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We introduce some new generalized sequence space related to the space �(p). Furthermore
we investigate some topological properties as the completeness, the isomorphism, and also we
give some inclusion relations between this sequence space and some of the other sequence
spaces. In addition, we compute α-, β-, and γ-duals of this space and characterize certain matrix
transformations on this sequence space.

1. Introduction

In studying the sequence spaces, especially, to obtain new sequence spaces, in general, the
matrix domain μA of an infinite matrix A defined by μA = {x = (xk) ∈ w : Ax ∈ μ} is used.
In most cases, the new sequence space μA generated by a sequence space μ is the expansion
or the contraction of the original space μ. In some cases, these spaces could be overlapped.
Indeed, one can easily see that the inclusion μS ⊂ μ strictly holds for μ ∈ {�∞, c, c0}. Similarly
one can deduce that the inclusion μ ⊂ μΔ also strictly holds for μ ∈ {�∞, c, c0}, where S and Δ
are matrix operators.

Recently, in [1], Mursaleen and Noman constructed new sequence spaces by using
matrix domain over a normed space. They also studied some topological properties and
inclusion relations of these spaces.

It is well known that paranormed spaces have more general properties than the
normed spaces. In this work, we generalize the normed sequence spaces defined by
Mursaleen and Noman [1] to the paranormed spaces. Furthermore we introduce new
sequence space over the paranormed space. Next we investigate behaviors of this sequence
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space according to topological properties and inclusion relations. Finally we give certain
matrix transformation on this sequence space and its duals.

In the literature, by using the matrix domain over the paranormed spaces, many
authors have defined new sequence spaces. Some of them are as follows. For example,
Choudhary and Mishra [2] have defined the sequence space �(p) where the S-transform
is in �(p), Başar and Altay [3, 4] defined the spaces λ(u, v; p) = {λ(p)}G for λ ∈
{�∞, c, c0} and �(u, v; p) = {�(p)}G, respectively, and Altay and Başar [5] have defined the
spaces rt∞(p), r

t
c(p), r

t
0(p). In [6], Karakaya and Polat defined and examined the spaces

er0(Δ; p), er(Δ; p), er∞(Δ; p), and Karakaya et al. [7] have recently introduced and studied
the spaces �∞(λ, p), c(λ, p), c0(λ, p), where Rt and Er denote the Riesz and the Euler means,
respectively, Δ denotes the band matrix of the difference operators, and Λ, G are defined in
[1, 8], respectively. Also, the information on matrix domain of sequence spaces can be found
in [9–13].

By w, we denote the space of all real valued sequences. Any vector subspace of w is
called a sequence space. By the spaces �1, cs, and bs, we denote the spaces of all absolutely
convergent series, convergent series, and bounded series, respectively.

A linear topological space X over the real field R is said to be a paranormed space if
there is a subadditivity function h : X → R such that h(θ) = 0, h(x) = h(−x), and scalar
multiplication is continuous, that is, |αn −α| → 0 and h(xn −x) → 0 imply h(αnxn −αx) → 0
for all α in R and x in X, where θ is the zero in the linear space X.

Let μ, ν be any two sequence spaces, and let A = (ank) be any infinite matrix of real
number ank, where n, k ∈ N with N = {0, 1, 2, . . .}. Then we say that A defines a matrix
mapping from μ into ν by writingA : μ → ν, if for every sequence x = (xk) ∈ μ, the sequence
Ax = (An(x)), the A-transform of x, is in ν, where

An(x) =
∑

k

ankxk (n ∈ N). (1.1)

By (μ, ν), we denote the class of all matrices A such that A : μ → ν. Thus, A ∈ (μ, ν) if and
only if the series on the right hand side of (1.1) converges for each n ∈ N and every x ∈ μ, and
we have Ax ∈ ν for all x ∈ μ. A sequence x is said to be A-summable to a if Ax converges to
a which is called as the A-limit of x.

Assume here and after that (pk), (qk) are bounded sequences of strictly positive real

numbers with sup pk = H and M = max(1,H), and also let
‘
pk = pk/(pk − 1) for 1 < pk < ∞

and for all k ∈ N. The linear space �(p)was defined by Maddox [14] as follows:

�
(
p
)
=

{
x = (xn) ∈ w :

∞∑

n=0
|xn|pn < ∞

}
(1.2)

which are the complete space paranormed by

h(x) =

( ∞∑

n=0
|xn|pn

)1/M

. (1.3)

Throughout this work, by � andNk, respectively, we will denote the collection of all subsets
of N and the set of all n ∈ N such that n ≥ k and e = (1, 1, 1, . . .).
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2. The Sequence Space �(λ, p)

In this section, we define the sequence space �(λ, p) and prove that this sequence space
according to its paranorm is complete paranormed linear space. In [1], Mursaleen and
Noman defined the matrix Λ = (λnk)

∞
n,k=0 by

λnk =

⎧
⎨

⎩

λk − λk−1
λn

(0 ≤ k ≤ n)

0 (k > n),
(2.1)

where λ = (λk)
∞
k=0 is a strictly increasing sequence of positive reals tending to ∞, that is,

0 < λ0 < λ1 < · · · and λk → ∞ as k → ∞. Now, by using (2.1)we define new sequence space
as follows:

�
(
λ, p
)
=

{
x = (xk) ∈ w :

∞∑

n=0

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣

pn

< ∞
}
. (2.2)

For any x = (xn) ∈ w, we define the sequence y = (yn), which will frequently be used, as the
Λ-transform of x, that is, y = Λ(x), and hence

yn =
n∑

k=0

(
λk − λk−1

λn

)
xk (n ∈ N). (2.3)

We now may begin with the following theorem.

Theorem 2.1. The sequence space �(λ, p) is the complete linear metric space with respect to paranorm
defined by

h(x) =

( ∞∑

n=0

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣

pn)1/M

. (2.4)

Proof. The linearity of �(λ, p) with respect to the coordinatewise addition and scalar
multiplication follows from the following inequalities which are satisfied for x, t ∈ �(λ, p)
(see, [15]):

( ∞∑

n=0

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)(xk + tk)

∣∣∣∣∣

pn)1/M

≤
( ∞∑

n=0

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣

pn)1/M

+

( ∞∑

n=0

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)tk

∣∣∣∣∣

pn)1/M
(2.5)

and for any α ∈ R (see, [16])

|α|pk ≤ max
{
1, |α|M

}
. (2.6)
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It is clear that h(θ) = 0, h(x) = h(−x) for all x ∈ �(λ, p). Again inequalities (2.5) and (2.6)
yield the subadditivity of h and hence h(αx) ≤ max{1, |α|M}h(x). Let {xm} be any sequence
of points xm ∈ �(λ, p) such that h(xm − x) → 0 and (αm) also any sequence of scalars such
that αm → α. Then, since the inequality

h(xm) ≤ h(x) + h(xm − x) (2.7)

holds by subadditivity of h, we can write that {h(xm)} is bounded and we thus have

h(αmx
m − αx) =

( ∞∑

n=0

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)
(
αmx

m
k − αxk

)
∣∣∣∣∣

pn)1/M

≤ |αm −→ α|1/Mh(xm) + |α|1/Mh(xm − x)

(2.8)

which tends to zero as n → ∞. Therefore, the scalar multiplication is continuous. Hence h is
a paranorm on the space �(λ, p). It remains to prove the completeness of the space �(λ, p). Let
{xj} be any Cauchy sequence in the space �(λ, p), where xj = {x(j)

0 , x
(j)
1 , x

(j)
2 , . . .}. Then, for a

given ε > 0, there exists a positive integer m0(ε) such that h(xj − xi) < ε/2 for all i, j > m0(ε).
Using definition of h, we obtain for each fixed n ∈ N that

∣∣∣Λn

(
xj
)
−Λn

(
xi
)∣∣∣ ≤

( ∞∑

n=0

∣∣∣Λn

(
xj
)
−Λn

(
xi
)∣∣∣

pn
)1/M

<
ε

2
(2.9)

for every i,j > m0(ε) which leads us to the fact that {Λn(x0),Λn(x1),Λn(x2), . . .} is a Cauchy
sequence of real numbers for every fixed n ∈ N. Since R is complete, it converges, say
Λn(xi) − Λn(x) as i → ∞. Using these infinitely many limits, we may write the sequence
{Λ0(x),Λ1(x),Λ2(x), . . .}. From (2.9) as i → ∞, we have

∣∣∣Λn

(
xj
)
−Λn(x)

∣∣∣ <
ε

2
,
(
j ≥ m0(ε)

)
(2.10)

for every fixed n ∈ N. By using (2.9) and boundedness of Cauchy sequence, we have

( ∞∑

n=0
|Λn(x)|pn

)1/M

≤
( ∞∑

n=0

∣∣∣Λn

(
xj
)
−Λn

(
xi
)∣∣∣

pn
)1/M

+

( ∞∑

n=0

∣∣∣Λn

(
xj
)∣∣∣

pn
)1/M

< ∞.
(2.11)

Hence, we get x ∈ �(λ, p). So, the space �(λ, p) is complete.

Theorem 2.2. The sequence space �(λ, p) of nonabsolute type is linearly isomorphic to the space �(p),
where 0 < pk ≤ H < ∞.

Proof. To prove the theorem, we would show the existence of linear bijection between the
spaces �(λ, p) and �(p). With the notation of (2.3), we define transformation T from �(λ, p)
to �(p) by x → y = Tx. The linearity of T is trivial. Furthermore, it is obvious that x = θ
whenever Tx = θ and hence T is injective.
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Let y ∈ �(p) and define the sequence x = {xn}

xn(λ) =
n∑

k=n−1

(
(−1)n−k λk

λn − λn−1

)
yk (n, k ∈ N). (2.12)

Then, we have

h�(λ,p)(x) =

( ∞∑

n=0

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣

pn)1/M

=

( ∞∑

n=0

∣∣yn

∣∣pn
)1/M

= h�(p)
(
y
)
. (2.13)

Thus, we have that x ∈ �(λ, p) and consequently T is surjective. Hence, T is a linear bijection
and this tells us that the spaces �(λ, p) and �(p) are linearly isomorphic. This completes the
proof.

3. Some Inclusion Relations

In this section, we give some inclusion relations concerning the space �(λ, p). Before giving
the theorems about the section, we give a lemma given in [1].

Lemma 3.1. For any sequence x = (xk) ∈ w, the equalites

Sn(x) = xn −Λn(x), (3.1)

Sn(x) =
λn−1

λn − λn−1
[Λn(x) −Λn−1(x)] (3.2)

hold, where the sequence S(x) = {Sn(x)} is defined by

S0(x) = 0, Sn(x) =
1
λn

n∑

k=1

λk−1(xk − xk−1) (n ≥ 1). (3.3)

Theorem 3.2. The inclusion �(λ, p) ⊂ c0(λ, p) holds.

Proof. Let x ∈ �(λ, p). It can be written Λx ∈ �(p). By the definition of the space �(p), Λnx →
∞ as n → ∞, we obtain Λx ∈ c0. Hence we get x ∈ c0(λ, p).

Theorem 3.3. The inclusion �(λ, p) ⊂ �(p) if and only if S(x) ∈ �(p) for every sequence x ∈ �(λ, p),
where 1 ≤ pk ≤ H.

Proof. We suppose that �(λ, p) ⊂ �(p) holds and take any x ∈ �(λ, p). Then x ∈ �(p) by
hypothesis. Thus we obtain from (3.1) that

[h(S(x))]�(p) ≤ [h(x)]�(p) + [h(Λx)]�(p) = [h(x)]�(p) + [h(x)]�(λ,p) (3.4)

which yields that S(x) ∈ �(p).
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Conversely, let x ∈ �(λ, p) be given. Then we have by the hypothesis that S(x) ∈ �(p).
Again by using (3.1)

[h(x)]�(p) ≤ [h(S(x))]�(p) + [h(Λx)]�(p) = [h(S(x))]�(p) + [h(x)]�(λ,p) (3.5)

which shows that x ∈ �(p). Hence the inclusion �(λ, p) ⊂ �(p) holds. This completes the
proof.

Theorem 3.4.
(i) If pn > 1 for all n ∈ N, then the inclusion �λp ⊂ �(λ, p) holds.
(ii) If pn < 1 for all n ∈ N, then the inclusion �(λ, p) ⊂ �λp holds.

Proof. (i) If p = (pn) for all n ∈ N, then we write �λp in place of�(λ, p). Let x ∈ �λp . It is clear
that Λ(x) ∈ �p. One can find m ∈ N such that |Λn(x)| < 1 for all n ≥ m. Under condition (i),
we have |Λn(x)|pn < |Λn(x)| for all n ≥ m. Hence we get x ∈ �(λ, p).

(ii) We suppose that x ∈ �(λ, p). Then Λ(x) ∈ �(p) and there exists m ∈ N such that
|Λn(x)|pn < 1 for all n ≥ m. To obtain the result, we consider the following inequality:

|Λn(x)| =
(|Λn(x)|pn

)1/pn < |Λn(x)|pn (3.6)

for all n ≥ m. So, we get x ∈ �λp .

4. Some Matrix Transformations and Duals of the Space �(λ, p)

In this section, we give the theorems determining the α-, β-, and γ-duals of the space �(λ, p).
In proving the theorem, we apply the technique used in [3]. Also we give some matrix
transformations from the space �(λ, p) into paranormed spaces �(q) by using thematrix given
in [1].

For the sequence space μ and ν, the set S(μ, ν) defined by

S
(
μ, ν
)
=
{
a = (ak) ∈ w : ax ∈ ν ∀x ∈ μ

}
(4.1)

is called the multiplier space of μ and ν. The α-, β-, and γ-duals of a sequence space μ, which
are, respectively, denoted by μα, μβ, and μγ , are defined by

μα = S
(
μ, �1

)
, μβ = S

(
μ, cs

)
, μγ = S

(
μ, bs

)
. (4.2)

We may begin with the following theorem which computes the α-dual of the space �(λ, p).

Theorem 4.1. LetK1 = {k ∈ N : pk ≤ 1} andK2 = {k ∈ N : pk > 1}. Define the matrixDa = (da
nk)

by

da
nk =

⎧
⎨

⎩
(−1)n−k λk

λn − λn−1
an, (n − 1 ≤ k ≤ n)

0, (0 ≤ k ≤ n − 1) or (k > n).
(4.3)
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Then

�αK1

(
λ, p
)
=
{
a = (an) ∈ w : Da ∈ (�(p); �∞

)}

�αK2

(
λ, p
)
=
{
a = (an) ∈ w : Da ∈ (�(p); �1

)}
.

(4.4)

Proof. We consider the following equality:

anxn =
n∑

k=n−1
da
nkyk =

(
Day

)
n (n ∈ N), (4.5)

where Da = (da
nk
) is defined by (4.3).

From (4.5), it can be obtained that ax = (anxn) ∈ �1 or ax = (anxn) ∈ �∞ whenever
x ∈ �(λ, p) if and only if Day ∈ �1 or Day ∈ �∞ whenever y ∈ �(p).This means a ∈ �αK1

(λ, p)
or a ∈ �αK2

(λ, p) if and only if Da ∈ (�(p); �1) or Da ∈ (�(p); �∞). Hence this completes the
proof.

The result of the Theorem above corresponds the Theorem 5.1(0, 8, 12) given in [17].
As a direct consequence of Theorem 4.1, we have the following.

Corollary 4.2. Let K∗ = {k ∈ N : n − 1 ≤ k ≤ n} ∩K for K ∈ �. Then

(i) �αK1
(λ, p) = {a = (an) ∈ w : supN supk∈N

|∑n∈K∗ da
nk|pk < ∞},

(ii) �αK2
(λ, p) =

⋃
M>1{a = (an) ∈ w : supK∈�

∑
k |
∑

n∈K∗ da
nk
M−1|p

!
k < ∞}

In the following theorem, we characterize the β- and γ-duals of the space �(λ, p).

Theorem 4.3. Let K1 = {k ∈ N : pk ≤ 1}, K2 = {k ∈ N : pk > 1}, and let Δxk = xk − xk+1. Define
the sequence s1 = (s1

k
), s2 = (s2

k
) and the matrix Ba = (ba

nk
) by

s1k = Δ
(

ak

λk − λk−1

)
λk, s2k =

akλk
λk − λk−1

bank =

⎧
⎪⎪⎨

⎪⎪⎩

s1
k
, (0 ≤ k ≤ n − 1)

s2k, (k = n)
0, (k > n)

(4.6)

for all n, k ∈ N. Then

�
β

K1

(
λ, p
)
= �

γ

K1

(
λ, p
)
=
{
a = (an) ∈ w : Ba ∈ (�(p); �∞

)}
, (4.7)

�
β

K2

(
λ, p
)
= �

γ

K2

(
λ, p
)
=
{
a = (an) ∈ w : Ba ∈ (�(p); c)}. (4.8)
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Proof. Consider the equality

n∑

k=0

akxk =
n−1∑

k=0

s1kyk + s2nyn =
(
Bay
)
n. (4.9)

From (4.9), it can be obtained that ax = (anxn) ∈ cs or bs whenever x = (xn) ∈ �(λ, p)
if and only if Bay ∈ c or �∞ whenever y = (yk) ∈ �(p). This means that a = (an) ∈
{�βK1

(λ, p) or �βK2
(λ, p)} or a = (an) ∈ {�γK1

(λ, p) or �γK2
(λ, p)} if and only if Ba ∈ (�(p); c)

or Ba ∈ (�(p); �∞). Hence this completes the proof.

We can write the following corollary from Theorem 4.3.

Corollary 4.4. Let
‘
pk = pk/(pk − 1) for 1 < pk < ∞ and for all k ∈ N. Then

(i) �βK1
(λ, p) = �

γ

K1
(λ, p) = {a = (an) ∈ w : s1, s2 ∈ �∞(p)},

(ii) �βK2
(λ, p) = �

γ

K2
(λ, p) =

⋃
M>1{a = (an) ∈ w : s1M−1, s2M−1 ∈ �(p′) ∩ �∞(p′)}.

After this step, we can give our theorems on the characterization of somematrix classes
concerning the sequence space �(λ, p).

Let x, y ∈ w be connected by the relation y = Λ(x). For an infinite matrix A = (ank),
we have by using (4.9) of Theorem 4.3 that

m∑

k=0

ankxk =
m−1∑

k=0

ãnkyk +
λm

λm − λm−1
anmym (m,n ∈ N), (4.10)

where

ãnk =
(

ank

λk − λk−1
− an,k+1

λk+1 − λk

)
λk (n, k ∈ N). (4.11)

The necessary and sufficient conditions characterizing the matrix mapping of the sequence
space �(p) of Maddox have been determined by Grosse-Erdmann [17]. Let L and M be the
natural numbers and define the sets by K1 = {k ∈ N : pk ≤ 1} and K2 = {k ∈ N : pk > 1} and
also let us put

‘
pk = pk/(pk − 1) for 1 < pk < ∞ and for all k ∈ N. Before giving the theorems,
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let us suppose that (qn) is a nondecreasing bounded sequence of positive real numbers and
consider the following conditions:

sup
N

sup
k∈K1

∣∣∣∣∣
∑

n∈N
ãnk

∣∣∣∣∣

qn

< ∞, (4.12)

∃M sup
N

∑

k∈K2

∣∣∣n∈NãnkM
−1
∣∣∣

‘
pk

< ∞, (4.13)

∃M sup
k

∑

n

∣∣∣ãkM
−1/pk

∣∣∣
qn

< ∞, (4.14)

lim
n
|ãnk|qn = 0 (∀k ∈ N), (4.15)

∀L, sup
n

sup
k∈K1

∣∣∣ãnkL
1/qn
∣∣∣
pk

< ∞, (4.16)

∀L, ∃M sup
n

∑

k∈K2

∣∣∣ãkL
1/qnM−1

∣∣∣
‘
pk

< ∞, (4.17)

sup
n

sup
k∈K1

|ãnk|pk < ∞, (4.18)

∃Msup
n

∑

k∈K2

∣∣∣ãkM
−1
∣∣∣

‘
pk

< ∞, (4.19)

∀L, sup
n

sup
k∈K1

(
|ãnk − ãk|L1/qn

)pk
< ∞, (4.20)

lim
n
|ãnk − ãk|qn = 0, ∀k. (4.21)

∀L, ∃M sup
n

∑

k∈K2

(
|ãnk − ãk|L1/qnM−1

) ‘
pk
, (4.22)

∃L, sup
n

sup
k∈K1

∣∣∣ãnkL
−1/qn

∣∣∣
pk

< ∞, (4.23)

∃L, sup
n

∑

k∈K2

∣∣∣ãnkL
−1/qn

∣∣∣
‘
pk

< ∞, (4.24)

(
λk

λk − λk−1
ank

)∞

k=0
∈ c0
(
q
)

(∀n ∈ N) (4.25)

(
λk

λk − λk−1
ank

)∞

k=0
∈ c
(
q
)

(∀n ∈ N) (4.26)

(
λk

λk − λk−1
ank

)∞

k=0
∈ �∞

(
q
)

(∀n ∈ N). (4.27)

By using (4.7), (4.10), and Corollary 4.4, we have the following results.
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Theorem 4.5. One has the following:

(i) A ∈ (�(λ, p) : �(q)) if and only if (4.12), (4.13), (4.14), and (4.25) hold,

(ii) A ∈ (�(λ, p) : c0(q)) if and only if (4.15), (4.16), (4.17), and (4.25) hold,

(iii) A ∈ (�(λ, p) : c(q)) if and only if (4.18), (4.19), (4.20), (4.21), (4.22), and (4.26) hold,

(iv) A ∈ (�(λ, p) : �∞(q)) if and only if (4.23), (4.24), and (4.27) hold.
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