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We prove an Lp-a priori bound, p > 2, for solutions of second order linear elliptic partial differential
equations in divergence form with discontinuous coefficients in unbounded domains.

1. Introduction

The Dirichlet problem for second order linear elliptic partial differential equations in diver-
gence form and with discontinuous coefficients in bounded open subsets of R

n, n ≥ 2, is a
classical problem that has been widely studied by several authors (we refer, e.g., to [1–6]).

In this paper, we want to analyze certain aspects of the same kind of problem, but in
the framework of unbounded domains.

More precisely, given an unbounded open subset Ω of R
n, n ≥ 2, we are interested in

the study of the elliptic second order linear differential operator in variational form

L = −
n∑

i,j=1

∂

∂xj

(
aij

∂

∂xi
+ dj

)
+

n∑

i=1

bi
∂

∂xi
+ c, (1.1)

with coefficients aij ∈ L∞(Ω), and in the following associated Dirichlet problem

u ∈
◦
W1,2(Ω),

Lu = f, f ∈W−1,2(Ω).
(1.2)
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Starting from a work of Bottaro and Marina (see [7]), who proved an existence and unique-
ness theorem for the solution of problem (1.2), for n ≥ 3, assuming that

bi, di ∈ Ln(Ω), i = 1, . . . , n, c ∈ Ln/2(Ω) + L∞(Ω),

c −
n∑

i=1

(di)xi ≥ μ, μ ∈ R+,
(1.3)

analogous results have been successively obtained weakening the hypotheses on the lower
order terms coefficients. First generalizations in this direction have been carried on in [8],
where n ≥ 2 and bi, di, and c satisfy assumptions similar to those in (1.3), but only locally.
While in [9], for n ≥ 3, these results have been further improved, since bi, di, and c are
assumed to belong to opportune Morrey type functional spaces with lower summability.

In the above-mentioned works ([7–9]), the authors also provide the estimate

‖u‖W1,2(Ω) ≤ C
∥∥f

∥∥
W−1,2(Ω), (1.4)

where the dependence of the constant C on the data of the problem is completely described.
Here we suppose that the lower order terms coefficients are as in [9] for n ≥ 3 and as

in [8] for n = 2 and we prove an Lp-a priori bound, p > 2. More precisely, for a sufficiently
regular set Ω and given a datum f ∈ L2(Ω) ∩ L∞(Ω), we show that there exists a constant C
such that

‖u‖Lp(Ω) ≤ C
∥∥f

∥∥
Lp(Ω), (1.5)

for any bounded solution u of (1.2) and for every p ∈ ]2,+∞[. We point out that also in our
analysis the dependence of the constant C is fully determined.

We note that bound (1.5) can be also useful when dealing with certain nonvariational
problems that, by means of the existence of the derivatives of the aij , can be rewritten in
variational form.

Among the authors who studied the Dirichlet problem for second order linear elliptic
equations in divergence form with discontinuous coefficients in unbounded domains, we
quote here also Lions in [10, 11] and Chicco and Venturino in [12].

The proof of (1.5) is developed as follows. In Section 2 we extend a known result by
Stampacchia (see [1], or [13] for details), obtainedwithin the framework of the generalization
of the study of certain elliptic equations in divergence form with discontinuous coefficients
on a bounded open subset of R

n to some problems arising for harmonic or subharmonic
functions in the theory of potential.

This is done in order to obtain a preliminary lemma, proved in Section 3, that permits
to consider some particular test functions in the variational formulation of our problem. This
allows us to prove a technical result (Lemma 4.1), that is the main point in the proof of the
claimed Lp-estimate.
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2. A Generalization of a Result by Stampacchia

Let

G : t ∈ R −→ G(t) (2.1)

be a uniformly Lipschitz real function, such that there exists a positive constant K such that
for every t′, t′′ ∈ R one has

∣∣G
(
t′
) −G(

t′′
)∣∣ ≤ K∣∣t′ − t′′∣∣, (2.2)

and suppose that

G|[−k,k] = 0, for a k ∈ R+ (2.3)

and that its derivative G′ has a finite number of discontinuity points.
A known result by Stampacchia, see Lemma1.1 in [1] (or in [13], for details),

guarantees that given a function u, defined in an open bounded subset of R
n and belonging

to
◦
W1,2, also the composition between G and u is in

◦
W1,2 and gives an explicit expression for

the derivative of this composition, up to sets of null Lebesgue measure.
Later on, in [7], Bottaro and Marina explicitly observed that, up to few modifications,

the proof of these results remains valid also for an unbounded open subset Ω of R
n, n ≥ 2.

More precisely,

u ∈
◦
W1,2(Ω) =⇒ G(u) = G ◦ u ∈

◦
W1,2(Ω), (2.4)

and moreover

(G(u))xi = G
′(u)uxi, a. e. in Ω, i = 1, . . . , n. (2.5)

In Lemma 2.2 below, we show a further generalization of (2.4), always in the case of unbound-
ed domains.

In order to prove Lemma 2.2, we need the following convergence results.

Lemma 2.1. IfΩ has the uniform C1-regularity property, then for every u ∈
◦
W1,2(Ω)∩L∞(Ω), there

exists a sequence (Φh)h∈ N
of functions such that

Φh ∈ C∞
o (Ω), Φh −→ u in

◦
W1,2(Ω), sup

h∈ N

‖Φh‖L∞(Ω) ≤ ‖u‖L∞(Ω). (2.6)

If G is a uniformly Lipschitz function as in (2.1), (2.2), and (2.3) and such that its derivative G′ has
a finite number of discontinuity points,

G(Φh) −→ G(u) in L2(Ω), (2.7)
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G(Φh)⇀ G(u) weakly in
◦
W1,2(Ω). (2.8)

Moreover, there exists a sequence (gh)h∈ N
such that

gh −→ G(u) in
◦
W1,2(Ω), (2.9)

where gh =
∑h

j=1 cj G(Φj) with cj ≥ 0 and
∑h

j=1 cj = 1.

Proof. The statement in (2.6) has been proved in [14].
The L2-convergence in (2.7) easily follows by (2.2) and by the convergence in (2.6).

The
◦
W1,2-convergences in (2.8) and (2.9) can be obtained as in the proof of Lemma 1.1 of [13],

with opportune modifications due to the fact that the set Ω is unbounded (see also [7]).

We point out that next lemma is a fundamental tool in our analysis since it is the core of
the proof of Lemma 3.3 that will allow us to take some specific test functions in the variational
formulation of our problem.

This will consent to show a technical result (see Lemma 4.1), which is the main point
in the proof of our Lp-a priori bound.

Lemma 2.2. Let G be a uniformly Lipschitz function as in (2.1), (2.2), and (2.3) and such that its
derivative G′ has a finite number of discontinuity points. IfΩ has the uniform C1-regularity property,

then for every u ∈
◦
W1,2(Ω) ∩ L∞(Ω) one has

|u|p−2G(u) ∈
◦
W1,2(Ω), ∀p ∈ ]2,+∞[. (2.10)

Proof. Fix u ∈
◦
W1,2(Ω) ∩ L∞(Ω); to show (2.10) we need different arguments according to

different values of p.
For 2 < p < 3 we need to verify that there exists a positive constant c such that

∣∣∣∣

∫

Ω
|u|p−2G(u)ϕxidx

∣∣∣∣ ≤ c
∥∥ϕ

∥∥
L2(Ω), ∀ϕ ∈ C1

o(R
n), ∀i = 1, . . . , n, (2.11)

this ends the proof of our lemma as a consequence of a characterization of the space
◦
W1,2(Ω)

(see, e.g., Proposition IX.18 of [15]).
In order to prove (2.11), we consider the sequence (Φh)h∈ N

introduced in Lemma 2.1
and observe that, given ϕ ∈ C1

o(R
n), one has

∫

Ω
|u|p−2G(u)ϕxidx = lim

h→+∞

∫

Ω
|Φh|p−2G(Φh)ϕxidx, (2.12)

for i = 1, . . . , n.
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Indeed, by Hölder inequality we get

∣∣∣∣

∫

Ω
|u|p−2G(u)ϕxidx −

∫

Ω
|Φh|p−2 G(Φh)ϕxidx

∣∣∣∣

≤
∣∣∣∣

∫

Ω
|u|p−2(G(u) −G(Φh))ϕxi dx

∣∣∣∣

+
⌈∫

Ω

(
|u|p−2 − |Φh|p−2

)
G(Φh)ϕxi dx

⌉

≤ ‖u‖p−2L∞(Ω)‖G(u) −G(Φh)‖L2(Ω)

∥∥ϕx
∥∥
L2(Ω)

+ ‖u −Φh‖p−2L2(Ω)‖G(Φh)‖L2(Ω)

∥∥ϕx
∥∥
L2/(3−p) ,

(2.13)

and this quantity vanishes letting h → +∞, as a consequence of (2.6) and (2.7).
On the other hand,

∫

Ω
|Φh|p−2G(Φh)ϕxidx = −

∫

Ω

(
|Φh|p−2G(Φh)

)

xi
ϕ dx

= −(p − 2
) ∫

Ω
|Φh|p−4Φh(Φh)xiG(Φh)ϕdx −

∫

Ω
|Φh|p−2(G(Φh))xiϕ dx

= −(p − 2
) ∫

Ω
|Φh|p−4ΦhG(Φh)

(
(Φh)xi − uxi

)
ϕdx

− (
p − 2

) ∫

Ω
|Φh|p−4ΦhG(Φh)uxiϕ dx −

∫

Ω
|Φh|p−2(G(Φh))xiϕ dx.

(2.14)

Having in mind (2.12), we want to pass to the limit as h → +∞ in the right-hand side of this
equality.

Concerning the first term, by (2.2), Hölder inequality, and using the last relation in
(2.6), we obtain

∣∣∣∣

∫

Ω
|Φh|p−4ΦhG(Φh)

(
(Φh)xi − uxi

)
ϕdx

∣∣∣∣ ≤ K ‖u‖p−2L∞(Ω)

∥∥(Φh)xi − uxi
∥∥
L2(Ω)

∥∥ϕ
∥∥
L2(Ω). (2.15)

Thus, by the convergence in (2.6), the quantity on the left-hand side goes to zero, letting
h → +∞, and therefore

lim
h→+∞

∫

Ω
|Φh|p−4ΦhG(Φh)

(
(Φh)xi − uxi

)
ϕdx = 0. (2.16)

For the last term we have

lim
h→+∞

∫

Ω
|Φh|p−2(G(Φh))xiϕ dx =

∫

Ω
|u|p−2 (G(u))xiϕ dx. (2.17)
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Indeed,

∣∣∣∣

∫

Ω
|u|p−2(G(u))xiϕ dx −

∫

Ω
|Φh|p−2 (G(Φh))xiϕ dx

∣∣∣∣

≤
∣∣∣∣

∫

Ω
|u|p−2((G(u))xi − (G(Φh))xi

)
ϕ dx

∣∣∣∣ +
∣∣∣∣

∫

Ω

(
|u|p−2 − |Φh|p−2

)
(G(Φh))xiϕ dx

∣∣∣∣.

(2.18)

Moreover, by the weak convergence in (2.8) the first term on the right-hand side vanishes
letting h → +∞. Concerning the second one, we get

∣∣∣∣

∫

Ω

(
|u| p−2 − |Φh|p−2

)
(G(Φh))xiϕ dx

∣∣∣∣≤ ‖u −Φh‖p−2L2(Ω)‖(G(Φh))x‖L2(Ω)

∥∥ϕ
∥∥
L2/(3−p) , (2.19)

and, by (2.6) and (2.8), also this quantity is null passing to the limit as h → +∞.
It remains to treat the second term of the right-hand side of (2.14). To this aim let us

introduce the sets

Dh = {x : |Φh(x)| > k}, D = {x ∈ Ω : |u(x)| > k}, (2.20)

where k is that of (2.3).
We observe that, in view of (2.6), there exists h0 ∈ N such that, up to sets of null

Lebesgue measure,

Dh ⊆ D, ∀h ≥ h0, (2.21)

and we can assume, without loss of generality, that h0 = 1.
Therefore, by (2.3) and (2.21), one has

∫

Ω
|Φh|p−4ΦhG(Φh)uxiϕ dx =

∫

Dh

|Φh|p−4ΦhG(Φh)uxiϕ

=
∫

D

|Φh|p−4ΦhG(Φh)uxiϕ.
(2.22)

On the other hand, always using (2.6), we can also deduce, with no loss of generality, that

|Φh(x)| > k

2
, for a. e. x ∈ D, ∀h ∈ N. (2.23)

This, together with (2.6) and (2.7), and by definition of D, gives, up to a subsequence,

|Φh|p−4ΦhG(Φh)uxiϕ −→ |u|p−4uG(u)uxiϕ, for a. e. x ∈ D. (2.24)
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Moreover, by (2.2) and (2.6),

∣∣∣|Φh|p−4ΦhG(Φh)uxiϕ
∣∣∣ ≤ K ‖u‖p−2L∞(Ω)|uxi |

∣∣ϕ
∣∣, for a. e. x ∈ D, (2.25)

∀h ∈ N.
Therefore, (2.24) and (2.25) being true, the bounded convergence theorem applies giv-

ing, up to a subsequence,

lim
h→+∞

∫

Ω
|Φh|p−4ΦhG(Φh)uxiϕ dx =

∫

D

|u|p−4uG(u)uxiϕ dx. (2.26)

Combining (2.12), (2.14), (2.16), (2.17), and (2.26), we conclude, by (2.2) and Hölder inequal-
ity, that

∣∣∣∣

∫

Ω
|u|p−2G(u)ϕxidx

∣∣∣∣ ≤
((
p − 2

)
K ‖ux‖L2(Ω) + ‖(G(u))x‖L2(Ω)

)
‖u‖p−2L∞(Ω)

∥∥ϕ
∥∥
L2(Ω), (2.27)

for i = 1, . . . , n, that is (2.11).
For p ≥ 3, let us consider the sequence (gh)h∈ N

introduced in Lemma 2.1 and put

uh = |u|p−2(gh −G(u)
)
. (2.28)

Simple calculations give

‖uh‖2W1,2(Ω) ≤ c1
(
‖u‖2(p−2)L∞(Ω)

∥∥gh −G(u)
∥∥2
W1,2(Ω) + ‖u‖2(p−3)L∞(Ω)

∫

Ω

(
gh −G(u)

)2
u2x dx

)
, (2.29)

with c1 positive constant depending only on p.
We want to pass to the limit in the right-hand side of this inequality. For the first term

it is easily seen that it goes to zero, in view of (2.9).
For the last one, again from (2.9), we get, up to a subsequence,

(
gh −G(u)

)2
u2x −→ 0, for a. e. x ∈ Ω. (2.30)

Moreover, by (2.2) it follows that

(
gh −G(u)

)2
u2x ≤ 4K2‖u‖2L∞(Ω)u

2
x, for a. e. x ∈ Ω, ∀h ∈ N. (2.31)

Hence, from these last considerations and using the bounded convergence theorem we ob-
tain, up to a subsequence,

lim
h→+∞

∫

Ω

(
gh −G(u)

)2
u2x dx = 0. (2.32)
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Therefore, by (2.29), up to a subsequence, we have

|u|p−2gh −→ |u|p−2G(u) in W1,2(Ω). (2.33)

Now, observe that |u|p−2gh ∈
◦
W1,2(Ω), because of its compact support, then for any h ∈

N there exists a sequence (ψhm)m∈ N
⊂ C∞

o (Ω) such that

ψhm −→ |u|p−2gh in
◦
W1,2(Ω), (2.34)

this means that there existsmh ∈ N such that

∥∥∥ψhmh − |u|p−2gh
∥∥∥
W1,2(Ω)

≤ 1
h
. (2.35)

By (2.33) and (2.35)we deduce that

ψhmh −→ |u|p−2G(u) in W1,2(Ω), (2.36)

this ends the proof of our lemma.

3. Tools

We recall the definitions of theMorrey type spaces where the lower order terms coefficients of
the operator will be chosen. These functional spaces were introduced for the first time in [9] in
order to generalize to the case of unbounded domains of the classical notion ofMorrey spaces.

We start with some notation. Given any Lebesgue measurable subset F of R
n, we

denote by Σ(F) the σ-algebra of all Lebesgue measurable subsets of F. For any E ∈ Σ(F),
χE is its characteristic function and E(x, r) is the intersection E ∩ B(x, r) (x ∈ R

n, r ∈ R+),
where B(x, r) is the open ball centered in x and with radius r.

For q ∈ [1,+∞[ and λ ∈ [0, n[, the space of Morrey type Mq,λ(Ω) is the set of all the
functions g in Lqloc(Ω) such that

∥∥g
∥∥
Mq,λ(Ω) = sup

τ∈]0,1]
x∈Ω

τ−λ/q
∥∥g

∥∥
Lq(Ω(x,τ)) < +∞,

(3.1)

endowed with the norm just defined. Moreover, Mq,λ
◦ (Ω) denotes the closure of C∞

◦ (Ω) in
Mq,λ(Ω).

For reader’s convenience, we state here a result of [16], adapted to our needs, pro-
viding the boundedness and an embedding estimate for the multiplication operator

u ∈
◦
W1,2(Ω) −→ gu ∈ L2(Ω), (3.2)

where the function g belongs to a suitable space of Morrey typeMq,λ(Ω).
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Lemma 3.1. If g ∈ Mq,λ(Ω), with q > 2, λ = 0 if n = 2, and q ∈ ]2, n], λ = n − q if n > 2, then the
operator in (3.2) is bounded. Moreover, there exists a constant c ∈ R+ such that

∥∥gu
∥∥
L2(Ω) ≤ c

∥∥g
∥∥
Mq,λ(Ω)‖u‖W1,2(Ω), ∀u ∈

◦
W1,2(Ω), (3.3)

with c = c(n, q).

Now, we recall a lemma, proved in [9], describing the main properties of some func-
tions us, introduced in [7], that will be of crucial relevance in the proof of our main result.

Let h ∈ R+ ∪ {+∞} and k ∈ R, with 0 ≤ k ≤ h. For each t ∈ R we set

Gkh(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t − k if t > k,

0 if − k ≤ t ≤ k, if h = +∞,

t + k if t < −k,
(3.4)

Gkh(t) = Gk∞(t) −Gh∞(t), if h ∈ R+. (3.5)

Lemma 3.2. Let g ∈Mq,λ
o (Ω), u ∈

◦
W1,2(Ω) and ε ∈ R+. Then there exist r ∈ N and k1, . . . , kr ∈ R,

with 0 = kr < kr−1 < · · · < k1 < k0 = +∞, such that, setting

us = Gks ks−1(u), s = 1, . . . , r, (3.6)

one has u1, . . . , ur ∈
◦
W1,2(Ω) and

∥∥gχsupp(us)x

∥∥
Mq,λ(Ω) ≤ ε, s = 1, . . . , r, (3.7)

uus ≥ u2s, s = 1, . . . , r, (3.8)

uxi(us)xj = (us)xi(us)xj , s = 1, . . . , r, i, j = 1, . . . , n, (3.9)

(u1 + · · · + us)xius = uxius, s = 1, . . . , r, i = 1, . . . , n, (3.10)

u1 + · · · + ur = u, (3.11)

r ≤ c, (3.12)

with c = c (ε, q, ‖g‖Mq,λ(Ω)) positive constant.

As already mentioned, the next lemma will allow us, in the last section, to take the
products |u|p−2us as test functions in the variational formulation of our problem.
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Lemma 3.3. If Ω has the uniform C1-regularity property, then for every u ∈
◦
W1,2(Ω) ∩ L∞(Ω) and

for any p ∈ ]2,+∞[ one has

|u|p−2us ∈
◦
W1,2 (Ω), s = 1, . . . , r, (3.13)

where us, for s = 1, . . . , r, are the functions of Lemma 3.2.

Proof. If r = 1, then u1 = G0 ∞(u) = u; therefore, by Lemma 3.2 in [14], one has |u|p−2u ∈
◦
W1,2(Ω).

If r > 1 and s < r, then us = Gks ks−1(u), therefore |u|p−2us = |u|p−2G(u), for the choice

k = ks in (2.3). This entails that |u|p−2us ∈
◦
W1,2(Ω), by means of Lemma 2.2.

In view of these considerations and (3.11) being true, we also get |u|p−2ur = |u|p−2u −
∑r−1

s=1 |u|p−2us ∈
◦
W1,2(Ω).

4. An A Priori Bound

Let Ω be an unbounded open subset of R
n, n ≥ 2, such that

Ω has the uniform C1-regularity property. (h0)

We consider in Ω the second order linear differential operator in variational form

L = −
n∑

i,j=1

∂

∂xj

(
aij

∂

∂xi
+ dj

)
+

n∑

i=1

bi
∂

∂xi
+ c, (4.1)

with the following conditions on the coefficients:

aij ∈ L∞(Ω), i, j = 1, . . . , n

∃ ν > 0 :
n∑

i,j=1

aijξiξj ≥ ν|ξ|2 a. e. in Ω, ∀ξ ∈ R
n,

(h1)

bi, di ∈M2t,λ(Ω), bi − di ∈M2t,λ
o (Ω), i = 1, . . . , n,

c ∈Mt,λ(Ω),

with t > 1, λ = 0 if n = 2,

with t ∈
]
1,
n

2

]
, λ = n − 2t if n > 2,

(h2)

c −
n∑

i=1

(di)xi ≥ μ, μ = constant > 0,

in the distributional sense on Ω.

(h3)
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We also associate to L the bilinear form

a(u, v) =
∫

Ω

⎛

⎝
n∑

i,j=1

(
aijuxi + dj u

)
vxj +

(
n∑

i=1

biuxi + cu

)
v

⎞

⎠dx, (4.2)

u, v ∈
◦
W1,2(Ω).

We point out that, as a consequence of Lemma 3.1, a is continuous on
◦
W1,2(Ω) ×

◦
W1,2(Ω) and so the operator L :

◦
W1,2(Ω) → W−1,2(Ω) is continuous as well.

We start showing a technical lemma.
Let us be the functions of Lemma 3.2 obtained in correspondence of a given u ∈

◦
W1,2(Ω) ∩ L∞(Ω), of g =

∑n
i=1 |bi − di| and of a positive real number ε specified in the proof of

Lemma 4.1. The following result holds true.

Lemma 4.1. Let a be the bilinear form defined in (4.2). Under hypotheses (21)–(24), there exists a
constant C ∈ R+ such that

∫

Ω
|u|p−2

(
(us)2x + u

2
s

)
dx ≤ C

s∑

h=1

a
(
u, |u|p−2uh

)
, s = 1, . . . , r, ∀p ∈ ]2,+∞[, (4.3)

with C = C(s, ν, μ).

Proof. Let u, g, ε, and us, for s = 1, . . . , r, be as above specified and p > 2. We start observing

that in view of Lemma 3.3 one has |u|p−2us ∈
◦
W1,2(Ω), for s = 1, . . . , r.

This allows us to take |u|p−2us as test function in (4.2). Hence, simple calculations
together with (3.9) and (3.10) give

a
(
u, |u|p−2us

)
=

∫

Ω

⎡

⎣(
p − 2

) n∑

i,j=1

aijuxiuxj |u|p−4uus

+
n∑

i,j=1

aijuxi(us)xj |u|p−2 +
n∑

i=1

di
(
|u|p−2uus

)

xi

+c|u|p−2uus +
n∑

i=1

(bi − di)|u|p−2uxius
]
dx

=
∫

Ω

⎡

⎣(
p − 2

) n∑

i,j=1

aijuxiuxj |u|p−4uus +
n∑

i,j=1

aij(us)xi(us)xj |u|p−2

+
n∑

i=1

di
(
|u|p−2uus

)

xi
+ c|u|p−2uus +

n∑

i=1

(
(bi − di)|u|p−2

s∑

h=1

(uh)xius

)]
dx.

(4.4)
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From this last equality, (3.8), and hypotheses (21) and (24) we get

a
(
u, |u|p−2us

)
≥

∫

Ω

[
ν
(
p − 2

)|u|p−4u2xu2s + ν|u|p−2(us)2x

+μ|u|p−2u2s −
n∑

i=1

|bi − di||u|p−2
s∑

h=1

(uh)x|us|
]
dx

≥ min
{
ν, μ

} ∫

Ω

[(
p − 2

)|u|p−4u2xu2s + |u|p−2
(
(us)2x + u

2
s

)]
dx

−
s∑

h=1

∫

Ω

n∑

i=1

|bi − di||u|p−2(uh)x|us|dx.

(4.5)

Hence, setting

μ0 = min
{
ν, μ

}
, g =

n∑

i=1

|bi − di|, (4.6)

Fs(u) =
[(
p − 2

)|u|p−4u2xu2s + |u|p−2
(
(us)2x + u

2
s

)]
, (4.7)

we obtain

μ0

∫

Ω
Fs(u)dx ≤ a

(
u, |u|p−2us

)
+

s∑

h=1

∫

Ω
g|u|p−2(uh)x|us|dx. (4.8)

On the other hand, by the Hölder inequality, Lemmas 3.2 and 3.3, the embedding results
contained in Lemma 3.1 and using hypothesis (23) and (3.7), one has that there exists a
constant c0 ∈ R+, such that

s∑

h=1

∫

Ω
g|u|p−2(uh)x|us| dx ≤

s∑

h=1

∥∥∥g|u|p/(2−1)us
∥∥∥
L2(supp (uh)x)

∥∥∥|u|p/(2−1)(uh)x
∥∥∥
L2(Ω)

≤ c0
∥∥∥|u|p/(2−1)us

∥∥∥
W1,2(Ω)

s∑

h=1

∥∥gχsupp (uh)x

∥∥
M2t,λ(Ω)

∥∥∥|u|p/(2−1)(uh)x
∥∥∥
L2(Ω)

≤ c0ε
∥∥∥|u|p/(2−1)us

∥∥∥
W1,2(Ω)

s∑

h=1

∥∥∥|u|p/(2−1)(uh)x
∥∥∥
L2(Ω)

,

(4.9)

with c0 = c0(n, t).
Now, we observe that explicit computations give

∥∥∥|u|p/(2−1)uh
∥∥∥
2

W1,2(Ω)
≤ c1

∫

Ω
Fh(u)dx, h = 1, . . . , s, (4.10)

with c1 = c1(n, p).
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Therefore, combining (4.8), (4.9), and (4.10) we get

∫

Ω
Fs(u)dx ≤ 1

μ0
a
(
u, |u|p−2us

)
+
c2
μ0
ε

(∫

Ω
Fs(u)dx

)1/2 s∑

h=1

(∫

Ω
Fh(u)dx

)1/2

, (4.11)

with c2 = c2(n, t, p).
Thus,

∫

Ω
Fs(u)dx ≤ 1

μ0
a
(
u, |u|p−2us

)
+
c3
μ0
ε

(∫

Ω
Fs(u)dx

)1/2
(

s∑

h=1

∫

Ω
Fh(u)dx

)1/2

≤ 1
μ0

a
(
u, |u|p−2us

)
+
c3
μ0

(
η

2

∫

Ω
Fs(u)dx +

ε2

2η

s∑

h=1

∫

Ω
Fh(u)dx

)
,

(4.12)

with c3 = c3(n, t, p, r).
Choosing η = μ0/c3 and ε = μ0/(c3

√
2), we have

∫

Ω
Fs(u)dx ≤ 2

μ0
a
(
u, |u|p−2us

)
+
1
2

s∑

h=1

∫

Ω
Fh(u)dx. (4.13)

Finally we conclude by (4.7) and (4.13) that

∫

Ω
|u|p−2

(
(us)2x + u

2
s

)
dx ≤

∫

Ω
Fs(u)dx ≤ C

s∑

h=1

a
(
u, |u|p−2uh

)
, (4.14)

with C = C(s, μ0). This ends the proof of (4.3).

Finally, we consider the Dirichlet problem

u ∈
◦
W1,2 (Ω),

Lu = f, f ∈W−1,2(Ω),
(4.15)

and we prove the following Lp-a priori bound.

Theorem 4.2. Under the hypotheses (21)–(24) and if f is in L2(Ω) ∩ L∞(Ω) and the solution u of

(4.15) is in
◦
W1,2(Ω) ∩ L∞(Ω), then one has

‖u‖Lp(Ω) ≤ C
∥∥f

∥∥
Lp(Ω), ∀p ∈ ]2,+∞[, (4.16)

where C is a constant depending on n, t, p, ν, μ, ‖bi − di‖M2t,λ(Ω), i = 1, . . . , n.
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Proof. Fix p ∈ ]2,+∞[. We firstly prove that

∫

Ω
|u|p−2

(
u2x + u

2
)
dx ≤ Ca

(
u, |u|p−2u

)
, (4.17)

with C = C(n, t, p, ν, μ, ‖bi − di‖M2t,λ(Ω)).
Indeed, if we consider the functions us, s = 1, . . . , r, obtained in correspondence with

the solution u, of g and ε as in Lemma 4.1, by (3.11)we get

∫

Ω
|u|p−2

(
u2x + u

2
)
dx ≤ c0

∫

Ω
|u|p−2

r∑

s=1

(
(us)2x + u

2
s

)
dx, (4.18)

with c0 = c0(r).
Thus, taking into account (4.3),

∫

Ω
|u|p−2

(
u2x + u

2
)
dx ≤ c0

r∑

s=1

Cs

s∑

h=1

a
(
u, |u|p−2uh

)
≤ C

r∑

s=1

a
(
u, |u|p−2us

)
, (4.19)

with Cs = Cs(s, ν, μ) and C = C(r, ν, μ).
The linearity of a together with (3.11) and (3.12) then give (4.17).
Now, using (4.17) and Hölder inequality we end the proof, since

‖u‖pLp(Ω) ≤
∫

Ω
|u|p−2

(
u2x + u

2
)
dx ≤ C a

(
u, |u|p−2u

)

= C
∫

Ω
f |u|p−2u dx ≤ C

∫

Ω

∣∣f
∣∣|u|p−1 dx ≤ C∥∥f

∥∥
Lp(Ω)‖u‖

p−1
Lp(Ω).

(4.20)

References

[1] G. Stampacchia, “Le problème de Dirichlet pour les équations elliptiques du second ordre à
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