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This paper is concerned with a delayed predator-prey diffusion model with Neumann boundary
conditions. We study the asymptotic stability of the positive constant steady state and the
conditions for the existence of Hopf bifurcation. In particular, we show that large diffusivity
has no effect on the Hopf bifurcation, while small diffusivity can lead to the fact that spatially
nonhomogeneous periodic solutions bifurcate from the positive constant steady-state solution
when the system parameters are all spatially homogeneous. Meanwhile, we study the properties
of the spatially nonhomogeneous periodic solutions applying normal form theory of partial
functional differential equations (PFDEs).

1. Introduction

Functional differential equations have merited a great deal of attention due to its theoretical
and practical significance; they are often used in population dynamics, epidemiology, and
other important areas of science; see [1–6]. In particular, Lu and Liu [7] proposed the
following modified Holling-Tanner delayed predator-prey model:

du(t)
dt

= ru(t)
(
1 − u(t)

K

)
− αu(t)v(t)
a + bu(t) + cv(t)

,

dv(t)
dt

= v(t)
[
s

(
1 − hv(t − τ)

u(t − τ)
)]

,

(1.1)

where u(t) and v(t) denote the densities of prey species and predator species, respectively.
The first equation states that the prey grows logistically with carrying capacity K and
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intrinsic growth rate r in absence of predation. The second equation shows that predators
grow logistically with intrinsic growth rate s and carrying capacity proportional to the
prey populations size u(t). The parameter h is the number of prey required to support one
predator at equilibrium, when v(t) equals u(t)/h. The term hv(t)/u(t) of this equation is
called the Leslie-Gower term. This interesting formulation for the predator dynamics has
been discussed by Leslie and Gower in [8, 9]. τ is incorporated in the negative feedback of the
predator density. αuv/(a+bu+cv) is Beddington-DeAngelis functional response. It is known
that the Beddington-DeAngelis form of functional response has desirable qualitative features
of ratio-dependent form but takes care of their controversial behaviors at low densities [10].
For more details on the background of this functional response, we refer to [10–12].

For convenience, a nondimensional form of system (1.1) will be useful. By defining
t̃ = rt, ũ = u(t)/K, ṽ = αv(t)/rK, and dropping the tildes for the sake of simplicity, model
(1.1) becomes the following model:

du(t)
dt

= u(t)(1 − u(t)) − u(t)v(t)
a1 + bu(t) + c1v(t)

,

dv(t)
dt

= v(t)
[
δ − βv(t − τ)

u(t − τ)
]
,

(1.2)

where δ = s/r, β = sh/α, a1 = a/K, c1 = cr/α, τ̃ = rτ . Lu and Liu [7] proved the system
(1.2) is permanent under some appropriate conditions and investigated the local and global
stability of the equilibria.

In the earlier literature, most population models are often formulated by ordinary
differential equations with or without time delays [1, 2, 13–18]. It is well known that the
distribution of species is generally heterogeneous spatially, and therefore the species will
migrate towards regions of lower population density to add the possibility of survival. Thus,
partial differential equations with delay became the subject of a considerable interest in recent
years. For a detailed theory and applications of delay equations with diffusion arising in
biological and ecological problems, we refer to [19–23]. Therefore, time delays and spatial
diffusion should be considered simultaneously in modeling biological interactions. Thus, the
growth dynamics of two species corresponding to system (1.2) should be described by the
following diffusion system with delay:

∂u(t, x)
∂t

= d1Δu(t, x) + u(t, x)
[
1 − u(t, x) − v(t, x)

a1 + bu(t, x) + c1v(t, x)

]
, t > 0, x ∈ (0, π),

∂v(t, x)
∂t

= d2Δv(t, x) + v(t, x)
[
δ − βv(t − τ, x)

u(t − τ, x)
]
, t > 0, x ∈ (0, π),

∂u(t, x)
∂x

=
∂v(t, x)
∂x

= 0, t ≥ 0, x = 0, π,

u(t, x) = φ(t, x) ≥ 0, v(t, x) = ψ(t, x) ≥ 0, (t, x) ∈ [−τ, 0] × (0, π),
(1.3)

where u(t, x) and v(t, x) can be interpreted as the densities of prey and predator populations
at time t and space x, respectively; d1 > 0, d2 > 0 denote the diffusion coefficients of prey
and predator two species, respectively; Δ is the Laplacian operator; Neumann boundary
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conditions in (1.3) imply that two species have zero flux across the domain boundary.
(φ, ψ) ∈ C = C([−τ, 0], X), and X defined by

X =
{
(u, v) : u, v ∈W2,2(0, π) :

du

dx
=
dv

dx
= 0, x = 0, π

}
(1.4)

with the inner product < ·, · >.
In the remaining part of this paper, we focus on system (1.3). The main purpose of this

paper is to consider the effects of the delay and diffusion on the dynamics of system (1.3).
The organization of this paper is as follows. In Section 2, we consider the stability

of the positive constant steady-state solutions and the existences of Hopf bifurcations
of surrounding the positive constant steady-state solutions. In particular, we show the
existence of spatially nonhomogeneous periodic solutions while the system parameters are
all spatially homogeneous. In Section 3, we present that the emergence of these spatially
nonhomogeneous periodic solutions is clearly due to the effect of the small diffusivity. Finally,
we study the properties of the spatially nonhomogeneous periodic solutions applying normal
form theory of PFDEs.

2. Stability and Hopf Bifurcations

In this section, we investigate the stability of the positive constant steady state of (1.3) and
obtain the conditions under which (1.3) undergoes a Hopf bifurcation.

It is easy to see that the solutions of system (1.2) have a unique boundary equilibrium
E1(1, 0) and a unique positive equilibrium E∗(u∗, v∗), where

u∗ =
−(a1 − b − c1δ/β + δ/β) +

√
Λ

2
(
b + c1δ/β

) , v∗ =
δ

β
x∗,

Λ =
(
a1 − b − c1δ/β + δ/β

)2 + 4a1
(
b + c1δ/β

)
.

(2.1)

Obviously, E1(1, 0) and E∗(u∗, v∗) are also the spatially homogeneous steady-state solutions
of system (1.3). From the point of view of biology, we should consider system (1.3) in the
closed first quadrant in the (u, v) plane, that is, the positive constant steady-state solutions
E∗(u∗, v∗) of system (1.3).

Let u(t, x) = u(t, x)−u∗; v(t, x) = v(t, x)−v∗, for convenience, we use u(t, x) and v(t, x)
to replace u(t, x) and v(t, x), respectively; then system (1.3) can be transformed into

∂u(t, x)
∂t

= d1Δu(t, x) + α11u(t, x) + α12v(t, x) +
∑
i+j≥2

1
i!j!

f
(1)
ij u

i(t, x)vj(t, x),

∂v(t, x)
∂t

= d2Δv(t, x) + α21u(t − τ, x) + α22v(t − τ, x)

+
∑

i+j+l≥2

1
i!j!l!

f
(2)
ijl
ui(t − τ, x)vj(t − τ, x)vl(t, x),

(2.2)
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where

α11 := f
(1)
10 = −u∗ + bu∗v∗

(a1 + bu∗ + c1v∗)2
, α12 := f

(1)
01 = − u∗(a1 + bu∗)

(a1 + bu∗ + c1v∗)2
< 0,

α21 := f
(2)
100 =

δ2

β
> 0, α22 := f

(2)
010 = −δ < 0,

f
(1)
ij =

∂i+jf (1)

∂ui∂vj

∣∣∣∣∣
(u∗,v∗)

, f
(2)
ijl

=
∂i+j+lf (2)

∂ui∂vj∂vl1

∣∣∣∣∣
(u∗,v∗,v∗)

, i, j, l ≥ 0,

f (1) = u(1 − u) − uv

a1 + bu + c1v
, f (2) = v1

(
δ − βv

u

)
.

(2.3)

Therefore, the positive constant stationary solution E∗(u∗, v∗) of system (1.3) can be
transformed into the origin of system (2.2).

Let u1(t) = u(t, ·), u2(t) = v(t, ·), U(t) = (u1(t), u2(t))
T ; therefore, system (2.2) can be

rewritten as an abstract form in the phase space C = C([−τ, 0], X):

U̇(t) = dΔU(t) + L(Ut) + f(Ut), (2.4)

where d = (d1, d2)
T , Δ =

(
∂/∂x2 0

0 ∂/∂x2

)
, Ut(θ) = U(t + θ), −τ ≤ θ ≤ 0, L : C → X and

f : C → X are given, respectively, by

L
(
ϕ
)
=
(

α11ϕ(0) + α12ϕ(0)
α21ϕ1(−τ) + α22ϕ2(−τ)

)
,

f
(
ϕ
)
=

⎛
⎜⎜⎜⎜⎝

∑
i+j≥2

1
ij
f
(1)
ij ϕ

i
1ϕ

j

2

∑
i+j+l≥2

1
ijl
f
(2)
ijl ϕ

i
1(−τ)ϕ

j

2(−τ)ϕl2(0)

⎞
⎟⎟⎟⎟⎠,

(2.5)

for ϕ = (ϕ1, ϕ2)
T ∈ C, ϕ(θ) = Ut(θ), −τ ≤ θ ≤ 0.

Linearizing (2.4) at (0, 0) gives the linear equation

U̇(t) = dΔU(t) + L(Ut), (2.6)

whose characteristic equation is

λy − dΔy − L
(
eλ·y
)
= 0, (2.7)

where y ∈ dom(Δ) \ {0} and dom(Δ) ⊂ X.
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It is well known that the linear operator Δ on (0, π) with homogeneous Neumann
boundary conditions has the eigenvalues −k2(k ∈ N0 = {0, 1, 2, . . .}), and the corresponding
eigenfunctions are

β1k =
(
γk
0

)
, β2k =

(
0
γk

)
, γk =

cos(kx)
‖cos(kx)‖2,2

, k ∈ N0. (2.8)

Notice that (β1
k
, β2

k
)∞k=0 construct an orthogonal basis of the Banach space X. Therefore

L(β1
k
, β2

k
) ⊂ span{β1

k
, β2

k
}, and thus any element y in X can be expanded a Fourier series in

the form

y =
∞∑
k=0

YT
k

⎛
⎝β1

k

β2k

⎞
⎠, (2.9)

YT
k =

⎛
⎝
〈
y, β1k

〉
〈
y, β2

k

〉
⎞
⎠. (2.10)

In addition, some easy computations can show that

L

⎛
⎝ϕT

⎛
⎝β1

k

β2
k

⎞
⎠
⎞
⎠ =

[
L
(
ϕ
)]T
⎛
⎝β1

k

β2
k

⎞
⎠, (2.11)

for ϕ = (ϕ1, ϕ2)
T ∈ C.

From (2.9) and (2.11), (2.7) is equivalent to

∞∑
k=0

YT
k

[(
λ + d1k2 0

0 λ + d2k2

)
−
(

α11 α12
α21e

−λτ α22e
−λτ

)]⎛⎝β1k

β2
k

⎞
⎠ = 0. (2.12)

Thus λ is a characteristic root of (2.7) if and only if for k ∈ N0, λ satisfies

λ2 +Akλ + Bk + (−α22λ + Ck)e−λτ = 0, (2.13)

where

Ak = d1k2 + d2k2 − α11,

Bk = d1d2k4 − α11d2k2,

Ck = α11α22 − α12α21 − d1k2α22 > 0,

α11α22 − α12α21 = δu∗ + a1δ
2u∗

β(a1 + bu∗ + c1v∗)2
> 0.

(2.14)
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When τ = 0, (2.13) reduces to the following quadratic equation with respect to λ:

λ2 + (Ak − α22)λ + Bk + Ck = 0. (2.15)

If α11 < 0, then Ak > 0, Bk ≥ 0, and

Ak − α22 > 0,

Bk + Ck > 0,
(2.16)

since Ck > 0.
Therefore, it is obvious that all roots of equations (2.15) have negative real parts, and

we can conclude that the positive constant steady state E∗(u∗, v∗) of system (2.2) is locally
asymptotically stable in the absence of delay when α11 < 0. Thus, we can have the following
conclusions.

Theorem 2.1. Suppose that the condition α11 < 0 is satisfied. Then

(i) all roots of each equation in (2.15) have negative real parts for any wave number k,

(ii) for any wave number k, the positive constant steady-state solution E∗(u∗, v∗) of system
(1.3) is locally asymptotically stable in the absence of delay.

In the following, we discuss the effects of delay τ on the stability of the trivial solution
of (2.2). Notice that iω(ω > 0) is a root of (2.13) if and only if for a certain k ∈ N0, ω satisfies
the following equation:

−ω2 +Akωi + Bk + (−α22ωi + Ck)(cosωτ − i sin ωτ) = 0. (2.17)

Thus

ω4 +
(
A2
k − 2Bk − α222

)
ω2 + B2

k − C2
k = 0, k ∈ N0. (2.18)

Letting ω2 = z, then (2.18) can be written as

z2 +
(
A2
k − 2Bk − α222

)
z + B2

k − C2
k = 0, k ∈ N0. (2.19)

Equation (2.19) with k = 0 has only one positive real root:

z0 =

√(
A2

0 − α222
)2 + 4C2

0 −
(
A2

0 − α222
)

2
> 0, (2.20)

where C0 = α11α22 − α12α21 = δu∗ + (a1δ2u∗/β(a1 + bu∗ + c1v∗)2) > 0.
In addition, from (2.17) and (2.20), we have

cos(ω0τ) =
A0α22(ω0)2 + C0(ω0)2

α222(ω0)2 + C2
0

, (2.21)
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where ω0 =
√
z0. Thus

τ0j =
1
ω0

{
arccos

A0α22(ω0)2 + C0(ω0)2

α222(ω0)2 + C2
0

+ 2jπ

}
, j ∈ N0. (2.22)

Denote

(H) (d2
1 + d

2
2) − 2d1α11 > α222 − α211 and d1d2 + (d1α22 − d2α11) > α11α22 − α12α21.

Theorem 2.2. Assume that the conditions (H) and α11 < 0 hold. For τ = τ0j , (2.13) with k = 0 has a
pair of purely imaginary eigenvalues ±ω0i and there are no other roots of (2.13) with zero real parts.

Proof. Assuming λ = iω∗, ω∗ > 0 is a solution of (2.13) with k ≥ 1. From (2.17), (2.18), and
(2.19), we get

ω4
∗ +
(
A2
k − 2Bk − α222

)
ω2

∗ + B
2
k − C2

k = 0, k ∈ N = {1, 2, . . .}, (2.23)

so we have

ω2
∗ =

−(A2
k
− 2Bk − α222

) ±
√(

A2
k
− 2Bk − α222

)2 − 4
(
B2
k
− C2

k

)
2

, k ∈ N. (2.24)

Clearly, if A2
k
− 2Bk − α222 > 0 and B2

k
− C2

k
> 0, there are no ω∗ such that (2.13) with k ≥ 1 has

purely imaginary roots ±ω∗i.
By computing, we have

A2
k − 2Bk − α222 =

(
d2
1 + d

2
2

)
k4 − 2d1α11k2 + α211 − α222,

Bk = d1d2k4 − α11d2k2, Ck = α11α22 − α12α21 − d1k2α22 > 0.
(2.25)

In addition, according to α11 < 0, we have Bk ≥ 0. It is clear that (d2
1 +d

2
2)k

4−2d1α11k2 +
α211 − α222 ≥ (d2

1 + d
2
2) − 2d1α11 + α211 − α222 when k ≥ 1(α11 < 0). Furthermore, if d1d2 + (d1α22 −

d2α11) > α11α22 − α12α21, we can get B2
k
− C2

k
> 0 when k ≥ 1. Therefore, (2.13) with k ≥ 1

has no purely imaginary roots when the conditions (H) and α11 < 0 hold. Thus the proof of
Theorem 2.2 is accomplished.

Let

λ(τ) = σ(τ) + iω(τ) (2.26)

be a root of (2.13) with k = 0 near τ = τ0j satisfying σ(τ0j ) = 0, ω(τ0j ) = ω0, j ∈N0.

Then the following result holds.
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Lemma 2.3. The following transversality conditions hold:

d Re λ
(
τ0j

)
dτ

> 0, j ∈N0.
(2.27)

From the previous discussions, we have the following theorem on the stability of
positive steady-state solution (u∗, v∗) of system (1.3) and the existence of Hopf bifurcation
near (u∗, v∗).

Theorem 2.4. Assume that the conditions (H) and α11 < 0 hold. Then

(i) if τ ∈ [0, τ0j ), the positive constant steady state (u
∗, v∗) of (1.3) is asymptotically stable;

(ii) if τ > τ0j , the positive constant steady state (u
∗, v∗) of (1.3) is unstable;

(iii) τ = τ0j are Hopf bifurcation values of system (1.3), and these Hopf bifurcations are all
spatially homogeneous.

3. Effect of Small Diffusivity

In the previous section, we have obtained the conditions under which spatially homogeneous
Hopf bifurcations bifurcate from the positive steady-state solutions E∗ = (u∗, v∗) of system
(1.3)when the parameter τ crosses through the critical value τ0j . In this sense, we say that the
diffusion terms do not have effect on the Hopf bifurcations. In this section, we discuss the
effect of small diffusivity on Hopf bifurcations for system (1.3)when the condition (H) is not
satisfied. For the simplicity of discussion which follows, throughout this section, we always
suppose that the condition (H1): d1d2 + (d1α22 − d2α11) > α11α22 − α12α21 holds.

Assume λ = iωk(ωk > 0) is a solution of (2.13) with k ≥ 1. From the discussion in
Section 2, we have

ω4
k +
(
A2
k − 2Bk − α222

)
ω2
k + B

2
k − C2

k = 0, k ∈ N. (3.1)

If the condition (H) is not satisfied, and

(H2) (A2
k − 2Bk − α222)2 − 4(B2

k − C2
k) ≥ 0,

then (2.13) with k ≥ 1 has roots ±iωk, where

ωk =

√√√√−(A2
k
− 2Bk − α222

) ±
√(

A2
k
− 2Bk − α222

)2 − 4
(
B2
k
− C2

k

)
2

.
(3.2)

From the discussion in Section 2, we know that there exists k0 > 0, k0 ∈ N such that (2.13)
with k ≥ 1 has only characteristic roots with negative real parts when k > k0 [24].

In addition, from (2.17), we have

cos(ωkτ) =
Akα22(ωk)2 − BkCk + Ck(ωk)2

α222(ωk)2 + C2
k

, k ∈ N. (3.3)
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Thus

τkj =
1
ωk

(
arccos

Akα22(ωk)2 − BkCk + Ck(ωk)2

α222(ωk)2 + C2
k

+ 2jπ

)
, j ∈ N0, k ∈ N. (3.4)

In particular, it is easy to know from (H1) that Bk > Ck when α11 < 0. By the same way
in Theorem 2.2, we can see if

(
d2
1 + d

2
2

)
16 − 8d1α11 > α222 − α211, (3.5)

then (2.13) with k ≥ 2 has no purely imaginary eigenvalues.
Suppose the condition (H) is not satisfied, that is, (d2

1 +d
2
2)−2d1α11 < α222−α211, assume

further (H2) satisfy. Then (2.13) with k = 1 has a pair of purely imaginary eigenvalues iω1,
and all other zeros have negative real parts, where ω1 is given by

ω1 =

√√√√−(A2
1 − 2B1 − α222

) ±
√(

A2
1 − 2B1 − α222

)2 − 4
(
B2
1 − C2

1

)
2

.
(3.6)

Therefore, we can obtain the following.

Lemma 3.1. Suppose that α11 < 0 and (d2
1 + d

2
2)16 − 8d1α11 > α222 − α211 > (d2

1 + d
2
2) − 2d1α11. If the

condition (H2) holds, then (2.13) with k = 1 has a simple pair of purely imaginary roots ±iω1 and all
other roots except ±iω1 have strictly negative real parts, where ω1 is defined by (3.6).

For system (1.3), by the similar discussion to that of Theorem 2.2, when τ crosses
through the critical values τ1j , where

τ1j =
1
ω1

(
arccos

A1α22(ω1)2 − B1C1 + C1(ω1)2

α222(ω1)2 + C2
1

+ 2jπ

)
, j ∈ N0, (3.7)

it can give rise to Hopf bifurcation at the positive constant steady state (u∗, v∗). By the results
in [22], bifurcating periodic solutions of (1.3) at τ = τ1j are spatially nonhomogeneous.

Therefore, we have the following conclusion.

Theorem 3.2. If the conditions in Lemma 3.1 are satisfied, then τ = τ1j are Hopf bifurcation values

of system (1.3), and these Hopf bifurcations are all spatially nonhomogeneous, where τ1j is defined by
(3.7).

In general, we have the following.

Theorem 3.3. Suppose that α11 < 0, if there exist k0 > 0, k0 ∈ N such that

(
d2
1 + d

2
2

)
k40 − d1α11k20 > α222 − α211 >

(
d2
1 + d

2
2

)
− 2d1α11, (3.8)
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and (H2) holds, then (2.13) with k = k0 has purely imaginary roots iωk0 and system (1.3) has a
family of spatially nonhomogeneous periodic solutions bifurcating from the spatially homogeneous
steady state (u∗, v∗), when τ crosses through the critical values τk0j , where ωk0 and τ

k0
j are defined by

(3.2) and (3.4) with k = k0, k0 ∈ N, respectively.

From Theorems 2.2 and 3.3, we can know that large diffusivity has no effect on the
Hopf bifurcation, while small diffusivity can lead to the fact that the system bifurcates
spatially nonhomogeneous periodic solutions at the positive constant steady state under
which the system parameters are all spatially homogeneous. These exhibit that the emergence
of these spatially nonhomogeneous periodic solutions is clearly due to the effect of the small
diffusivity.

4. Properties of Hopf Bifurcation

In Theorem 3.2, we have obtained the conditions under which a family of spatially
nonhomogeneous periodic solutions bifurcates from the spatially homogeneous steady-state
solutions E∗ = (u∗, v∗) of system (1.3) when the parameter τ crosses through the critical
value τ1j . In this section, we redefine an inner product to study the properties of the spatially
nonhomogeneous Hopf bifurcation applying normal form theory of PFDEs by developed
[22, 25].

Normalizing the delay τ in system (2.2) by the time-scaling t → t/τ , (2.2) is
transformed into

∂u(t, x)
∂t

= τ

⎧⎨
⎩d1Δu(t, x) + α11u(t, x) + α12v(t, x) +

∑
i+j≥2

1
i!j!

f
(1)
ij u

i(t, x)vj(t, x)

⎫⎬
⎭,

∂v(t, x)
∂t

= τ

⎧⎨
⎩d2Δv(t, x) + α21u(t − 1, x) + α22v(t − 1, x)

+
∑

i+j+l≥2

1
i!j!l!

f
(2)
ijl
ui(t − 1, x)vj(t − 1, x)vl(t, x)

⎫⎬
⎭,

(4.1)

where f (1), f (2) are defined by (2.2). Letting τ = τ1j + α, j ∈ N0, then, (4.1) can be written in
abstract form in C = C([−1, 0] : X) as

d

dt
U(t) = τ1j dΔU(t) + L

(
τ1j

)
(Ut) + F(Ut, α), (4.2)
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where d = (d1, d2)
T , L(τ1j )(·) : C → X, F(·, α) : C × R

+ → X are given by

L
(
τ1j

)(
ϕ
)
= τ1j

(
α11ϕ1(0) + α12ϕ2(0)
α21ϕ1(−1) + α22ϕ2(−1)

)
,

F
(
ϕ, α
)
= αdΔϕ(0) + L(α)ϕ + f

(
ϕ, α
)
,

f
(
ϕ, τ1j

)
=
(
τ1j + α

)
⎛
⎜⎜⎜⎜⎝

∑
i+j≥2

1
i!j!

f
(1)
ij ϕ

i
1(0)ϕ

j

2(0)

∑
i+j+l≥2

1
i!j!l!

f
(2)
ijl ϕ

i
1(−1)ϕ

j

2(−1)ϕl2(0)

⎞
⎟⎟⎟⎟⎠,

(4.3)

for ϕ = (ϕ1, ϕ2)
T ∈ C.

Linearizing (4.2) at (0, 0) leads to the following linear equation:

d

dt
U(t) = τ1j dΔU(t) + L

(
τ1j

)
(Ut). (4.4)

Let Λ1 = {−iω1, iω1}; consider the following FDE on C([−1, 0], X):

ż(t) = τ1j dΔz(t) + L
(
τ1j

)
(zt), (4.5)

that is,

(
ż1(t)
ż2(t)

)
= τ1j

{(
α11 − d1 α12

0 −d2

)(
z1(t)
z2(t)

)
+
(

0 0
α21 α22

)(
z1(t − 1)
z2(t − 1)

)}
. (4.6)

Obviously, L(τ1j ) is a continuous linear function mapping C([−1, 0], X) into X.
According to the Riesz representation theorem, there exists a 2 × 2 matrix function η(θ, τ).
−1 ≤ θ ≤ 0, whose elements are of bounded variation such that

L
(
τ1j

)(
φ
)
=
∫0

−1
dη
(
θ, τ1j

)
φ(θ) for φ ∈ C. (4.7)

Thus, we can choose

η
(
θ, τ1j

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ1j

(
α11 − d1 α12

0 −d2

)
, θ ∈ (−1, 0],

τ1j

(
0 0
α21 α22

)
, θ = −1,

(4.8)

then (4.7) is satisfied.
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Letting A(τ1j ) denote the infinitesimal generator of strongly continuous semigroup,
according to [2], then,

A
(
τ1j

)
φ(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),

L
(
τ1j

)(
φ
) def=

∫0

−1
dη
(
t, τ1j

)
φ(t), θ = 0,

(4.9)

where φ ∈ C1([−1, 0], X).
For ψ ∈ C1([0, 1], (X)∗), define

A∗ψ(s) =

⎧⎪⎪⎨
⎪⎪⎩
−dψ(s)

ds
, s ∈ (0, 1],∫0

−1
ψ(−t)dη

(
t, τ1j

)
, s = 0

(4.10)

and a bilinear inner product of the Sobolev spaceW2.2(0, π):

(
ψ(s), φ(θ)

)
= ψ(0)φ(0) −

∫0

−1

∫θ
ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ

= ψ(0)φ(0) − τ1j
∫0

−1
ψ(θ + 1)

(
0 0
α21 α22

)
φ(θ)dθ,

(4.11)

where η(θ) = η(θ, τ1j ) and A
∗ are the formal adjoint of A(τ1j ).

It is easy to see from Section 2 that A(τ1j ) has a pair of simple purely imaginary
eigenvalues ±iω1 and they are also eigenvalues of A∗ since A(τ1j ) and A∗ are adjoint
operators. LetP andP∗ be the center spaces, that is, the generalized eigenspaces, ofA(τ1j ) and
A∗ associated withΛ1, respectively. ThenP∗ is the adjoint space ofP and dimP = dimP∗ = 2.

In addition, according to [22, 25], by a few simple calculations, we can chooseΦ andΨ
be the bases for P and P∗, respectively. It is known that Φ̇ = ΦB, where B is the I × I diagonal
matrix B =

(
iτ1j 0

0 iτ1j

)
.

Let Φ = (Φ1,Φ2) and Ψ = (Ψ1,Ψ2)
T , where

Φ1(θ) = (1, ξ)Teiω1τ
1
j θ, Φ2(θ) = Φ1(θ), −1 ≤ θ ≤ 0,

Ψ1(s) =
1
ρ
(1, ζ)e−iω1τ

1
j s, Ψ2(s) = Ψ1(s), 0 ≤ s ≤ 1,

ξ =
iω1 − α11 + d1

α12
, ζ = − iω1 + α11 − d1

α21
e−iω1τ

1
j ,

ρ = (1 + ξζ) − τ1j (−d1 + α11 + ζα21 + ξα12 − d2ξζ + ξζα22)e−iω1τ
1
j .

(4.12)
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From the above expression, we can easily see that (Ψ1,Φ1) = 1, (Ψ1,Φ1) = 0.
Let f1 = (β11, β

2
1), c · f1 be defined by c · f1 = c1β

1
1 + c2β

2
1 for c = (c1, c2)

T ∈ R
2 and

(ψ · f1)(θ) = ψ(θ) · f1 for θ ∈ [−1, 0]. Then the center space of linear equation (4.4) is given by
PCNC, where

PCNϕ = Φ
(
Ψ, < ϕ, f1 >

) · f1, ϕ ∈ C (4.13)

and C = PCNC ⊕ PQC; here PQC denotes the complementary subspace of PCNC in C.
Let Aτ1j

be defined by

Aτ1j
ϕ(θ) = ϕ̇(θ) +X0(θ)

[
τ1j Δϕ(0) + L∗

(
τ1j

)(
ϕ(θ)

) − ϕ̇(0)], ϕ ∈ C, (4.14)

where X0: [−1, 0] → B(X,X) is given by

X0 =

{
0, θ ∈ [−1, 0),
I, θ = 0.

(4.15)

Then Aτ1j
is the infinitesimal generator induced by the solution of (4.4) and (4.2) and

can be rewritten as the following operator differential equation:

U̇t = Aτ1j
Ut +X0F(Ut, α). (4.16)

Using the decomposition C = PCNC ⊕ PQC and (4.13), the solution of (4.16) can be written as

Ut = Φ
(
x1(t)
x2(t)

)
· f1 + h(x1, x2, α), (4.17)

where (x1, x2)
T = (Ψ, < Ut, f1 >), and h(x1, x2, α) ∈ PQC with h(0, 0, 0) = Dh(0, 0, 0) = 0.

Thus, we describe the flow on the center manifold for (4.2) as

U∗
t = Φ

(
x1(t)
x2(t)

)
· f1 + h(x1, x2), (4.18)

where h(x1, x2) = h(x1, x2, 0).
Letting z = x1 − ix2 and Ψ(0) = (Ψ1(0),Ψ2(0))

T , when α = 0, then z satisfies

ż = iω1τ
1
j z + g(z, z), (4.19)
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where

g(z, z) = (Ψ1(0) − iΨ2(0))
〈
F(Ut, 0), f1

〉
, (4.20)

w(z, z) = h
(
z + z
2

,
(z − z)i

2
, 0
)
, (4.21)

w(z, z) = w20
z2

2
+w11zz +w02

z2

2
+w21

z2z

2
+ · · · . (4.22)

Noticing that p1 = Φ1 + iΦ2, therefore, solutions of (4.16) can be rewritten as

U∗
t =

1
2
Φ
(
(z + z)
i(z − z)

)
· f1 +w(z, z) =

1
2
(
p1z + p2z

) · f1 +w(z, z). (4.23)

In addition, (4.19) can be rewritten as the following form:

ż = iω1τ
1
j z + g20

z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (4.24)

Let

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (4.25)

From (4.20), we have

〈
F(Ut, 0), f1

〉

=
τ1j

4

⎛
⎜⎜⎝

(
ξf

(1)
11 +

1
2
f
(1)
20 +

1
2
ξ2f

(1)
02

)
z2

e−2iω1τ
1
j

(
ξf

(2)
110 + e

iω1τ
1
j ξf

(2)
101 + e

iω1τ
1
j ξ2f

(2)
011 +

1
2
f
(2)
200 +

1
2
ξ2f

(2)
020

)
z2

⎞
⎟⎟⎠

+
τ1j

4

⎛
⎜⎝

[(
ξ + ξ

)
f
(1)
11 + f (1)

20 + ξξf (1)
02

]
zz

[(
ξ + ξ

)
f
(2)
110 + e

−iω1τ
1
j ξ
(
f
(2)
101 + ξf

(2)
011

)
+ eiω1τ

1
j ξ
(
f
(2)
101 + ξf

(2)
011

)
+ f (2)

200 + ξξf
(2)
020

]
zz

⎞
⎟⎠

+
τ1j

4

⎛
⎜⎜⎝

(
ξf

(1)
11 +

1
2
f
(1)
20 +

1
2
ξ
2
f
(1)
02

)
z2

e2iω1τ
1
j

(
ξf

(2)
110 + e

−iω1τ
1
j ξf

(2)
101 + e

−iω1τ
1
j ξ

2
f
(2)
011 +

1
2
f
(2)
200 +

1
2
ξ
2
f
(2)
020

)
z2

⎞
⎟⎟⎠
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+
τ1j

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
f
(1)
11

(
w2

11(0) +
w2

20(0)
2

+w1
11(0)ξ +

w1
20(0)
2

ξ

)

+f (1)
20

(
w1

11(0) +
w1

20(0)
2

)
+ f (1)

02

(
w1

11(0)ξ +
w1

20(0)
2

ξ

)
, 1

〉

〈
f
(2)
110e

−iω1τ
1
j

(
w2

11(−1) + e2iω1τ
1
j
w2

20(−1)
2

+w1
11(−1)ξ + e2iω1τ

1
j
w1

20(−1)
2

ξ

)

+f (2)
101

(
e−iω1τ

1
j w2

11(0) + e
iω1τ

1
j
w2

20(0)
2

+w1
11(−1)ξ +

w1
20(−1)
2

ξ

)

+f (2)
011

(
e−iω1τ

1
j w2

11(0)ξ + e
iω1τ

1
j
w2

20(0)
2

ξ +w2
11(−1)ξ +

w2
20(−1)
2

ξ

)

+
1
2
f
(2)
200

(
2e−iω1τ

1
j w1

11(−1) + eiω1τ
1
j w1

20(−1)
)

+
1
2
f
(2)
020

(
2e−iω1τ

1
j w2

11(−1)ξ + eiω1τ
1
j w2

20(−1)ξ
)
, 1

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z2z

+ · · · .
(4.26)

Noting that Ψ1(0) − iΨ2(0) = (2(1 − iω1)/(1 +ω2
1)(1 + ξζ))(1, ζ), therefore,

g20 =
τ1j (1 − iω1)(

1 +ω2
1

)
(1 + ξζ)

[(
ξf

(1)
11 +

1
2
f
(1)
20 +

1
2
ξ2f

(1)
02

)

+e−2iω1τ
1
j

(
ξf

(2)
110 + e

iω1τ
1
j ξf

(2)
101 + e

iω1τ
1
j ξ2f

(2)
011 +

1
2
f
(2)
200 +

1
2
ξ2f

(2)
020

)
ζ

]
,

g11 =
τ1j (1 − iω1)(

1 +ω2
1

)
(1 + ξζ)

{[(
ξ + ξ

)
f
(1)
11 + f (1)

20 + ξξf (1)
02

]

+
[(
ξ + ξ

)
f
(2)
110 + e

−iω1τ
1
j ξ
(
f
(2)
101 + ξf

(2)
011

)
+ eiω1τ

1
j ξ
(
f
(2)
101 + ξf

(2)
011

)

+f (2)
200 + ξξf

(2)
020

]
ζ
}
,

g02 = g20

g21 =
2τ1j (1 − iω1)(
1 +ω2

1

)
(1 + ξζ)

×
[〈

f
(1)
11

(
w2

11(0) +
w2

20(0)
2

+w1
11(0)ξ +

w1
20(0)
2

ξ

)

+f (1)
20

(
w1

11(0) +
w1

20(0)
2

)
+ f (1)

02

(
w1

11(0)ξ +
w1

20(0)
2

ξ

)
, 1

〉
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+

〈
f
(2)
110e

−iω1τ
1
j

(
w2

11(−1) + e2iω1τ
1
j
w2

20(−1)
2

+w1
11(−1)ξ + e2iω1τ

1
j
w1

20(−1)
2

ξ

)

+ f (2)
101

(
e−iω1τ

1
j w2

11(0) + e
iω1τ

1
j
w2

20(0)
2

+w1
11(−1)ξ +

w1
20(−1)
2

ξ

)

+ f (2)
011

(
e−iω1τ

1
j w2

11(0)ξ + e
iω1τ

1
j
w2

20(0)
2

ξ +w2
11(−1)ξ +

w2
20(−1)
2

ξ

)

+
1
2
f
(2)
200

(
2e−iω1τ

1
j w1

11(−1) + eiω1τ
1
j w1

20(−1)
)

+
1
2
f
(2)
020

(
2e−iω1τ

1
j w2

11(−1)ξ + eiω1τ
1
j w2

20(−1)ξ
)
, 1

〉
ζ

]
.

(4.27)

Since w20(θ) and w11(θ) for (θ ∈ [−1, 0]) appear in g21, we still need them.
It follows easily from (4.22) that

ẇ(z, z) = w20zż +w11

(
żz + zż

)
+w02zż + · · · , (4.28)

Aτ1j
w = Aτ1j

w20
z2

2
+Aτ1j

w11zz +Aτ1j
w02

z2

2
+ · · · . (4.29)

According to [22] we can know,

ẇ = Aτ1j
w +H(z, z), (4.30)

where

H(z, z) = H20
z2

2
+H11zz +H02

z2

2
+ · · ·

= X0F(U∗
t , 0) −Φ

(
Ψ,
〈
X0F(U∗

t , 0), f1
〉) · f1

(4.31)

andHij ∈ PQC, i + j = 2.
Thus, by using the chain rule

ẇ =
∂w(z, z)

∂z
ż +

∂w(z, z)
∂z

ż. (4.32)
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From (4.23) and (4.30), we can obtain

(
2iω1τ

1
j −Aτ1j

)
w20 = H20,

−Aτ1j
w11 = H11,

(
−2iω1τ

1
j −Aτ1j

)
w02 = H02.

(4.33)

Noticing that Aτ1j
has only two eigenvalues ±iω1, therefore, (4.33) has the unique solution

wij(i + j = 2) in PQC and

w20 =
(
2iω1τ

1
j −Aτ1j

)−1
H20,

w11 = −A−1
τ1j
H11,

w02 =
(
−2iω1τ

1
j −Aτ1j

)−1
H02.

(4.34)

Note that for −1 ≤ θ < 0,

H(z, z) = −Φ(θ)Ψ(0)
〈
F(Ut, 0), f1

〉 · f1
= −

(
p1(θ) + p2(θ)

2
,
p1(θ) − p2(θ)

2i

)(
Ψ1(0)
Ψ2(0)

)〈
F(Ut, 0), f1

〉 · f1

= − 1
2
[
p1(θ)(Ψ1(0) − iΨ2(0)) + p2(θ)(Ψ1(0) + iΨ2(0))

]〈
F(Ut, 0), f1

〉 · f1
= − 1

4
[
g20p1(θ) + g02p2(θ)

]
z2 · f1 − 1

2
[
g11p1(θ) + g11p2(θ)

]
zz · f1.

(4.35)

So, for −1 ≤ θ < 0,

H20(θ) = − 1
2
[
g20p1(θ) + g02p2(θ)

] · f1,

H11(θ) = − 1
2
[
g11p1(θ) + g11p2(θ)

]
zz · f1,
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H20(0) =
τ1j

2

⎛
⎜⎝ ξf

(1)
11 +

1
2
f
(1)
20 +

1
2
ξ2f

(1)
02

e−2iω1τ
1
j

(
ξf

(2)
110 + e

iω1τ
1
j ξf

(2)
101 + e

iω1τ
1
j ξ2f

(2)
011 +

1
2
f
(2)
200 +

1
2
ξ2f

(2)
020

)
⎞
⎟⎠

− 1
2
[
g20p1(0) + g02p2(0)

] · f1,

H11(0) =
τ1j

2

⎛
⎜⎝

(
ξ + ξ

)
f
(1)
11 + f (1)

20 + ξξf (1)
02(

ξ + ξ
)
f
(2)
110 + e

−iω1τ
1
j ξ
(
f
(2)
101 + ξf

(2)
011

)
+ eiω1τ

1
j ξ
(
f
(2)
101 + ξf

(2)
011

)
+ f (2)

200 + ξξf
(2)
020

⎞
⎟⎠

− 1
2
[
g11p1(0) + g11p2(0)

] · f1.
(4.36)

By the definition of Aτ1j
, for −1 ≤ θ < 0, we have

ẇ20(θ) = 2iω1w20(θ) +
1
2
[
g20p1(θ) + g02p2(θ)

] · f1, −1 ≤ θ < 0. (4.37)

Note that p1(θ) = p1(0)eiω1θ, −1 ≤ θ ≤ 0; hence

w20(θ) =

⎡
⎣ ig20

ω1τ
1
j

p1(θ) +
ig02

3ω1τ
1
j

p2(θ)

⎤
⎦ · f1 + e2iω1θE1, −1 ≤ θ < 0,

w11(θ) =
[
g11p1(θ) + g11p2(θ)

] · f1 + E2, −1 ≤ θ < 0,

E1 = w20(0) −
⎡
⎣ ig20

ω1τ
1
j

p1(0) +
ig02

3ω1τ
1
j

p2(0)

⎤
⎦ · f1,

E2 = w11(0) −
⎡
⎣ ig20

ω1τ
1
j

p1(0) +
ig02

ω1τ
1
j

p2(0)

⎤
⎦ · f1.

(4.38)

Using the definition of Aτ1j
again and combining (4.29) and (4.33), we get

2iω1τ
1
j

⎡
⎣ ig20

ω1τ
1
j

p1(0) · f1 +
ig02

3ω1τ
1
j

p2(0) · f1 + E1

⎤
⎦

− τ1j Aτ1j

[
ig20
ω1

p1(0) · f1 +
ig02

3ω1
p2(0) · f1 + E1

]
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− L
(
τ1j

)[ ig20
2ω1

p1(θ) · f1 +
ig02

6ω1
p2(θ) · f1 + E1e

2iω1θ

]

=
τ1j

2

⎛
⎜⎝ ξf

(1)
11 +

1
2
f
(1)
20 +

1
2
ξ2f

(1)
02

e−2iω1τ
1
j

(
ξf

(2)
110 + e

iω1τ
1
j ξf

(2)
101 + e

iω1τ
1
j ξ2f

(2)
011 +

1
2
f
(2)
200 +

1
2
ξ2f

(2)
020

)
⎞
⎟⎠

− 1
2
[
g20p1(0) + g02p2(0)

] · f1.
(4.39)

As

τ1j Aτ1j
p1(0) · f1 + L

(
τ1j

)(
p1(θ) · f1

)
= iω1τ

1
j p1(0) · f1,

τ1j Aτ1j
p2(0) · f1 + L

(
τ1j

)(
p2(θ) · f1

)
= − iω1τ

1
j p2(0) · f1,

(4.40)

then

2iω1τ
1
j E1 − τ1j Aτ1j

− L
(
τ1j

)(
E1e

2iω1τ
1
j θ
)

=
τ1j

2

⎛
⎜⎝ ξf

(1)
11 +

1
2
f
(1)
20 +

1
2
ξ2f

(1)
02

e−2iω1τ
1
j

(
ξf

(2)
110 + e

iω1τ
1
j ξf

(2)
101 + e

iω1τ
1
j ξ2f

(2)
011 +

1
2
f
(2)
200 +

1
2
ξ2f

(2)
020

)
⎞
⎟⎠.

(4.41)

From the above expression, we can see easily that

E1 =
1
2

(−2iω1 + α11 + d1 α12
α21 −2iω1 + α22 + d2
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(4.42)

Similarly

E2 =
1
2

(
α11 + d1 α12
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)−1
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Thus, g21 can be determined by the parameters and delay; we get

c1(0) =
i

2ω1

(
g11g20 − 2

∣∣g11∣∣2 −
∣∣g2

02

∣∣
3

)
+
g21
2
. (4.44)

Then, we can compute the following values:

σ2 =
Re(c1(0))

Re
(
λ′
(
τ1j

)) ,

ε2 = 2Re(c1(0)),

T2 =
Im(c1(0)) + σ2 Im

(
λ′
(
τ1j

))
w1

.

(4.45)

Therefore, we have the following result.

Theorem 4.1. (i) σ2 determines the directions of the spatially nonhomogeneous Hopf bifurcation. If
σ2 < 0 (>0), then the spatially nonhomogeneous Hopf bifurcation is subcritical (supercritical).

(ii) ε2 determines the stability of bifurcated periodic solutions. If ε2 < 0 (>0), then the bifurcated
periodic solutions are stable (unstable).

(iii) T2 determines the period of the bifurcating periodic solutions; if T2 < 0 (>0), the period
decreases (increases).

5. Conclusions

In this paper, we considered a delayed predator-prey system with diffusion effects. By
investigating the linearized system of the original system, the distribution of the roots of
the characteristic equations at the positive constant steady-state solution was obtained and
its stability was discussed. The obtained results indicate that the positive constant steady-
state solution of the system is asymptotically stable when τ ∈ [0, τ0j ). As the delay τ crosses
through each τ0j , there exist a sequence of critical values τ0j (j = 0, 1, 2, . . .) of τ such that
the system undergoes a Hopf bifurcation at the positive constant steady-state solution.
Besides, we show that large diffusivity has no effect on the Hopf bifurcation, while small
diffusivity can lead to the fact that the system can bifurcate a spatially nonhomogeneous
periodic solutions at the positive constant steady-state solution. Furthermore, we study the
properties of the spatially nonhomogeneous periodic solutions. The conclusions demonstrate
that system (1.3)may have more complex and richer dynamics than system (1.1).
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