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We prove an LP-a priori bound, p > 2, for solutions of second order linear elliptic partial differential
equations in divergence form with discontinuous coefficients in unbounded domains.

1. Introduction

The Dirichlet problem for second order linear elliptic partial differential equations in diver-
gence form and with discontinuous coefficients in bounded open subsets of R, n > 2, is a
classical problem that has been widely studied by several authors (we refer, e.g., to [1-6]).
In this paper, we want to analyze certain aspects of the same kind of problem, but in
the framework of unbounded domains.
More precisely, given an unbounded open subset Q of R", n > 2, we are interested in
the study of the elliptic second order linear differential operator in variational form

L= —Zn:i<a--i +d-) + Zn:bi +c
= 8x]~ ij axi j - 1axi 7 (11)

ij=1
with coefficients a;; € L*(£2), and in the following associated Dirichlet problem

ueW(Q),

(1.2)
Lu=f, fewW'*Q).
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Starting from a work of Bottaro and Marina (see [7]), who proved an existence and unique-
ness theorem for the solution of problem (1.2), for n > 3, assuming that

bi,di e L"(Q), i=1,...,n, ceL"*(Q)+L*(Q),

n (1.3)
C_Z(di)xi Zl’l/ ,MGR+/
i=1

analogous results have been successively obtained weakening the hypotheses on the lower
order terms coefficients. First generalizations in this direction have been carried on in [8],
where n > 2 and b;, d;, and c satisfy assumptions similar to those in (1.3), but only locally.
While in [9], for n > 3, these results have been further improved, since b;, d;, and c are
assumed to belong to opportune Morrey type functional spaces with lower summability.

In the above-mentioned works ([7-9]), the authors also provide the estimate

”u”WLZ(Q) < C”f”wfl,z(g)r (14)

where the dependence of the constant C on the data of the problem is completely described.

Here we suppose that the lower order terms coefficients are as in [9] for n > 3 and as
in [8] for n = 2 and we prove an LP-a priori bound, p > 2. More precisely, for a sufficiently
regular set Q and given a datum f € L?(Q) N L*(Q), we show that there exists a constant C
such that

el ) < Cllf ) (1.5)

for any bounded solution u of (1.2) and for every p € ]2, +oo[. We point out that also in our
analysis the dependence of the constant C is fully determined.

We note that bound (1.5) can be also useful when dealing with certain nonvariational
problems that, by means of the existence of the derivatives of the a;;, can be rewritten in
variational form.

Among the authors who studied the Dirichlet problem for second order linear elliptic
equations in divergence form with discontinuous coefficients in unbounded domains, we
quote here also Lions in [10, 11] and Chicco and Venturino in [12].

The proof of (1.5) is developed as follows. In Section 2 we extend a known result by
Stampacchia (see [1], or [13] for details), obtained within the framework of the generalization
of the study of certain elliptic equations in divergence form with discontinuous coefficients
on a bounded open subset of R” to some problems arising for harmonic or subharmonic
functions in the theory of potential.

This is done in order to obtain a preliminary lemma, proved in Section 3, that permits
to consider some particular test functions in the variational formulation of our problem. This
allows us to prove a technical result (Lemma 4.1), that is the main point in the proof of the
claimed LP-estimate.
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2. A Generalization of a Result by Stampacchia

Let

G:teR—G(t) (2.1)

be a uniformly Lipschitz real function, such that there exists a positive constant K such that
for every t', " € R one has

|G(t) - G(t")| < K|t -, (2.2)
and suppose that

G =0, forakeR, (2.3)

[-kk]

and that its derivative G’ has a finite number of discontinuity points.
A known result by Stampacchia, see Lemmal.l in [1] (or in [13], for details),
guarantees that given a function u, defined in an open bounded subset of R” and belonging

to W2, also the composition between G and u is in W'? and gives an explicit expression for
the derivative of this composition, up to sets of null Lebesgue measure.

Later on, in [7], Bottaro and Marina explicitly observed that, up to few modifications,
the proof of these results remains valid also for an unbounded open subset Q of R", n > 2.
More precisely,

UEW(Q) = G(u) = Goue WA(Q), (2.4)

and moreover

(Gw)),, =G Wuy;, aeinQ, i=1,...,n (2.5)

In Lemma 2.2 below, we show a further generalization of (2.4), always in the case of unbound-
ed domains.
In order to prove Lemma 2.2, we need the following convergence results.

Lemma 2.1. If Q has the uniform C'-regularity property, then for every u € I/i/lfz(Q) NL*®(Q), there
exists a sequence (Dy) e v Of functions such that

D, € CP(Q), ©p — uin WHQ), sup||®p||=(q) < lullr»(q)- (2.6)
he N

If G is a uniformly Lipschitz function as in (2.1), (2.2), and (2.3) and such that its derivative G’ has
a finite number of discontinuity points,

G(®Dp) — G(u) in L*(Q), (2.7)
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G(D,) — G(u) weakly in IX/LZ(Q). (2.8)
Moreover, there exists a sequence (gn),c y Such that
o — G(u) in W2(Q), (2.9)

where g, = Z?:l cj G(@;) with c; > 0 and Z;‘:l cj =1

Proof. The statement in (2.6) has been proved in [14].
The L?-convergence in (2.7) easily follows by (2.2) and by the convergence in (2.6).

The W'2-convergences in (2.8) and (2.9) can be obtained as in the proof of Lemma 1.1 of [13],
with opportune modifications due to the fact that the set Q is unbounded (see also [7]). O

We point out that next lemma is a fundamental tool in our analysis since it is the core of
the proof of Lemma 3.3 that will allow us to take some specific test functions in the variational
formulation of our problem.

This will consent to show a technical result (see Lemma 4.1), which is the main point
in the proof of our LV-a priori bound.

Lemma 2.2. Let G be a uniformly Lipschitz function as in (2.1), (2.2), and (2.3) and such that its
derivative G' has a finite number of discontinuity points. If Q has the uniform Cl-reqularity property,

then for every u € I/({/l'z(Q) N L= (Q) one has

ulP2Gu) € W2(Q), Vp € ]2, +ool. (2.10)

Proof. Fix u € W'2(Q) N L®(Q); to show (2.10) we need different arguments according to
different values of p.
For 2 < p < 3 we need to verify that there exists a positive constant c such that

U 2 G()prdx| < cl|9ll 2y Vo € CoR™), Vi=1,...,n, (2.11)
Q

this ends the proof of our lemma as a consequence of a characterization of the space Vc{ﬂ'z(Q)
(see, e.g., Proposition IX.18 of [15]).

In order to prove (2.11), we consider the sequence (®y);c iy introduced in Lemma 2.1
and observe that, given ¢ € C}(R"), one has

[ 1r2Gupsdx = tim [ |02C@i)pndr, e12)
Q h—+o Q

fori=1,...,n.
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Indeed, by Holder inequality we get

U [ulP G (u) ¢y, dx —f |DLP G(Dy) s, dx
Q Q

< U 1P 2(G (1) — G(@n))ps, dx
Q

+ U@ <|u|P—2 - |(Dh|P—2>G((I)h)(pxi dxl (2.13)

-2
<l 16 () = G@i) gz x| 2

2
+ |lu— th”]ZZ(Q)”G((Dh)”LZ(Q) x| 2/

and this quantity vanishes letting h — +oo, as a consequence of (2.6) and (2.7).
On the other hand,

[ o c@p.dr =~ (orc@n) pax
=-(p-2) f | D[P~ Dy (D) ., G (D) ¢p dox — f |©4[P > (G(Dy)) ., dx
Q Q
= —(p — 2) IQ |(Dh|’”’4<1)hG((Dh) ((‘Dh)xi - uxi)(p dx

= O DGOty p - fQ D42 (G (@), p .
(2.14)

Having in mind (2.12), we want to pass to the limit as h — +oo in the right-hand side of this
equality.

Concerning the first term, by (2.2), Holder inequality, and using the last relation in
(2.6), we obtain

||| 1040600 (@) = )| < K Il gy 1@ =t o Mol (219

Thus, by the convergence in (2.6), the quantity on the left-hand side goes to zero, letting
h — +o0, and therefore

lim fg |y DRG(Dr) ((Ph),, — U, )ip dx = 0. (2.16)

h—+o0

For the last term we have

tim [0 2(G@0)pdx = [ [P (Gw), g (2.17)
h—+o J o i 1) i
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Indeed,

U PG () g dx —f (DA (G(®)). g dx
Q Q

+

< U P2 ((G(w)),, — (G(®1)),, )9 dx
Q

fQ(WI”‘Z — D) (G(@n),p dhx

(2.18)

Moreover, by the weak convergence in (2.8) the first term on the right-hand side vanishes
letting h — +o0. Concerning the second one, we get

J;(Iul P |‘I)h|p_2>(G((I)h))xi(p dx

-2
<l = @l o I G@)) el 2 19l 26— (219)

and, by (2.6) and (2.8), also this quantity is null passing to the limitas h — +oo.
It remains to treat the second term of the right-hand side of (2.14). To this aim let us
introduce the sets

Dy, = {x : |Dp(x)| > k}, D={xeQ:|u(x)| >k}, (2.20)

where k is that of (2.3).
We observe that, in view of (2.6), there exists hy € N such that, up to sets of null
Lebesgue measure,

D,CD, Vh>h,, (2.21)

and we can assume, without loss of generality, that hy = 1.
Therefore, by (2.3) and (2.21), one has

f | DL Dy G (D) 1ty ¢p dx = I | [P DG (D), 0
@ D (2.22)
=I |®h|p_4q’hc(¢)h)uxi(/7-
D

On the other hand, always using (2.6), we can also deduce, with no loss of generality, that
k
| Dy (x)| > 5 fora.e.xe D, VheN. (2.23)

This, together with (2.6) and (2.7), and by definition of D, gives, up to a subsequence,

|0 [P DG (D)1, 0 — [ufP*uG(u)uy,p, for a.e. x €D. (2.24)
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Moreover, by (2.2) and (2.6),

|(I)h|p_4<I)hG((I)h)uxi(p <K ||u||’£;2(9)|uxi fora.e.x €D, (2.25)

Vh e N.
Therefore, (2.24) and (2.25) being true, the bounded convergence theorem applies giv-
ing, up to a subsequence,

lim f Dy [P Dy, G (D, )1y, dx :f [ulP~*uG (1) uy, ¢ dx. (2.26)
Q D

h—+oo

Combining (2.12), (2.14), (2.16), (2.17), and (2.26), we conclude, by (2.2) and Holder inequal-
ity, that

U [ulP2G(u) gy, dx| <

<(P Z)K ||ux”L2(Q) +[[(G(w)) ||L2(g)>||u||Loo(g)||‘P”L2(g)/ (2.27)

fori=1,...,n, thatis (2.11).
For p > 3, let us consider the sequence (g1),c y introduced in Lemma 2.1 and put

wy = [uf” (gn = G(w). (228)
Simple calculations give

2(p-2 3 2
letnlyrzgqy < €1 ( Nty el = G |31 + Null7 o) (81-Gw) Wddx),  (229)
(Q) () (Q) (Q)

with ¢; positive constant depending only on p.

We want to pass to the limit in the right-hand side of this inequality. For the first term
it is easily seen that it goes to zero, in view of (2.9).

For the last one, again from (2.9), we get, up to a subsequence,

2
(gn—G(u))uz —0, fora.e xeQ. (2.30)

Moreover, by (2.2) it follows that
(gn— Gw)*12 < 4K?|[ul} ., fora.e.xe€Q, VYheN. (2.31)

Hence, from these last considerations and using the bounded convergence theorem we ob-
tain, up to a subsequence,

hmf (gh—G(u)) u? dx = 0. (2.32)
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Therefore, by (2.29), up to a subsequence, we have

lufP2gn — [uP2G(u) in W2(Q). (2.33)

Now, observe that |u|2g, € W'?(Q), because of its compact support, then for any h €
N there exists a sequence (¢p,,,),,.c v C Co°(£2) such that

g, — g, in WA(Q), (2.34)

this means that there exists my, € N such that

[ i - (2.35)

By (2.33) and (2.35) we deduce that
$n,, — [ul?G(u) in WA(Q), (2.36)
this ends the proof of our lemma. O

3. Tools

We recall the definitions of the Morrey type spaces where the lower order terms coefficients of
the operator will be chosen. These functional spaces were introduced for the first time in [9] in
order to generalize to the case of unbounded domains of the classical notion of Morrey spaces.

We start with some notation. Given any Lebesgue measurable subset F of R", we
denote by %(F) the o-algebra of all Lebesgue measurable subsets of F. For any E € X(F),
Xk is its characteristic function and E(x, r) is the intersection E N B(x,r) (x € R*, r € R,),
where B(x, r) is the open ball centered in x and with radius r.

For g € [1,+oo[ and A € [0, n[, the space of Morrey type M%*(Q) is the set of all the
functions g in L?OC (Q) such that

_ -\/
I8l pso (@) = TSG%IEJT q”g“Lq(Q(x,r)) < too, (3.1)
x€Q

endowed with the norm just defined. Moreover, MZ’)L (Q) denotes the closure of CL (L) in
MIA(Q).

For reader’s convenience, we state here a result of [16], adapted to our needs, pro-
viding the boundedness and an embedding estimate for the multiplication operator

ueWA(Q) — gu e LX(Q), (32)

where the function g belongs to a suitable space of Morrey type M4(Q).



Abstract and Applied Analysis

9

Lemma 3.1. If g € M9 (Q), withq >2,A=0ifn=2,and g €]2,n], A =n—qifn > 2, then the

operator in (3.2) is bounded. Moreover, there exists a constant ¢ € R, such that

”g””LZ(Q) < C”g”M'iu\(Q)”u“WLZ(Q)/ Vu e W(Q),

with ¢ = ¢(n, q).

(3.3)

Now, we recall a lemma, proved in [9], describing the main properties of some func-
tions us, introduced in [7], that will be of crucial relevance in the proof of our main result.

Leth € R, U{+w} and k € R, with 0 < k < h. For each f € R we set

t—-k ift>k,
Gr(t) =10 if-k<t<k, if h=+oo,
t+k ift<-—k,

Grn(t) = Gkoo () — Gpeo (t), if h € R,.

(3.4)

(3.5)

Lemma3.2. Let g € Mg’)‘(Q), u € W'(Q) and € € R,. Then thereexistr € N and ki, ..., k, € R,

with0 =k, < k,1 <--- <ky < ko = +oo, such that, setting

us =Gy, k., (w), s=1,...,r,

o
one has uy,...,u, € W"(Q) and

”ngupp(us)x MaA(Q) <ée,

uuSZug, s=1,...,r,
uxi(us)x]_ = (”s)x,-(”s)x,-/ s=1,...,r,4,j=1,...,n,
(wr +---+us) Us =uxus, s=1,...,r,i=1,...,n,

Ui+ + U =1U,

r<c,

with c = ¢ (¢, 4, ||gllpmar () positive constant.

(3.6)

(3.7)
(3.8)
(3.9)
(3.10)
(3.11)
(3.12)

As already mentioned, the next lemma will allow us, in the last section, to take the

products |u[Pu; as test functions in the variational formulation of our problem.
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Lemma 3.3. If Q has the uniform C'-regularity property, then for every u € I/i/l'z(Q) N L*(Q) and
forany p €12, +oo[ one has

uP?u, e W2 (Q), s=1,...,r, (3.13)

where ug, fors =1,...,r, are the functions of Lemma 3.2.

Proof. If r = 1, then u; = Gp (1) = u; therefore, by Lemma 3.2 in [14], one has |u[P~%u €

W12(Q).
If r >1and s < r, then us = G, k., (1), therefore [ulPuy = [ulP>G(u), for the choice

k = ks in (2.3). This entails that |u[P~?u, € W'2(Q), by means of Lemma 2.2.
In view of these considerations and (3.11) being true, we also get |u|P~2u, = |u|P~?u -

ST ulP?us € W2(Q). O

4, An A Priori Bound

Let Q be an unbounded open subset of R", n > 2, such that

Q has the uniform C'-regularity property. (ho)

We consider in Q the second order linear differential operator in variational form
-, O
Z o, ACEALE b5 e (1

with the following conditions on the coefficients:

aij ELOO(Q), i,j =1,...,n

dv>0: Zaijgiéj > V|§|2 a.e. in Q, V¢ e R", (h1)
i,j=1

bi,d; e M*NQ), bi-die M (Q), i=1,...,n,

ce M (Q),

witht>1, A=0 ifn=2, (h2)

withte]l,g], N=n-2t ifn>2

c- Z(di)x, >y, p=constant >0,
i=1 l (h3)

in the distributional sense on Q.
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We also associate to L the bilinear form

a(u,v) = J‘Q <§n: (@ijuy, +dj w)oy, + <§n:biuxi + cu> v> dx, (4.2)
i=1

ij=1

u,v € WH(Q).
We point out that, as a consequence of Lemma 3.1, a is continuous on Wlfz(Q) X

W12(Q) and so the operator L : W'2(Q) — W™12(Q) is continuous as well.
We start showing a technical lemma.
Let u; be the functions of Lemma 3.2 obtained in correspondence of a given u €

I/(i/m(Q) NL*(Q), of g = >, |bi — di| and of a positive real number ¢ specified in the proof of
Lemma 4.1. The following result holds true.

Lemma 4.1. Let a be the bilinear form defined in (4.2). Under hypotheses (21)—(24), there exists a
constant C € R, such that

S
[ulP2((us)2 +12) dx < CY a(u, [ulPu,), s=1,...,r, ¥p €12+, 4.3
[ (i) e S 2w : a

with C = C(s, v, p).

Proof. Letu, g, ¢, and u,, for s = 1,...,r, be as above specified and p > 2. We start observing

that in view of Lemma 3.3 one has |uf’ %u, € W2(Q), fors =1,...,r.
This allows us to take |u|’u, as test function in (4.2). Hence, simple calculations
together with (3.9) and (3.10) give

n
a<u, |”|p_2”s> = IQ [(P -2) Z aiquiuxj|u|P_4uuS

ij=1

n n
-2 -2
+ > ijhx, (Us) o [ulP ™" + Zd,-(lulp uus>

ij=1 i=1 i

n
+elulPPuus + . (bi - di)|u|’”2uxiu5:| dx

i=1

ij=1 ij=1

n n
= ,[Q [(P - 2) Z aijuxiuxj|u|p_4uus + Z aij(us)x,-(us)leu|p_2

+Zn:di<|u|”’2uus>xi + clulPuu, + zn: <(b1~ - di)|u|”zzs:(uh)xius>:|dx.

i=1 i=1 h=1
(4.4)
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From this last equality, (3.8), and hypotheses (21) and (24) we get

a<u, Iul”fzus) > f [V(p = 2)|ulP" 12 u? + vl (ug):
Q

n S
el Z|bi_di||u|p_2Z(uh)x|us|]dx
i=1 =1

(4.5)
> min{v,y}f [(p—2)|u|”’_4u W2+ [ufP 2((u )2 +u )]dx
f Zua i P2 ) sl
Hence, setting
po = min{v,u}, g= Z|b - dil, (4.6)
Fo(u) = [(p - 2) a2 + [l 2 ()} +12)], (47)
we obtain
po [ Pt < o oy u) hz; (| st . (48)

On the other hand, by the Holder inequality, Lemmas 3.2 and 3.3, the embedding results
contained in Lemma 3.1 and using hypothesis (23) and (3.7), one has that there exists a
constant ¢y € R,, such that

jul?’ @V (uy)

@)

S S
ulP(up) us| dx < “ ulP/ @Dy
% 4[9 gl | ( h)x| S| % g| | s L2(supp (un))

S
/(2-1 /(2-1
S C0”|u|p ( )us||wl,2(9)§”gxsupp (uh)x”Mth-‘(Q) |||u|p ( )(uh)x

L2(Q)
S

< p/(2-1) H p/(2-1)

< ol g, 221 |
(4.9)

with ¢g = co(n, t).
Now, we observe that explicit computations give
p/(2-1) ” < _ 4
|||u| 8 QFh(u)dx, h=1,...,s, (4.10)

with ¢; = c1(n, p).
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Therefore, combining (4.8), (4.9), and (4.10) we get

IQ Fy(u)dx < %O a(u, |u|r'—2us) + ;Tff(,[g Fs(u)dx>l/2 Sl (fg Fh(u)dx>l/2, (4.11)

h=

with ¢; = c2(n, t, p).
Thus,

. 1/2
J‘Q Fs(u)dx < ‘%0 a(u, |u|p_2us> + :ng([g Fs(u)dx>1/2 (% J; Fy, (u)dx>

(4.12)
1 _ c3
< — alu [ulffus) + = —IFudx+— fFudx
ol u.) m( () > | Pt
with ¢3 = c3(n, t,p, 7).
Choosing 77 = po/cs3 and € = pg/ (c3v/2), we have
f Fo(u)dx < % a<u,|u|”’ us + = Z[ Fp,(u)dx. (4.13)
Finally we conclude by (4.7) and (4.13) that
f |u|P-2((us)§ + ug)dx < I Fi(wdx<CY a(u, Iul”‘zuh), (4.14)
Q Q h=1
with C = C(s, po). This ends the proof of (4.3). O
Finally, we consider the Dirichlet problem
112
ue W= (Q), (4.15)

u=f, few'(Q),

and we prove the following LP-a priori bound.

Theorem 4.2. Under the hypotheses (21)—(24) and if f is in L*(Q) N L*(Q) and the solution u of
(4.15) is in I/{{/lfz(Q) N L*(Q), then one has

lullp) S Cll Il VP €12, +o0l, (4.16)

where C is a constant depending on n,t,p,v, p, ||bi — dillpz ), i =1,...,n.
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Proof. Fix p € ]2, +oo[. We firstly prove that
[ulP~2(u? +u?) dx < Ca(u, |ulfu), (4.17)

with C = C(n, t,p, v, U, ||bl - di”MZt,,\(Q)).
Indeed, if we consider the functions u,, s = 1,...,r, obtained in correspondence with
the solution u, of g and ¢ as in Lemma 4.1, by (3.11) we get

J‘Q [ulP~> <u§ + u2>dx < ¢y J;g |u|p_2z ((us)i + u?)dx, (4.18)

s=1

with ¢y = co(r).
Thus, taking into account (4.3),

S T

J; luP~2 <ui + u2> dx < coiCSZa<u, |u|’”72uh> <C a<u, |u|p72u5>, (4.19)

s=1 h=1 s=1

with Cg = Cs(s, v, ) and C = C(r, v, p).
The linearity of a together with (3.11) and (3.12) then give (4.17).
Now, using (4.17) and Holder inequality we end the proof, since

||u||l£p(g) < J [ulP~> <ui + u2> dx<C a<u, |u|P*2u>
Q (4.20)

: Cf9f|u|p2u dr s nglf“ulpl dx < cllfllm)llull’i;(lg).
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