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We introduce a subclass of k-uniformly convex functions of order a with negative coefficients by
using the multiplier transformations in the open unit disk U = {z € C : |z| < 1}. We obtain

coefficient estimates, radii of convexity and close-to-convexity, extreme points, and integral means
inequalities for the function f that belongs to the class /W, (a, B, k, v).

1. Introduction

Let /U denote the class of functions of the form:

flz)f =2 + iﬂanzﬂ“"l, p>0, (1.1)

n=2

which are analytic and univalent in the open unit disk U = {z € C : |z| < 1} (see [1]). Also
denote by  the subclass of /V consisting of functions of the form:

fz)f =2 - iﬂanzﬁ“’*l, (an >0, p>0). (1.2)
n=2
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For any integer m, we define the multiplier transformations I, (see [2, 3]) of functions f €

N(n) by

< :8 +4 " +n—
I f(z)f = 2 - %ﬂ(m) apzP! .

=2 - 36Q(n,p,0)a, P, (€20, zel),
n=2

where Q(n,B,€) = (f+€)/(p+E€+n-1))".
A function f € M is said to be in the class USL(a, k) (k-uniformly starlike Functions
of order a) if it satisfies the condition:

AN
Re{zf (2) —a} >k
f2)f

zf'(z)

@

, 0<a<l,k >0),zel (1.4)

and is said to be in the class UCV(a, k) (k-uniformly convex Functions of order «) if it satisfies
the condition:

n, P
Re{1+zf (2) —a}>k
f(z)

zf"(z)f
fl(z)’

, (0<a<1, k >0), zell. (1.5)

Indeed it follows from (1.4) and (1.5) that

f € UCV(a, k) & zf' € USL(a, k). (1.6)

The interesting geometric properties of these function classes were extensively studied
by Kanas et al., in [4, 5], motivated by Altintas et al. [6], Murugusundaramoorthy and
Srivastava [7], and Murugusundaramoorthy and Magesh [8, 9], Atshan and Kulkarni [10]
and Atshan and Buti [11].

Now, we define a new subclass of uniformly convex functions of complex order.

ForO0 <a<1,k>00eC\ {0}, welet Jllfﬂ((x,ﬁ, k,v) be the class of functions f
satisfying (1.2) with the analytic criterion:

=) (18 f (=)
Red1l+—-| 1+ ——F -« >kll+—| ———F ||, zel, (1.7)
v (£ (2)) (L5f =)

C |-

where I f(z)” is given by (1.3).
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2. Main Results

First, we obtain the necessary and sufficient condition for functions f in the class

N5 (a, Bk, v).

Theorem 2.1. The necessary and sufficient condition for f of the form of (1.2) to be in the class
N (a, Bk, v) is

0

Z(ﬂ+n—1)[(ﬂ+n—l+ )1 -k)+ (k-a)]Q(n,B,€)a, < (k—a)+ (1 -k)(B+|v]),

n=2
(2.1)
where0<a<1,k>0, veC\ {0}
Proof. Suppose that (2.1) is true for z € U. Then
Ié p n If F; n
Re 1+l 1+w—a —k1+l M >0, (2.2)
v (af2)F) U\ (Ihf @)
if
1 L((ﬁ—fx) - 32a(prn- 1><ﬁ+n—a—1>a<n,ﬁ,e>an|z|"-l>
vl 1-32,(B+n-1)Q(n,B,€)ayzI""
(2.3)
—k[1+ i<(ﬁ—1) —z;ﬁz(ﬂm—1><ﬁ+n—z>cz<n,ﬂ,e>an|z|"-1>] N
v 1-32,(B+n-1)Q(n,B,€)anz""
that is, if

i(ﬂ+n—1)[(ﬂ+n—1+ o)) (1= k) + (k- 2)]Q(n, p,€)ay < (k - a) + (1 — k) (f + [v]).
(2.4)
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Conversely, assume that f € ,/Ufn(a, B, k,v), then

Re 1+1 1+Z<Iﬁ1f—(z)ﬂ>”_a >k1+1 Z<I'€1f—(z)ﬂ>” ,
v (f @) O\ (155 @F)
Re{ <(ﬂ a) -3, (p+n-1)(p+n-a-1)Q(n,p,€)a,z"" 1>} 2.5)

1-32,(B+n-1)Q(n, B, €)a,z""
<(/5 1) -YB+n-1)(p+n- Z)Q(n,ﬁg)ann1>.

ZK! 1= 3P+ n-1)Q(n,f, &) a1

Letting z — 1 along the real axis, we have

1+i((ﬁ—tx)—Z;“;z(ﬁ+n—1)(ﬂ+n—a-1)C2(n/ﬁf€)an>
o =-S5 n- 1A 0)a

. (B-1) - 522(B+n-1)(+n-2)Q(np, O)a
Lom( T i on )

(2.6)

Hence, by maximum modulus theorem, the simple computation leads to the desired inequal-
ity

i(ﬂ+n—1)[(ﬁ+n—1+ o)1 -k)+ (k-a)]Q(n,B,€)a, < (k—a)+ (1 -k)(B+|v]),
n=2

(2.7)
which completes the proof. O
Corollary 2.2. Let the function f defined by (1.2) belong to V¢, (a, B, k,v). Then,
(k =)+ (1= k) (B + o) 8
n_(ﬁ+n D[(B+n-1+]v])1-k)+(k-a)]Q(nB,¢)’ '
where 0 <a <1, k>0, veC\ {0}, with equality for
1-
fz)f = 2P (k—a)+(1-k)(B+]v]) 1 29)

(ﬂ+n D[(B+n-1+v))(1-k)+(k-a)]Q(np,¢)
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3. Radii of Convexity and Close-to-Convexity

We obtain the radii of convexity and close-to-convexity results for f functions in the class
JUém (a, B, k,v) in the following theorems.

Theorem 3.1. Let fe _/Ufn(a,ﬁ, k,v). Then f is convex of order 6(0 < 6 < 1) in the disk |z| < r =
ri(a, B, k,v,n,6), where

r :inf[(z_ 5‘ﬂ)[(ﬂ+"—1+lvl)(1_k)+(k—a)]cz(n,p,e)]1/n_1 .
1 n>2 (3_6_ﬁ_n)[(k_“)+(1_k)(ﬁ+|v|)] .

Proof. Let fe A% (a, B, k,v). Then by Theorem 2.1, we have

S@rn-DIFrn-1ep) 0B+ k@] o, (32)
n=2

(k—a)+ (1 -k)(p+]|v])
For 0 < 6 < 1, we need to show that

zf"(z)f
fi(z)

‘ <1-6, (3.3)

and we have to show that

'@ | (B-D)-Sga(prn-D(Frn-az (4)
f&f " L-52(f+n-D)alzl"" - |
Hence,
i(‘B+n_1)(3_6_ﬂ_n)anlzln_1Sl' (35)

n=2 (2 - 6- ﬁ)
This is enough to consider

(2-6-p)[(B+n-1+[o))(1-k)+ (k-a)]Q(n,p,¢)
(B-6-p-n)[(k-a)+ 1A -k)(f+]|v])] '

|z|n—1 <

(3.6)

Therefore,

" { @ 8- PlFrn-1+) k) + k—a)]An &) }Wl 7)
_ (G=6-p-m(k-a)+(1-K)(p+ )] -

Setting z = r1(a, B, k,v,n,6) in (3.7), we get the radius of convexity, which completes the
proof of Theorem 3.1. O
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Theorem 3.2. Let fe A% (a,p,k,v). Then f is close-to-convex of order 6(0 < & < 1) in the disk
|z| <7 =m(a, B, k,v,n,06), where

T = inf
n>2

[ERICEREATEIS aHQ(”fﬁ")]”"l 39
(k—a)+ (1 -k)(p+v])

Proof. Let fe ,/Ufn(zx, B, k,v). Then by Theorem 2.1, we have

i(ﬂ+n—1)[(ﬂ+n—1+|v|)(1—k)+(k—a)]

k-a)+ (=R (p+0) Q(n,pB,€)a, < 1. (3.9)

For 0 € 6 <1, we need to show that

fiz)
g -1|1<1-56, (3.10)
and we have to show that
—1 < (- 1)+Zﬂ(ﬂ+n Daylz|"'<1- 6. (3.11)
Hence,
ﬁ(ﬁ"_n 1) n-1
Z(z— 5-p) anlz"” <1. (3.12)

This is enough to consider

|z|"_1<( 5-P)[(B+n-1+|v))(1-k)+ (k- a)]Q(nﬂé)

Bk —a) + (1 - k) (B +v])] (3.13)
Therefore,
= {( O p(Frn 1+ K+ (k- a)]cz(nﬂrz)}w1 (3.14)
) Blk—a)+ (1 -k)(B+v])] :

Setting z = r2(a, B, k,v,n,6) in (3.14), we get the radius of close-to-convexity, which com-
pletes the proof of Theorem 3.2. O

4. Extreme Points

The extreme points of the class /%, (a, B, k, v) are given by the following theorem.
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Theorem 4.1. Let

fi(2) ﬂ =ZP,
(k—a)+(1-k) (ﬁ +v]) Pt

VP = o
fa(2) 'B(ﬁ+n D[(B+n-1+]v])(1-k)+ (k- a)]Q(npe)

7

forn=2,3,4,....
Then, fe N (a, B, k,v) if and only if it can be expressed in the form:

F@P = SYaful),
n=1

where Y, > 0 and

(4.1)

(4.2)

(4.3)

Proof. Suppose that f can be expressed as in (4.2). Our goal is to show that fe A%, (a, B, k, v).

By (4.2), we have that

F@P = SYaful@ =Yifi (2 + S Yo fu(2)f
n=1 n=2

= Y1f1(z)ﬂ

o . (k—a)+ 1 -k)(B+v]) ﬂ+n1>
+ZY"< P v n-D[(rn-1+10) (1=K + (k-a)]Q(mB,0) (4.4)

© o (k—a)+(1-k)(p+]|v])
; Z (p’+n D[(B+n-1+|v))(A-k)+ (k- a)]Q(nﬁE)

Zﬂ [(k a)+ (1- k)(ﬂ+|v|)] et
B+n-1)[(p+n-1+v])1-k)+ (k-a)]Q(n,pB,€) '

ﬁ+n—1

Now,

i(ﬂ+n—1)[(ﬂ+n—1+|v|)(1—k)+(k—a)]C2(n,[5,€)
(k—a)+ (1 -k)(B+v])
Yu[(k—a)+ (1 -k)(B+v])]
(ﬂ+n D[B+n-1+])A-k)+(k-a)]Q(n,p,¢)

:Zynz -

n=2

Thus, fe N (a, B, k,v).

(4.5)
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Conversely, assume that fe ¢ (a, 8, k, v). Since

(k—a)+ (1 -k)(B+v])

WS ) [(Brn-1+o)A-k + k-w]Qmp e "2 (4.6)
we can set
f DB -1+ o) A-R + (k-olQpe)
(k—a)+ (1 -k)(B+|v])
- (4.7)
Yi=1-> Y.
=2
Then,
f(z)f =2F - iﬂanzﬁ*”*1
n=2
& Y. [(k—a)+ (1 -k)(B+]|v])] -
=P p+n-1
z ;f prn-D)[(p+n-1+0)A-k +(k-a)]Q(npe)
=P iyn <Zﬁ _ fn(Z)ﬂ>
n=2
(4.8)
=2F (1 - ZY,,> + 3 Yo ful(z)
n=2 n=2
= Ylfl (Z)ﬁ + iYnfn(z)ﬂ
n=2
= > Yufu(2).
n=1
This completes the proof of Theorem 4.1. O

5. Integral Means

In order to find the integral means inequality and to verify the Silverman Conjuncture [12]
for fe JU,‘;((X, B, k,v), we need the following definition of subordination and subordination
result according to Littlewood [13].

Definition 5.1 (see [13]). Let f and g be analytic in U. Then, we say that the function f is
subordinate to g if there exists a Schwarz function w, analytic in U with w(0) = 0, |w(z)| <1
such that f(z) = g(w(z)) (z € U). We denote this subordination f < gor f(z) < g(z) (z € U).
In particular, if the function g is univalent in U, the above subordination is equivalent to

f(0) = g(0), f(U) c gU).
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Lemma 5.2 (see [13]). If the functions f and g are analytic in U with g < f, then

0

f2ﬂ|g< >| d6<fﬁ |f<re"9>|qd9, n>0,z=re?, 0<r<1.

(5.1)

Applying Theorem 2.1 with the extremal function and Lemma 5.2, we prove the following

theorem.

Theorem 5.3. Let 1 >0.1If fe N (a,B,k,v)and {D(a, B, k, v,n)} 7, are nondecreasing sequences,

then, for z = re®® and 0 < r < 1, one has

[y

1
de,

f2 <reie>ﬂ

n 27T
o< f
0

where

(k—a)+ (1 -k)(+v]) s

fZ(Z)ﬂ & ®(a,p, k,v,2)

O(a,p,k,o,n)=(P+n-1)[(+n—-1+|v])(1-k)+ (k-a)]Q(n,p,¢).

Proof. Let f of the form of (1.2) and

(k—a)+ (- k)(ﬂ+|v|) 1
®(a,p,k,v,2) ’

fr(z)f =2 - p

then we must show that

20 0 1 277 1
_ (k—a)+ (1 -k)(B+]|v])
fo 1- nzfa"z de< fo R T AT I
By Lemma 5.2, it suffices to show that
(k )+ (A-k)(p+v])
- Zﬂan ®(a,p,k,v,2) =
Setting
- Zﬂan k0 =R

®(a,p,k,v,2)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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from (5.7) and (2.1) we obtain

= @ 7 Ikl 12
lw(z)| = >, (@.p k. 0,2) a,z"!
i (k—a)+ (1 -k)(p+v])
& (D 7 /kl 7 5-8
< |Z|Z (a,B,k,v,n) " (5.8)
Sk—a)+ (1 -k)(B+]|v])
<zl < 1.
This completes the proof of Theorem 5.3. O
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