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Copyright q 2012 A. A. Soliman. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The variational iteration method and Adomian decomposition method are applied to solve the
FitzHugh-Nagumo (FN) equations. The two algorithms are illustrated by studying an initial value
problem. The obtained results show that only few terms are required to deduce approximated
solutions which are found to be accurate and efficient.

1. Introduction

The pioneering work of Hodgkin and Huxley [1], and subsequent investigations, has
established that good mathematical models for the conduction of nerve impulses along an
axon can be given. These models take the form of a system of ordinary differential equations,
coupled to a diffusion equation. Simpler models, which seem to describe the qualitative
behavior, have been proposed by FitzHugh [2] and Nagumo [3]. This paper is devoted to
the study of the FitzHugh-Nagumo (FN) system:

vt(x, t) = vxx(x, t) − f(v(x, t)) −w(x, t),

wt(x, t) = bv(x, t) − γw(x, t),
(1.1)

where b and γ are positive constants and f(v(x, t)) is nonlinear function. Existence and
uniqueness for this system is given in 1978 by Rauch and Smoller [4], in which they showed
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that small solutions v(x, t) decay to 0 as t → ∞ and large pulses produce a traveling wave.
We consider the FN equations in the following form

vt(x, t) = vxx(x, t) − f(v(x, t)) −w(x, t),

wt(x, t) = bv(x, t),
(1.2)

and the function f(v(x, t)) is given by Mckean [5] such that:

f(v(x, t)) = v(x, t) −H(v(x, t) − a), 0 ≤ a ≤ 1
2
, (1.3)

where H is the Heaviside step function

H(s) =

{
0 s < 0,
1 s ≥ 0.

(1.4)

The exact solution of this system is given by:

v(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a eα1z, z ≤ 0(
a − 1

p′1

)
eα1z − 1

p′2
eα2z − 1

p′3
eα3z, 0 ≤ z ≤ z1

e−α2z1 − 1
p′2

eα2z +
e−α3 z1 − 1

p′3
eα3z, z1 ≤ z,

(1.5)

w(x, t) = vxx(x, t) − vt(x, t) − f(v(x, t)), (1.6)

where z = x + ct, c is the speed of the traveling wave and αi, i = 1, 2, 3 are the zeros of the
polynomial

p(α) = α3 − cα2 − α − b

c
,

p′i = p′(αi), i = 1, 2, 3.
(1.7)

A numerical scheme for FN equations [6] by collocation method and the “Hopscotch”
finite difference scheme first proposed by Gordon [7], and further developed by Gourlay
and McGuire [8, 9]. Other possible schemes which were considered are (i) finite difference
schemes [10], (ii) Galerkin-type schemes [11], and (iii) collocation schemes with quadratic
and cubic splines [6]. In this paper, we use the variational iteration and Adomian
decomposition methods to find the numerical solutions of the FN equations which will be
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useful in numerical studies. In our numerical study we consider the case b = 0.1 and a = 0.3,
also

c = 0.7122,

α1 = 1.46192629534582,

α2 = −0.1639653991443764,
α3 = −0.5857608638090818,
z1 = 4.5976770121482735,

(1.8)

with these parameters now we can use the exact travelling wave solution (1.5) to test the
suggested numerical methods.

2. The Formalism

We introduce the main points of each of the two methods, where details can be found in
[12–37].

2.1. The Variational Iteration Method (VIM)

The VIM is the general Lagrange method, in which an extremely accurate approximation at
some special point can be obtained, but not an analytical solution. To illustrate the basic idea
of the VIM we consider the following general partial differential equation:

Ltu(x, t) + Lxu(x, t) +Nu(x, t) + g(t, x) = 0, (2.1)

where Lt and Lx are linear operators of t and x respectively, and N is a nonlinear operator.
According to the VIM, we can expressed the following correction functional in t-, and x-
directions, respectively, as follows:

un+1(x, t) = un(x, t) +
∫ t

t0

λ
(
Lsun(x, s) + (Lx +N)ũn(x, s) + g(x, s)

)
ds, (2.2a)

un+1(x, t) = un(x, t) +
∫x

x0

μ
(
Lsun(t, s) + (Lt +N)ũn(t, x) + g(t, s)

)
ds, (2.2b)

where λ and μ are general Lagrange multipliers, which can be identified optimally via the
variational theory, and ũn(x, t) are restricted variations which mean that δũn(x, t) = 0. By this
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method, it is required first to determine Lagrange multipliers λ and μ that will be identified
optimally. The successive approximations un+1(x, t), n ≥ 0 of the solution u(x, t) will be
readily obtained upon using the determined Lagrange multipliers and any selective function
u0(x, t). Consequently, the solution is given by

u(x, t) = lim
n→∞

un(x, t). (2.3)

The above analysis yields the following theorem.

Theorem 2.1. The VIM solution of the partial differential equation (2.1) can be determined by (2.3)
with the iterations (2.2a) or (2.2b).

2.2. Adomian Decomposition Method (ADM)

Applying the inverse operator L−1(·) =
∫ t
0(·)dt to both sides of (2.1) and using the initial

condition, we get

u0(x, t) = u(x, 0),

un+1(x, t) =
∫ t

0

(−Lx un(x, t) −An − g(x, t)
)
dt, n ≥ 0,

(2.4)

where the nonlinear operator N(u) =
∑∞

n=0 An is the Adomian polynomial determined by

An =
1
n!

dn

dλn

( ∞∑
i=0

λi ui(x, t)

)∣∣∣∣∣
λ=0

, n = 0, 1, 2 . . . . (2.5)

We next decompose the unknown function u(x, t) by a sum of components defined by the
following decomposition series

u(x, t) =
∞∑
n=0

un(x, t). (2.6)

The above analysis yields the following theorem

Theorem 2.2. The ADM solution of the partial differential equation (2.1) can be determined by the
series (2.6) with the iterations (2.4).



Abstract and Applied Analysis 5

3. Applications

We solve the FN equations using the two methods VIM and ADM.

3.1. The VIM for the FN Equations

Consider the FN equations in the form

vt − vxx + f(v) +w = 0,

wt − bv = 0.
(3.1)

Then the VIM formulae take the forms

vn+1(x, t) = vn(x, t) +
∫ t

0
λ
(
vs(x, s) − ṽxx(x, s) + f(ṽ(x, s)) + w̃(x, s)

)
ds,

wn+1(x, t) = wn(x, t) +
∫ t

0
μ(ws(x, s) − bṽ(x, s)ds,

(3.2)

where v0(x, t) = v(x, 0), w0(x, t) = w(x, 0) and n ≥ 0. This yields the stationary conditions

λ′(s) = 0, λ + 1|s=t = 0, μ′(s) = 0, μ + 1
∣∣
s=t = 0, (3.3)

Hence, the Lagrange multipliers are

λ(s) = μ(s) = −1. (3.4)

Substituting these values of Lagrange multipliers into the functional correction (3.2) gives
the iterations formulae

vn+1(x, t) = vn(x, t) +
∫ t

0
λ
(
vs(x, s) − vxx(x, s) + f(v(x, s)) +w(x, s)

)
ds,

wn+1(x, t) = wn(x, t) +
∫ t

0
μ (ws(x, s) − bv(x, s)ds.

(3.5)

We start with initial approximations as follows

v0(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a eα1x, x ≤ 0,(
a − 1

p′1

)
eα1x − 1

p′2
eα2x − 1

p′3
eα3x, 0 ≤ x ≤ z1,

e−α2 z1 − 1
p′2

eα2x +
e−α3z1 − 1

p′3
eα3x, z1 ≤ x,

w0(x, t) = (v0(x, t))xx − (v0(x, t))t − f(v0(x, t)),

(3.6)
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and then the first iterations are

v1(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
v11, z ≤ 0,
v12, 0 ≤ z ≤ z1,

v13 z1 ≤ z,

v11 = 0.312355e1.46193x(0.960445 + t),

v12 = e−0.749726x
(
e0.585761x(1.45816 − 0.170279t) + e2.21165 x(−0.000361868 − 0.000376771t)

+e0.163965x(−1.1578 + 0.483011t)
)
,

v13 = e−0.749726x
(
e0.163965x(15.9522 − 6.65492t) + e0.585761x(−1.64071 + 0.191596t)

)
,

w1(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
w11, z ≤ 0
w12, 0 ≤ z ≤ z1

w13 z1 ≤ z

w11 = 0.03 e1.46193x(0.960445 + t),

w12 = e−0.749726x
(
e0.749726 x + e0.16396 x(0.277531 − 0.11578 t)

+ e2.21165x(−0.000034755 − 0.0000361868 t) + e0.585761x(−1.24868 + 0.145816 t),

w13 = e
−0.749726

x

(
e0.585761x(1.405 − 0.164071 t) + e0.163965x(−3.82383 + 1.59522t)

)
,

(3.7)

and so on.
The VIM produces the solutions v(x, t), w(x, t) as follows

v(x, t) = lim
n→∞

vn(x, t), w(x, t) = lim
n→∞

wn(x, t), (3.8)

where vn(x, t), wn(x, t), will be determined in a recursive manner.

3.2. The ADM for the FN Equations

Consider the FN equations in the following form:

Lv = vxx − f(v) −w, (3.9)

Lw = bv, (3.10)
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where L(·) = ∂(·)/∂t. Operating by L−1(·) = ∫ t0(·)dt on both sides of (3.9), we get

v(x, t) = v(x, 0) +
∫ t

0

(
vxx(x, t) − f(v(x, t)) −w(x, t)

)
dt,

w(x, t) = w(x, 0) +
∫ t

0
(bv(x, t)dt.

(3.11)

The ADM assumes that the unknown functions v(x, t) and w(x, t) can be expressed by an
infinite series in the forms

v(x, t) =
∞∑
n=0

vn(x, t),

w(x, t) =
∞∑
n=0

wn(x, t),

(3.12)

where vn(x, t) , and wn(x, t) can be determined by using the recurrence relations:

vn+1(x, t) =
∫ t

0

(
vnxx(x, t) − f(vn(x, t)) −wn(x, t)

)
dt,

wn+1(x, t) =
∫ t

0
(bvn(x, t)dt, n = 0, 1, . . . ,

(3.13)

where

f(vn(x, t)) =

{
vn(x, t), vn(x, t) < a,

vn(x, t) − 1 vn(x, t) ≥ a
(3.14)

such that

v0(x, t) = v(x, 0),

w0(x, t) = w(x, 0).
(3.15)
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Then the first iterations are

v1(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.312355e1.46193, z ≤ 0
t +
(−1 + 0.483011e−0.585761x − 0.170279e−0.163965x

−0.000376771e1.46193x)t, 0 ≤ z ≤ z1(−6.65492e−0.585761x + 0.191596e−0.163965x
)
t, z1 ≤ z

(3.16a)

w1(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
0.03 e1.46193x , z ≤ 0
0.1
(−1.1578 e−0.585761x + 1.45816e−0.163965x − 0.000361868e1.46193x

)
t, 0 ≤ z ≤ z1

0.1
(
15.9522 e−0.585761x − 1.64071 e−0.163965x

)
t, z1 ≤ z

,

(3.16b)

and so on.
The ADM yields the solutions v(x, t), w(x, t) as

v(x, t) =
∞∑
n=0

vn(x, t), w(x, t) =
∞∑
n=0

wn(x, t), (3.17)

where vn(x, t), wn(x, t), will be determined in a recursive manner.

4. A Test Problem for the FN Equations

We discuss the solutions of the FN equations using the two considered VIM and ADM
methods.

4.1. The VIM

Solve the FN equations (1.2) using the VIM with finite iterations at time T = 5. A comparison
between the computed solutions and the exact solutions at different values of x are given
in Table 1. We note that the VIM solutions converge to the exact solutions specially when
n is increased. We show in Figure 1 the behavior of the VIM solutions of FN equations at
time T = 5. If the exact solutions are plotted on Figure 1 we will find that the VIM and exact
solutions curves are indistinguishable.

4.2. The ADM

Consider the same problems and use the ADM with the same initial conditions and use
the technique discussed in Section 2. A comparison between the exact solutions and ADM
solutions are shown in Table 2 and it seems that the errors are very small. We show in Figure 2
the numerical solutions of the FN equations.

The results listed in Table 3 are representing the maximum errors at different times
of VIM and ADM which shows that the VIM is better than ADM in the solutions of FN
equations.
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Figure 1: The approximated solutions for v(x, t), w(x, t) at time T = 5.

Table 1: Comparison between the exact and approximate (VIM) solutions for the FN equations at time
T = 5.

x vVIM vexact wVIM wexact

−7.561 0.000865955 0.000865955 0.0000831702 0.0000831702
−3.561 0.3 0.3 0.0288134 0.0288134
−0.561 0.662823 0.662823 0.28156 0.28156
1.439 0.130074 0.130074 0.414489 0.414489
3.439 −0.25639 −0.25639 0.382524 0.382524
8.439 −0.215232 −0.215232 0.193024 0.193024
16.439 −0.0616494 −0.0616494 16.439 16.439
22.439 −0.023095 −0.023095 0.0197795 0.0197795
48.439 −0.000325199 −0.000325199 0.000278481 0.000278481

Now we show a comparison between our schemes and other methods as shown in
Table 4.

It is clear that the suggested methods for solving FN equation are the best methods
than all other methods. Also all other methods give the solution as a discrete solution but our
methods give the solution as a function x and t.
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Figure 2: The approximation solutions v(x, t), w(x, t).

Table 2: Comparison between the exact solutions and approximation solutions (ADM) for FN equations
at time = 5.

x vADM vexact wADM wexact

−7.561 0.000865955 0.000865955 0.0000831702 0.0000831702
−3.561 0.3 0.3 0.0288134 0.0288134
−0.561 0.662823 0.662823 0.28156 0.28156
1.439 0.130074 0.130074 0.414489 0.414489
3.439 −0.25639 −0.25639 0.382524 0.382524
8.439 −0.215232 −0.215232 0.193024 0.193024
16.439 −0.0616494 −0.0616494 16.439 16.439
22.439 −0.023095 −0.023095 0.0197795 0.0197795
48.439 −0.000325199 −0.000325199 0.000278481 0.000278481

Table 3: The maximum errors of our suggested methods VIM and ADM.

Time VIM ADM
Max. errors for v (x, t) Max. errors for w (x, t) Max. errors for v (x, t) Max. errors for w (x, t)

2.0 3.66374E − 15 4.02456E − 16 3.71925E − 15 4.71845E − 16
4.0 1.14429E − 9 1.09902E − 10 1.15225E − 9 1.10668E − 10
6.0 3.37523E − 7 3.24191E − 8 3.37523E − 7 3.24191E − 8
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Table 4: Comparison between VIM, ADM, and other methods by maximum errors.

Method T = 1.60 T = 10.0
Finite difference

C-N 0.848E − 2 0.189
Hopscotch [9] 0.557E − 2 0.0506

Collocation method
Quadratic [6] 0.758E − 2 0.138
Cubic [6] 0.589E − 2 0.12

VIM 3.33067E − 16 0.000316341
ADM 4.44089E − 16 0.000316341

5. Conclusion

In this paper the solutions for the FN equations using VIM and ADM methods have been
generated. All numerical results obtained using few terms of the VIM and ADM show very
good agreement with the exact solutions. Comparing our results with those of previous
several methods shows that the considered techniques are more reliable, powerful, and
promisingmathematical tools. We believe that the accuracy of the VIM andADM recommend
it to be much wider applicability and also we find that the VIM more accurate than ADM.
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