

−1
p

(∣∣α
(
λhf(u)

)∣∣ +
∫s
1/2 λ

∣∣h(r)f(u(r))
∣∣dr
)
ds,

1
2
≤ t ≤ 1,

=
∫

I

+
∫

J

,

(4.6)

where
∫
Γ with Γ = I or J can be given as

∫

Γ
=

⎧
⎪⎨

⎪⎩

∫
Γ ϕ

−1
p

(∣∣α
(
λhf(u)

)∣∣ +
∫1/2
s λ

∣∣h(r)f(u(r))
∣∣dr
)
ds, 0 ≤ t ≤ 1

2
,

∫
Γ ϕ

−1
p

(∣∣α
(
λhf(u)

)∣∣ +
∫s
1/2 λ

∣∣h(r)f(u(r))
∣∣dr
)
ds,

1
2
≤ t ≤ 1.

(4.7)
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By Lemma 3.1, if |λf(u)| ≤ M for some M > 0, then there exists a constant K(M,h) > 0 such
that |α(λhf(u))| ≤ K(M,h). Thus, on J , we have

∫

J

=

⎧
⎪⎨

⎪⎩

∫
J ϕ

−1
p

(∣
∣α
(
λhf(u)

)∣∣ +
∫1/2
s λ

∣
∣h(r)f(u(r))

∣
∣dr
)
ds, 0 ≤ t ≤ 1

2
,

∫
J ϕ

−1
p

(∣∣α
(
λhf(u)

)∣∣ +
∫s
1/2 λ

∣∣h(r)f(u(r))
∣∣dr
)
ds,

1
2
≤ t ≤ 1,

≤

⎧
⎪⎨

⎪⎩

∫
J ϕ

−1
p

(
|K(ΛM,h)| + ΛM

∫1/2
s |h(r)|dr

)
ds, 0 ≤ t ≤ 1

2
,

∫
J ϕ

−1
p

(
|K(ΛM,h)| + ΛM

∫s
1/2|h(r)|dr

)
ds,

1
2
≤ t ≤ 1,

≤

⎧
⎪⎨

⎪⎩

∫1/2
0 ϕ−1

p

(
|K(ΛM,h)| + ΛM

∫1/2
s |h(r)|dr

)
ds, 0 ≤ t ≤ 1

2
,

∫1/2
0 ϕ−1

p

(
|K(ΛM,h)| + ΛM

∫s
1/2|h(r)|dr

)
ds,

1
2
≤ t ≤ 1,

≤ KCΛ,

(4.8)

where CΛ = max{|K(ΛM,h)|,ΛM} and

K = max

{∫1/2

0
ϕ−1
p

(

1 +
∫1/2

s

|h(r)|dr
)

ds,

∫1

1/2
ϕ−1
p

(
1 +
∫ s

1/2
|h(r)|dr

)
ds

}

. (4.9)

On I, using Corollaries 2.4 and 3.3, and λ/Λ < 1, we obtain

∫

I

≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
I ϕ

−1
p

(∣∣∣∣∣
α

(
λ

Λ
h

f(u)

‖u‖p−1∞

)∣∣∣∣∣
+
∫1/2
s

λ

Λ
|h(r)|

∣∣∣∣∣
f(u)

‖u‖p−1∞

∣∣∣∣∣
dr

)

dsΛp−1‖u‖∞, 0 ≤ t ≤ 1
2
,

∫
I ϕ

−1
p

(∣∣∣∣∣
α

(
λ

Λ
h

f(u)

‖u‖p−1∞

)∣∣∣∣∣
+
∫s
1/2

λ

Λ
|h(r)|

∣∣∣∣∣
f(u)

‖u‖p−1∞

∣∣∣∣∣
dr

)

dsΛp−1‖u‖∞,
1
2
≤ t ≤ 1,

≤

⎧
⎪⎨

⎪⎩

∫
I ϕ

−1
p

(
K(ε, h) + ε

∫1/2
s |h(r)|dr

)
dsΛp−1‖u‖∞, 0 ≤ t ≤ 1

2
,

∫
I ϕ

−1
p

(
K(ε, h) + ε

∫s
1/2|h(r)|dr

)
dsΛp−1‖u‖∞,

1
2
≤ t ≤ 1,

≤

⎧
⎪⎨

⎪⎩

∫1/2
0 ϕ−1

p

(
K(ε, h) + ε

∫1/2
s |h(r)|dr

)
dsΛp−1‖u‖∞, 0 ≤ t ≤ 1

2
,

∫1
1/2 ϕ

−1
p

(
K(ε, h) + ε

∫s
1/2|h(r)|dr

)
dsΛp−1‖u‖∞,

1
2
≤ t ≤ 1,

≤ 1
2
‖u‖∞.

(4.10)

Therefore, we have

|u(t)| ≤ KCΛ +
1
2
‖u‖∞, (4.11)
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so that

‖u‖∞ ≤ 2KCΛ, (4.12)

and this completes the proof.
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[2] R. Manásevich and J. Mawhin, “Boundary value problems for nonlinear perturbations of vector p-
Laplacian-like operators,” Journal of the Korean Mathematical Society, vol. 37, no. 5, pp. 665–685, 2000.
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