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We characterize the boundedness and compactness of the weighted composition operator on the
Zygmund space Z = {f ∈ H(D) : supz∈D(1 − |z|2)|f

′′
(z)| <∞} and the little Zygmund space Z0.

1. Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane C, let T = {z : |z| = 1} be its
boundary, and letH(D) denote the set of all analytic functions by D. For f ∈ H(D), let

∥
∥f
∥
∥
Z= sup

{(

1 − |z|2
)∣
∣f ′′(z)

∣
∣ : z ∈ D

}

. (1.1)

An analytic function f ∈ H(D) is said to belong to the Zygmund space Z if ‖f‖Z < +∞, and
the little Zygmund spaceZ0 consists of all f ∈ Z satisfying lim|z|→ 1−(1− |z|2)|f ′′(z)| = 0. From
a theorem of Zygmund (see [1, vol. I, page 263] or [2, Theorem 5.3]), we see that f ∈ Z if and
only if f is continuous in the close unit disk D = {z : |z| ≤ 1} and the boundary function
f(eiθ) such that

∣
∣f
(

ei(θ+h)
)

+ f
(

ei(θ−h)
) − 2f(eiθ)∣∣

h
<∞, (1.2)

for all eiθ ∈ T and all h > 0. It can easily proved that Z is a Banach space under the norm:

∥
∥f
∥
∥
∗=
∣
∣f(0)

∣
∣ +
∣
∣f ′(0)

∣
∣ +
∥
∥f
∥
∥
Z (1.3)
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and that Z0 is a closed subspace of Z. It is easily obtained that

∣
∣f ′(z) − f ′(0)∣∣ ≤ 1

2
∥
∥f
∥
∥
Z log

1 + |z|
1 − |z| for f ∈ Z, (1.4)

lim
|z|→ 1−

∣
∣f ′(z)

∣
∣

log(1/(1 − |z|)) = 0 for f ∈ Z0. (1.5)

For some other information on this space and some operators on it, see, for example, [3–5].
An analytic self-map ϕ : D → D induces the composition operator Cϕ on H(D), de-

fined by Cϕ(f) = f(ϕ(z)) for f analytic onD. It is a well-known consequence of Littlewood’s
subordination principle that the composition operator Cϕ is bounded on the classical Hardy,
Bergman, and Bloch spaces (see, e.g., [6–9]).

Recall that a linear operator is said to be bounded if the image of a bounded set is a
bounded set, while a linear operator is compact if it takes bounded sets to sets with compact
closure. It is interesting to provide a function theoretic characterization of when ϕ induces a
bounded or compact composition operator on various spaces. The book [10] contains plenty
of information on this topic.

Let u be a fixed analytic function on the open unit disk. Define a linear operator uCϕ on
the space of analytic functions on D, called a weighted composition operator, by uCϕf =
u·(f ◦ϕ), where f is an analytic function onD. We can regard this operator as a generalization
of a multiplication operator and a composition operator. In recent years, the weighted com-
position operator has been received much attention and appears in various settings in the
literature. For example, it is known that isometries of many analytic function spaces are
weighted composition operators (e.g., see [11]). The boundedness and compactness of it
has been studied on various Banach spaces of analytic functions, such as Hardy, Bergman,
BMOA, Bloch-type spaces, see, for example, [12–16]. Also, it has been studied from one
Banach space of analytic functions to another, one may see in [17–26].

The purpose of this paper is to consider the weighted composition operators on the
Zygmund space Z and the little Zygmund space Z0. Our main goal is to characterize
boundedness and compactness of the operators uCϕ on Z in terms of function theoretic pro-
perties of the symbols u and ϕ. We also characterize boundedness and compactness of uCϕ

on Z0.
Throughout this paper, constants are denoted by C, they are positive and may differ

from one occurrence to the other.

2. Auxiliary Results

In order to prove the main results of this paper, we need some auxiliary results.

Lemma 2.1. If f ∈ Z, then

(i) |f(z)| ≤ ‖f‖∗ for every z ∈ D;

(ii) |f ′(z)| ≤ log (e/(1 − |z|2))‖f‖∗ for every z ∈ D.
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Proof. Suppose f ∈ Z, z ∈ D and 0 < t < 1, then

∣
∣f ′(zt)

∣
∣ ≤ ∣∣f ′(0)∣∣ + 1

2
∥
∥f
∥
∥
Z log

1 + |zt|
1 − |zt| , (2.1)

by (1.4). It follows that

∣
∣f(z) − f(0)∣∣ =

∣
∣
∣
∣
∣
z

∫1

0
f ′(zt)dt

∣
∣
∣
∣
∣
≤ |z|

∫1

0

(
∣
∣f ′(0)

∣
∣ +

1
2
∥
∥f
∥
∥
Z log

1 + |zt|
1 − |zt|

)

dt

≤ |z|∣∣f ′(0)∣∣ + 1
2
∥
∥f
∥
∥
Z

∫ |z|

0
log

1 + s

1 − sds

≤ |z|∣∣f ′(0)∣∣ + log(1 + |z|)∥∥f∥∥Z,

(2.2)

hence

∣
∣f(z)

∣
∣ ≤ ∣∣f(0)∣∣ + ∣∣f ′(0)∣∣ + ∥∥f∥∥Z log 2 ≤

∥
∥f
∥
∥
∗. (2.3)

One may easily prove (ii) by (1.4). The details are omitted here.

Lemma 2.2. Suppose f ∈ Z, then ‖ft‖∗ ≤ ‖f‖∗, 0 < t < 1, where ft(z) = f(tz).

One may easily obtain it by a calculation.

Lemma 2.3. Suppose uCϕ : Z0 → Z0 is a bounded operator. Then uCϕ : Z → Z is a bounded
operator.

Proof. Suppose uCϕ is bounded in Z0. It is clear that for any f ∈ Z, we have ft ∈ Z0 for every
0 < t < 1. According to Lemma 2.2, we obtain that

∥
∥uCϕ

(

ft
)∥
∥
∗ ≤
∥
∥uCϕ

∥
∥
∥
∥ft
∥
∥
∗ ≤
∥
∥uCϕ

∥
∥
∥
∥f
∥
∥
∗ < +∞. (2.4)

Then

∥
∥uCϕ

(

f
)∥
∥
∗ = lim

t→ 1−

∥
∥uCϕ

(

ft
)∥
∥
∗ ≤ sup

0<t<1

∥
∥uCϕ

(

ft
)∥
∥
∗ ≤
∥
∥uCϕ

∥
∥
∥
∥f
∥
∥
∗ < +∞. (2.5)

Hence, uCϕ : Z → Z is a bounded operator.

3. Boundedness of uCϕ

In this section, we characterize bounded weighted composition operators on the Zygmund
space Z and the little Zygmund space Z0.
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Theorem 3.1. Let u be an analytic function on the unit discD and ϕ an analytic self-map ofD. Then
uCϕ is bounded on the Zygmund space Z if and only if u ∈ Z and the following are satisfied:

sup
z∈D

(

1 − |z|2
)∣
∣
∣u(z)

(

ϕ′(z)
)2
∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
<∞; (3.1)

sup
z∈D

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

1

1 − ∣∣ϕ(z)∣∣2
<∞. (3.2)

Proof. Suppose uCϕ is bounded on the Zygmund space Z. Then we can easily obtain the fol-
lowing results by taking f(z) = 1 and f(z) = z in Z, respectively:

u ∈ Z; (3.3)

sup
z∈D

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z) + ϕ(z)u′′(z)

∣
∣ < +∞. (3.4)

By (3.3), (3.4), and the boundedness of the function ϕ(z), we get

K1 = sup
z∈D

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ < +∞. (3.5)

Let f(z) = z2 in Z again, in the same way we have

sup
z∈D

(

1 − |z|2
)∣
∣
∣4ϕ(z)ϕ′(z)u′(z) + ϕ2(z)u′′(z) + 2u(z)

(

ϕ(z)ϕ′′(z) +
(

ϕ′(z)
)2
)∣
∣
∣ <∞. (3.6)

Using these facts and the boundedness of the function ϕ(z) again, we get

K2 = sup
z∈D

(

1 − |z|2
)∣
∣
∣

(

ϕ′(z)
)2
u(z)

∣
∣
∣ < +∞. (3.7)

Fix a ∈ D with |a| > 1/2, we take the test functions:

fa(z) =
h(az)
a

(

log
1

1 − |a|2
)−1

−
∫z

0
log

1
1 − aωdω, (3.8)

for z ∈ D, where

h(z) = (z − 1)
((

1 + log
1

1 − z
)2

+ 1

)

. (3.9)
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Then we have

f ′a(z) =
(

log
1

1 − az
)2
(

log
1

1 − |a|2
)−1

− log 1
1 − az,

f ′′a(z) =
2a

1 − az log
1

1 − az

(

log
1

1 − |a|2
)−1

− a

1 − az,
(3.10)

and sup1/2<|a|<1‖fa‖∗ ≤ C by [3], where C is not dependent on a. Therefore, for all λ ∈ D with
|ϕ(λ)| > 1/2, we have

C
∥
∥fa
∥
∥
∗ ≥
∥
∥uCϕfa

∥
∥
∗ ≥ sup

z∈D

(

1 − |z|2
)∣
∣
∣

(

uCϕfa
)′′(z)

∣
∣
∣

= sup
z∈D

(

1 − |z|2
)∣
∣
∣

(

2ϕ′(z)u′(z) + ϕ′′(z)u(z)
)

f ′a
(

ϕ(z)
)

+f ′′a
(

ϕ(z)
)(

ϕ′(z)
)2
u(z) + u′′(z)fa

(

ϕ(z)
)
∣
∣
∣.

(3.11)

Let a = ϕ(λ), it follows that

C
∥
∥fa
∥
∥
∗ ≥
(

1 − |λ|2
)∣
∣
∣

(

2ϕ′(λ)u′(λ) + ϕ′′(λ)u(λ)
)

f ′ϕ(λ)
(

ϕ(λ)
)

+f ′′ϕ(λ)
(

ϕ(λ)
)(

ϕ′(λ)
)2
u(λ) + u′′(λ)fϕ(λ)

(

ϕ(λ)
)
∣
∣
∣

=
(

1 − |λ|2
)
∣
∣
∣
∣
∣

(

ϕ′(λ)
)2
u(λ)

ϕ(λ)

1 − ∣∣ϕ(λ)∣∣2
+ u′′(λ)fϕ(λ)

(

ϕ(λ)
)

∣
∣
∣
∣
∣

≥
(

1 − |λ|2
)
∣
∣
∣
∣
∣

(

ϕ′(λ)
)2
u(λ)

ϕ(λ)

1 − ∣∣ϕ(λ)∣∣2

∣
∣
∣
∣
∣
−
(

1 − |λ|2
)∣
∣u′′(λ)fϕ(λ)

(

ϕ(λ)
)∣
∣.

(3.12)

Then, by Lemma 2.1 and (3.3), we have

(

1 − |λ|2
)
∣
∣
∣
∣
∣

(

ϕ′(λ)
)2
u(λ)

ϕ(λ)

1 − ∣∣ϕ(λ)∣∣2

∣
∣
∣
∣
∣
≤
(

1 − |λ|2
)∣
∣u′′(λ)fϕ(λ)

(

ϕ(λ)
)∣
∣ + C

∥
∥fa
∥
∥
∗

≤ ‖u‖Z
∥
∥fa
∥
∥
∗ + C

∥
∥fa
∥
∥
∗.

(3.13)

Hence

sup
|ϕ(λ)|>1/2

(

1 − |λ|2
)∣
∣
∣

(

ϕ′(λ)
)2
u(λ)

∣
∣
∣

1 − ∣∣ϕ(λ)∣∣2
≤ 2 sup
|ϕ(λ)|>1/2

(

1 − |λ|2
)
∣
∣
∣
∣
∣

(

ϕ′(λ)
)2
u(λ)

ϕ(λ)

1 − ∣∣ϕ(λ)∣∣2

∣
∣
∣
∣
∣

≤ C
∥
∥fa
∥
∥
∗ <∞.

(3.14)
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For all λ ∈ D with |ϕ(λ)| ≤ 1/2, by (3.7), we have

sup
λ∈D

(

1 − |λ|2
)∣
∣
∣u(λ)

(

ϕ′(λ)
)2
∣
∣
∣

1 − ∣∣ϕ(λ)∣∣2
≤ 4

3
sup
λ∈D

(

1 − |λ|2
)∣
∣
∣u(λ)

(

ϕ′(λ)
)2
∣
∣
∣ < +∞. (3.15)

Hence (3.1) holds.
Next, we will show that (3.2) holds. Fix a ∈ D with |a| > 1/2, we take another test

functions:

ga(z) =
h(az)
a

(

log
1

1 − |a|2
)−1

(3.16)

for z ∈ D. It is proved that sup1/2<|a|<1‖ga‖∗ ≤ C above, where C is not dependent on a.
Therefore, for all λ ∈ D with |ϕ(λ)| > 1/2, we have

C
∥
∥ga
∥
∥
∗ ≥
∥
∥uCϕga

∥
∥
∗ ≥ sup

z∈D

(

1 − |z|2
)∣
∣
∣

(

uCϕga
)′′(z)

∣
∣
∣

= sup
z∈D

(

1 − |z|2
)∣
∣
∣

(

2ϕ′(z)u′(z) + ϕ′′(z)u(z)
)

g ′a
(

ϕ(z)
)

+g ′′a
(

ϕ(z)
)(

ϕ′(z)
)2
u(z) + u′′(z)ga

(

ϕ(z)
)
∣
∣
∣

= sup
z∈D

(

1 − |z|2
)

∣
∣
∣
∣
∣
∣

(

2ϕ′(z)u′(z) + ϕ′′(z)u(z)
)
(

log
1

1 − aϕ(z)
)2
(

log
1

1 − |a|2
)−1

+
2a

1 − aϕ(z) log
1

1 − aϕ(z)

(

log
1

1 − |a|2
)−1
(

ϕ′(z)
)2
u(z)

+ga
(

ϕ(z)
)

u′′(z)

∣
∣
∣
∣
∣
.

(3.17)

Let a = ϕ(λ), it follows that

C
∥
∥ga
∥
∥
∗ ≥
(

1 − |λ|2
)

∣
∣
∣
∣
∣
∣

(

2ϕ′(λ)u′(λ) + ϕ′′(λ)u(λ)
)

(

log
1

1 − ∣∣ϕ(λ)∣∣2
)2(

log
1

1 − ∣∣ϕ(λ)∣∣2
)−1

+
2ϕ(λ)

1 − ∣∣ϕ(λ)∣∣2
(

ϕ′(λ)
)2
u(λ) + u′′(λ)gϕ(λ)

(

ϕ(λ)
)

∣
∣
∣
∣
∣
∣
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≥
(

1 − |λ|2
)
∣
∣
∣
∣
∣

(

2ϕ′(λ)u′(λ) + ϕ′′(λ)u(λ)
)

(

log
1

1 − ∣∣ϕ(λ)∣∣2
)∣
∣
∣
∣
∣

−
(

1 − |λ|2
) 2

∣
∣ϕ(λ)

∣
∣

1 − ∣∣ϕ(λ)∣∣2
∣
∣
∣

(

ϕ′(λ)
)2
u(λ)

∣
∣
∣ −
(

1 − |λ|2
)∣
∣u′′(λ)gϕ(λ)

(

ϕ(λ)
)∣
∣.

(3.18)

Hence

(

1 − |λ|2
)∣
∣2ϕ′(λ)u′(λ) + ϕ′′(λ)u(λ)

∣
∣ log

1

1 − ∣∣ϕ(λ)∣∣2
≤
(

1 − |λ|2
) 2

∣
∣ϕ(λ)

∣
∣

1 − ∣∣ϕ(λ)∣∣2
∣
∣
∣

(

ϕ′(λ)
)2
u(λ)

∣
∣
∣

+
(

1 − |λ|2
)∣
∣u′′(λ)gϕ(λ)

(

ϕ(λ)
)∣
∣

+ C
∥
∥ga
∥
∥
∗.

(3.19)

By (3.1), Lemma 2.1, and the boundedness of the function ϕ(z), we get

sup
|ϕ(λ)|>1/2

(

1 − |λ|2
)∣
∣2ϕ′(λ)u′(λ) + ϕ′′(λ)u(λ)

∣
∣ log

1

1 − ∣∣ϕ(λ)∣∣2

≤ sup
|ϕ(λ)|>1/2

(

1 − |λ|2
) 2

1 − ∣∣ϕ(λ)∣∣2
∣
∣
∣

(

ϕ′(λ)
)2
u(λ)

∣
∣
∣ + sup
|ϕ(λ)|>1/2

‖u‖Z
∥
∥gϕ(λ)

∥
∥
∗ + C

∥
∥ga
∥
∥
∗ <∞.

(3.20)

For all λ ∈ D with |ϕ(λ)| ≤ 1/2, by (3.5), we have

sup
|ϕ(λ)|≤1/2

(

1 − |λ|2
)∣
∣2ϕ′(λ)u′(λ) + ϕ′′(λ)u(λ)

∣
∣ log

1

1 − ∣∣ϕ(λ)∣∣2

≤ log
4
3

sup
|ϕ(λ)|≤1/2

(

1 − |λ|2
)∣
∣2ϕ′(λ)u′(λ) + ϕ′′(λ)u(λ)

∣
∣ <∞.

(3.21)

Hence (3.2) holds.
Conversely, suppose that u ∈ Z, (3.1) and (3.2) hold. For f ∈ Z, by Lemma 2.1, we

have the following inequality:

(

1 − |z|2
)∣
∣
∣

(

uCϕf
)′′(z)

∣
∣
∣ =
(

1 − |z|2
)∣
∣
∣

(

2ϕ′(z)u′(z) + ϕ′′(z)u(z)
)

f ′
(

ϕ(z)
)

+f ′′
(

ϕ(z)
)(

ϕ′(z)
)2
u(z) + u′′(z)f

(

ϕ(z)
)
∣
∣
∣
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≤
(

1 − |z|2
)∣
∣
(

2ϕ′(z)u′(z) + ϕ′′(z)u(z)
)

f ′
(

ϕ(z)
)∣
∣

+
(

1 − |z|2
)∣
∣
∣f ′′
(

ϕ(z)
)(

ϕ′(z)
)2
u(z)

∣
∣
∣ +
(

1 − |z|2
)∣
∣u′′(z)f

(

ϕ(z)
)∣
∣

≤
(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

e

1 − ∣∣ϕ(z)∣∣2
∥
∥f
∥
∥
∗

+

(

1 − |z|2
)∣
∣
∣

(

ϕ′(z)
)2
u(z)

∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
(

1 − ∣∣ϕ(z)∣∣2
)∣
∣f ′′
(

ϕ(z)
)∣
∣

+
(

1 − |z|2
)∣
∣u′′(z)

∣
∣
∥
∥f
∥
∥
∗

≤
(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

e

1 − ∣∣ϕ(z)∣∣2
∥
∥f
∥
∥
∗

+

(

1 − |z|2
)∣
∣
∣

(

ϕ′(z)
)2
u(z)

∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
∥
∥f
∥
∥
Z + ‖u‖Z

∥
∥f
∥
∥
∗

≤ C
∥
∥f
∥
∥
∗.

(3.22)

This shows that uCϕ is bounded. This completes the proof of Theorem 3.1.

Theorem 3.2. Let u be an analytic function on the unit discD and ϕ an analytic self-map ofD. Then
uCϕ is bounded on the little Zygmund space Z0 if and only if u ∈ Z0, (3.1) and (3.2) hold, and the
following are satisfied:

lim
|z|→ 1−

(

1 − |z|2
)∣
∣
∣u(z)

(

ϕ′(z)
)2
∣
∣
∣ = 0; (3.23)

lim
|z|→ 1−

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ = 0. (3.24)

Proof. Suppose that uCϕ is bounded on the little Zygmund space Z0. Then u = uCϕ1 ∈ Z0.
Also uϕ = uCϕz ∈ Z0, thus

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z) + ϕ(z)u′′(z)

∣
∣ −→ 0

(|z| −→ 1−
)

. (3.25)

Since |ϕ| ≤ 1 and u ∈ Z0, we have lim|z|→ 1−(1 − |z|2)|2ϕ′(z)u′(z) + ϕ′′(z)u(z)| = 0. Hence (3.24)
holds.

Similarly, uCϕz
2 ∈ Z0, then

(

1 − |z|2
)∣
∣
∣4ϕ(z)ϕ′(z)u′(z) + ϕ2(z)u′′(z) + 2u(z)

(

ϕ(z)ϕ′′(z) +
(

ϕ′(z)
)2
)∣
∣
∣ −→ 0

(|z| −→ 1−
)

.

(3.26)
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By (3.24), |ϕ| ≤ 1 and u ∈ Z0, we get that lim|z|→ 1−(1 − |z|2)|u(z)(ϕ′(z))2| = 0, that is, (3.23)
holds.

On the other hand, by Lemma 2.3 and Theorem 3.1, we obtain that (3.1) and (3.2) hold.
Conversely, let

M1 = sup
z∈D

(

1 − |z|2
)∣
∣
∣u(z)

(

ϕ′(z)
)2
∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
<∞;

M2 = sup
z∈D

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

1

1 − ∣∣ϕ(z)∣∣2
<∞.

(3.27)

For all f ∈ Z0, we have both (1−|z|2)|f ′′(z)| → 0 and |f ′(z)|/ log(1/(1−|z|2)) → 0 as |z| → 1−

by (1.5). Since u ∈ Z0, given that ε > 0, there is a 0 < δ < 1 such that (1−|z|2)|u′′(z)| < ε/3‖f‖∗,
(1 − |z|2)|f ′′(z)| < ε/3M1 and |f(z)|/ log (1/(1 − |z|2)) < ε/3M2 for all zwith δ < |z| < 1.

If |ϕ(z)| > δ, it follows that

(

1 − |z|2
)∣
∣
∣

(

uCϕf
)′′(z)

∣
∣
∣ =
(

1 − |z|2
)∣
∣
∣

(

2ϕ′(z)u′(z) + ϕ′′(z)u(z)
)

f ′
(

ϕ(z)
)

+f ′′
(

ϕ(z)
)(

ϕ′(z)
)2
u(z) + u′′(z)f

(

ϕ(z)
)
∣
∣
∣

≤
(

1 − |z|2
)∣
∣
(

2ϕ′(z)u′(z) + ϕ′′(z)u(z)
)

f ′
(

ϕ(z)
)∣
∣

+
(

1 − |z|2
)∣
∣
∣f ′′
(

ϕ(z)
)(

ϕ′(z)
)2
u(z)

∣
∣
∣ +
(

1 − |z|2
)∣
∣u′′(z)f

(

ϕ(z)
)∣
∣

≤M2

∣
∣f
(

ϕ(z)
)∣
∣

log
(

1/
(

1 − ∣∣ϕ(z)∣∣2
)) +M1

(

1 − ∣∣ϕ(z)∣∣2
)∣
∣f ′′
(

ϕ(z)
)∣
∣

+
(

1 − |z|2
)∣
∣u′′(z)

∣
∣
∥
∥f
∥
∥
∗

≤ ε

3
+
ε

3
+
ε

3
= ε.

(3.28)

We know that there exists a constant M3 such that |f(z)| ≤ M3, |f ′(z)| ≤ M3 and
|f ′′(z)| ≤M3 for all |z| ≤ δ.

If |ϕ(z)| ≤ δ, it follows that

(

1 − |z|2
)∣
∣
∣

(

uCϕf
)′′(z)

∣
∣
∣ =
(

1 − |z|2
)∣
∣
∣

(

2ϕ′(z)u′(z) + ϕ′′(z)u(z)
)

f ′
(

ϕ(z)
)

+f ′′
(

ϕ(z)
)(

ϕ′(z)
)2
u(z) + u′′(z)f

(

ϕ(z)
)
∣
∣
∣

≤M3

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣

+M3

(

1 − |z|2
)∣
∣
∣

(

ϕ′(z)
)2
u(z)

∣
∣
∣ +M3

(

1 − |z|2
)∣
∣u′′(z)

∣
∣.

(3.29)
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Thus, we conclude that (1 − |z|2)|(uCϕ(f))
′′(z)| → 0 as |z| → 1−. Hence uCϕf ∈ Z0 for all

f ∈ Z0. On the other hand, uCϕ is bounded on Z by Theorem 3.1. Hence uCϕ is a bounded
operator on the little Zygmund space Z0.

The following corollary is just as Theorem 2.2 in [27].

Corollary 3.3. Let ϕ be an analytic self-map of D. Then Cϕ is a bounded operator on Z if and only if

sup
z∈D

(

1 − |z|2
)∣
∣
∣

(

ϕ′(z)
)2
∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
<∞, (3.30)

sup
z∈D

(

1 − |z|2
)∣
∣ϕ′′(z)

∣
∣ log

1

1 − ∣∣ϕ(z)∣∣2
<∞. (3.31)

Corollary 3.4. Let ϕ be an analytic self-map of D. Then Cϕ is a bounded operator on Z0 if and only
if ϕ ∈ Z0, (3.30) and (3.31) hold.

Proof. By Theorem 3.2, Cϕ is a bounded operator on Z0 if and only if ϕ ∈ Z0, lim|z|→ 1−(1 −
|z|2)|(ϕ′(z))2| = 0, (3.30) and (3.31) hold. However, by (1.5), ϕ ∈ Z0 implies that lim|z|→ 1−(1 −
|z|2)|(ϕ′(z))2| = 0. Then, Cϕ is a bounded operator on Z0 if and only if ϕ ∈ Z0, (3.30) and
(3.31) hold.

4. Compactness of uCϕ

In order to prove the compactness of uCϕ on the Zygmund spaceZ, we require the following
lemmas.

Lemma 4.1. Suppose that uCϕ be a bounded operator on Z. Then uCϕ is compact if and only if for
any bounded sequence {fn} in Z which converges to 0 uniformly on compact subsets of D, we have
‖uCϕ(fn)‖∗ → 0 as n → ∞.

The proof is similar to that of Proposition 3.11 in [10]. The details are omitted.

Lemma 4.2. Let {fn} be a bounded sequence inZ which converges to 0 uniformly on compact subsets
of D. Then limn→∞supz∈D|fn(z)| = 0.

Proof. Let K = supn‖fn‖∗ < ∞. Given any ε > 0, there exist 0 < t < 1 such that (1 − t)1/2 < ε. If
t < |z| < 1, by Lemma 2.1, it follows that

∣
∣
∣
∣
fn(z) − fn

(
t

|z|z
)∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫1

t/|z|
zf ′n(zt)dt

∣
∣
∣
∣
∣
≤ K

∫1

t/|z|
|z| log e

1 − |zt|2
dt

≤ 2e−1/2K
∫1

t/|z|

|z|
(

1 − |zt|2
)1/2

dt ≤ Ke−1/2(1 − t)1/2 < Ke−1/2ε,

(4.1)
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where we use the fact that x1/2 log(e/x) ≤ 2e−1/2 for all x ∈ (0, 1]. Then

sup
t<|z|<1

∣
∣fn(z)

∣
∣ ≤ Ke−1/2ε + sup

|z|=t

∣
∣fn(z)

∣
∣. (4.2)

Noting that {fn} converges to 0 uniformly on compact subsets of D, we get

lim
n→∞

sup
z∈D

∣
∣fn(z)

∣
∣ ≤ lim

n→∞
sup
z∈D

(

Ke−1/2ε + sup
|z|≤t

∣
∣fn(z)

∣
∣

)

= Ke−1/2ε. (4.3)

Hence, limn→∞supz∈D|fn(z)| = 0.

Theorem 4.3. Let u be an analytic function on the unit disc D and ϕ an analytic self-map of D.
Suppose that uCϕ be a bounded operator on Z. Then uCϕ is compact if and only if the following are
satisfied:

(i) lim
|ϕ(z)|−→1−

(

1 − |z|2
)∣
∣
∣u(z)

(

ϕ′(z)
)2
∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
= 0;

(ii) lim
|ϕ(z)|−→1−

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

1

1 − ∣∣ϕ(z)∣∣2
= 0.

(4.4)

Proof. Suppose that uCϕ is compact on the Zygmund space Z. Let {zn} be a sequence in D
such that |ϕ(zn)| → 1 as n → ∞. Without loss of generality, we may suppose that |ϕ(zn)| >
1/2 for all n. We take the test functions:

fn(z) =
ϕ(zn)z − 1

ϕ(zn)

⎛

⎝

(

1 + log
1

1 − ϕ(zn)z

)2

+ 1

⎞

⎠

(

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

)−1
− an, (4.5)

where

an =

∣
∣ϕ(zn)

∣
∣
2 − 1

ϕ(zn)

⎛

⎝

(

1 + log
1

1 − ∣∣ϕ(zn)
∣
∣
2

)2

+ 1

⎞

⎠

(

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

)−1
(4.6)

such that limn→∞an = 0. By a direct calculation, we may easily prove that {fn} converges to 0
uniformly on compact subsets of D. From the proof of Theorem 3.1, we see that supn‖fn‖∗ <
∞. Then {fn} is a bounded sequence inZwhich converges to 0 uniformly on compact subsets
of D. Then limn→∞‖uCϕ(fn)‖∗ = 0 by Lemma 4.1. Note that

fn
(

ϕ(zn)
)

= 0, f ′n
(

ϕ(zn)
)

= log
1

1 − ∣∣ϕ(zn)
∣
∣
2
, f ′′n

(

ϕ(zn)
)

=
2ϕ(zn)

1 − ∣∣ϕ(zn)
∣
∣
2
, (4.7)
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it follows that

∥
∥uCϕfn

∥
∥
∗ ≥
∥
∥uCϕfn

∥
∥
Z

≥
(

1 − |zn|2
)∣
∣
∣

(

2u′(zn)ϕ′(zn) + ϕ′′(zn)u(zn)
)

f ′n
(

ϕ(zn)
)

+u(zn)f ′′n
(

ϕ(zn)
)(

ϕ′(zn)
)2 + u′′(zn)fn

(

ϕ(zn)
)
∣
∣
∣

=
(

1 − |zn|2
)
∣
∣
∣
∣
∣

(

2u′(zn)ϕ′(zn) + ϕ′′(zn)u(zn)
)

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

+
(

ϕ′′(zn)
)2
u(zn)

2ϕ(zn)

1 − ∣∣ϕ(zn)
∣
∣
2

∣
∣
∣
∣
∣

≥
(

1 − |zn|2
)
∣
∣
∣
∣
∣

(

2u′(zn)ϕ′(zn) + ϕ′′(zn)u(zn)
)

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

∣
∣
∣
∣
∣

−
2
(

1 − |zn|2
)∣
∣
∣ϕ(zn)u(zn)

(

ϕ′′(zn)
)2
∣
∣
∣

1 − ∣∣ϕ(zn)
∣
∣
2

.

(4.8)

Then

lim
n→∞

(

1 − |zn|2
)
∣
∣
∣
∣
∣

(

2u′(zn)ϕ′(zn) + ϕ′′(zn)u(zn)
)

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

∣
∣
∣
∣
∣

= lim
n→∞

(

1 − |zn|2
)2
(

1 − |zn|2
)∣
∣
∣ϕ(zn)u(zn)

(

ϕ′′(zn)
)2
∣
∣
∣

1 − ∣∣ϕ(zn)
∣
∣
2

,

(4.9)

if one of these two limits exits.
On the other hand, let

hn(z) =
h
(

ϕ(zn)z
)

ϕ(zn)

(

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

)−1
−
∫z

0
log3

1

1 − ϕ(zn)ω
dω

(

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

)−2
,

(4.10)

so

h′n(z) =

(

log
1

1 − ϕ(zn)z

)2(

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

)−1
− log3 1

1 − ϕ(zn)z

(

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

)−2
,
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h′′n(z) =
2ϕ(zn)

1 − ϕ(zn)z
log

1

1 − ϕ(zn)z

(

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

)−1

− 3ϕ(zn)

1 − ϕ(zn)z
log2

1

1 − ϕ(zn)z

(

log
1

1 − ∣∣ϕ(zn)
∣
∣
2

)−2
.

(4.11)

One may obtain that hn ⇒ 0 (n → ∞) on compact subsets of D by a direct calculation and
supn‖hn‖∗ ≤ C < ∞ by the proof of Theorem 3.1. Consequently, {hn} is a bounded sequence
in Z which converges to 0 uniformly on compact subsets of D. Then limn→∞‖uCϕ(hn)‖∗ = 0
by Lemma 4.1. Note that u ∈ Z, h′n(ϕ(zn)) ≡ 0 and limn→∞supz∈D|hn(z)| = 0 by Lemma 4.2, it
follows that

0←− ∥∥uCϕhn

∥
∥
∗ ≥
∥
∥uCϕhn

∥
∥
Z

≥
(

1 − |zn|2
)∣
∣
∣u(zn)h′′n

(

ϕ(zn)
)(

ϕ′(zn)
)2 + u′′(zn)hn

(

ϕ(zn)
)
∣
∣
∣

≥
(

1 − |zn|2
)
∣
∣
∣
∣
∣
u(zn)

(

ϕ′(zn)
)2

∣
∣ϕ(zn)

∣
∣

1 − ∣∣ϕ(zn)
∣
∣
2

∣
∣
∣−
(

1 − |zn|2
)∣
∣
∣u′′(zn)hn(zn)

∣
∣
∣
∣
∣

−→
(

1 − |zn|2
)

∣
∣
∣u(zn)

(

ϕ′(zn)
)2
∣
∣
∣

1 − ∣∣ϕ(zn)
∣
∣
2

,

(4.12)

as n → ∞. Then limn→∞(1− |zn|2)(|u(zn)(ϕ′(zn))2|/(1− |ϕ(zn)|2)) = 0. The proof of the neces-
sary is completed.

Conversely, Suppose that (i) and (ii) hold. Let {fn} be a bounded sequence inZwhich
converges to 0 uniformly on compact subsets of D. Let M = supn‖fn‖∗ < +∞. We only prove
limn→∞‖uCϕ(fn)‖∗ = 0 by Lemma 4.1. This amounts to showing that

sup
w∈D

(

1 − |w|2
)∣
∣
(

2ϕ′(w)u′(w) + ϕ′′(w)u(w)
)

f ′n
(

ϕ(w)
)∣
∣ −→ 0,

sup
w∈D

(

1 − |w|2
)∣
∣
∣u(w)

(

ϕ′(w)
)2
f ′′n
(

ϕ(w)
)
∣
∣
∣ −→ 0, sup

w∈D

(

1 − |w|2
)∣
∣u′′(w)fn

(

ϕ(w)
)∣
∣ −→ 0.

(4.13)

By Lemma 4.2 and uCϕ bounded on Z, which implies that u ∈ Z, then

sup
w∈D

(

1 − |w|2
)∣
∣u′′(w)fn

(

ϕ(w)
)∣
∣ ≤ ‖u‖Zsup

z∈D

∣
∣fn(z)

∣
∣ −→ 0. (4.14)

If |ϕ(w)| ≤ r < 1, by (3.5), then

(

1 − |w|2
)∣
∣
(

2ϕ′(w)u′(w) + ϕ′′(w)u(w)
)

f ′n
(

ϕ(w)
)∣
∣ ≤ K1max

|z|≤r

∣
∣f ′n(z)

∣
∣. (4.15)
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If |ϕ(w)| > r, by Lemma 2.1, then

(

1 − |w|2
)∣
∣
(

2ϕ′(w)u′(w) + ϕ′′(w)u(w)
)

f ′n
(

ϕ(w)
)∣
∣

≤M
(

1 − |w|2
)∣
∣
(

2ϕ′(w)u′(w) + ϕ′′(w)u(w)
)∣
∣ log

e

1 − ∣∣ϕ(w)
∣
∣
2
.

(4.16)

Thus,

sup
w∈D

(

1 − |w|2
)∣
∣
(

2ϕ′(w)u′(w) + ϕ′′(w)u(w)
)

f ′n
(

ϕ(w)
)∣
∣

≤ K1max
|w|≤r

∣
∣f ′n(w)

∣
∣ +M sup

|ϕ(w)|>r

(

1 − |w|2
)∣
∣
(

2ϕ′(w)u′(w) + ϕ′′(w)u(w)
)∣
∣ log

e

1 − ∣∣ϕ(w)
∣
∣
2
.

(4.17)

First, letting n tend to infinity and subsequently r increase to 1, one obtains that

sup
w∈D

(

1 − |w|2
)∣
∣
(

2ϕ′(w)u′(w) + ϕ′′(w)u(w)
)

f ′n
(

ϕ(w)
)∣
∣ −→ 0, (4.18)

as n → ∞. The third statement is proved similarly.
If |ϕ(w)| ≤ r < 1, by (3.7), then

(

1 − |w|2
)∣
∣
∣u(w)

(

ϕ′(w)
)2
f ′′n
(

ϕ(w)
)
∣
∣
∣ ≤ K2max

|z|≤r

∣
∣f ′′n(z)

∣
∣. (4.19)

If |ϕ(w)| > r, then

(

1 − |w|2
)∣
∣
∣u(w)

(

ϕ′(w)
)2
f ′′n
(

ϕ(w)
)
∣
∣
∣ ≤M

(

1 − |w|2
)∣
∣
∣u(w)

(

ϕ′(w)
)2
∣
∣
∣

1 − ∣∣ϕ(w)
∣
∣
2

. (4.20)

Thus,

sup
w∈D

(

1 − |w|2
)∣
∣
∣u(w)

(

ϕ′(w)
)2
f ′′n
(

ϕ(w)
)
∣
∣
∣ ≤ K2max

|z|≤r

∣
∣f ′′n(z)

∣
∣

+M sup
|ϕ(w)|>r

(

1 − |w|2
)∣
∣
∣u(w)

(

ϕ′(w)
)2
∣
∣
∣

1 − ∣∣ϕ(w)
∣
∣
2

,

(4.21)

which also implies that

sup
w∈D

(

1 − |w|2
)∣
∣
∣u(w)

(

ϕ′(w)
)2
f ′′n
(

ϕ(w)
)
∣
∣
∣ −→ 0, (4.22)

as n → ∞. This completes the proof of Theorem 4.3.
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In order to prove the compactness of uCϕ on the little Zygmund space Z0, we require
the following lemma.

Lemma 4.4. LetU ⊂ Z0. ThenU is compact if and only if it is closed, bounded, and satisfies

lim
|z|−→1

sup
f∈U

(

1 − |z|2
)∣
∣f ′′(z)

∣
∣ = 0. (4.23)

The proof is similar to that of Lemma 1 in [6], we omit it.

Theorem 4.5. Let u be an analytic function on the unit discD and ϕ an analytic self-map ofD. Then
uCϕ is compact on the little Zygmund space Z0 if and only if u ∈ Z0 and the following are satisfied:

(i) lim
|z|−→1−

(

1 − |z|2
)∣
∣
∣u(z)

(

ϕ′(z)
)2
∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
= 0;

(ii) lim
|z|→ 1−

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

1

1 − ∣∣ϕ(z)∣∣2
= 0.

(4.24)

Proof. Assume that (i) and (ii) hold, and u ∈ Z0. By Theorem 3.2, we know that uCϕ is bound-
ed on the little Zygmund space Z0. From (ii), we can show that

lim
|z|→ 1−

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ = 0. (4.25)

Suppose that f ∈ Z0 with ‖f‖∗ ≤ 1. We obtain that

(

1 − |z|2
)∣
∣
∣

(

uCϕf
)′′(z)

∣
∣
∣ ≤
(

1 − |z|2
)∣
∣
(

2ϕ′(z)u′(z) + ϕ′′(z)u(z)
)

f ′
(

ϕ(z)
)∣
∣

+
(

1 − |z|2
)∣
∣
∣f ′′
(

ϕ(z)
)(

ϕ′(z)
)2
u(z)

∣
∣
∣ +
(

1 − |z|2
)∣
∣u′′(z)f

(

ϕ(z)
)∣
∣

≤
(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

e

1 − ∣∣ϕ(z)∣∣2
∥
∥f
∥
∥
∗

+

(

1 − |z|2
)∣
∣
∣

(

ϕ′(z)
)2
u(z)

∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
(

1 − ∣∣ϕ(z)∣∣2
)∣
∣f ′′
(

ϕ(z)
)∣
∣ +
(

1 − |z|2
)∣
∣u′′(z)

∣
∣
∥
∥f
∥
∥
∗

≤
(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣

(

1 + log
1

1 − ∣∣ϕ(z)∣∣2
)

+

(

1 − |z|2
)∣
∣
∣

(

ϕ′(z)
)2
u(z)

∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
+
(

1 − |z|2
) ∣
∣u′′(z)

∣
∣,

(4.26)
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thus,

sup
{∣
∣
∣

(

1 − |z|2
)(

uCϕf
)′′(z)

∣
∣
∣ : f ∈ Z0,

∥
∥f
∥
∥
∗ ≤ 1

}

≤
(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣

(

1 + log
1

1 − ∣∣ϕ(z)∣∣2
)

+

(

1 − |z|2
)∣
∣
∣

(

ϕ′(z)
)2
u(z)

∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
+
(

1 − |z|2
)∣
∣u′′(z)

∣
∣,

(4.27)

and it follows that

lim
|z|−→1−

sup
{∣
∣
∣

(

1 − |z|2
)(

uCϕf
)′′(z)

∣
∣
∣ : f ∈ Z0,

∥
∥f
∥
∥
∗ ≤ 1

}

= 0, (4.28)

hence, uCϕ is compact on Z0 by Lemma 4.1.
Conversely, suppose that uCϕ is compact on Z0.
First, it is obvious uCϕ is bounded on Z0, then by Theorem 3.2, we have u ∈ Z0 and

that (3.24) holds. On the other hand, by Lemma 4.1 we have

lim
|z|−→1−

sup
{∣
∣
∣

(

1 − |z|2
)(

uCϕf
)′′(z)

∣
∣
∣ : f ∈ Z0,

∥
∥f
∥
∥
∗ ≤M

}

= 0, (4.29)

for some M > 0.
Next, note that the proof of Theorem 3.1 and the fact that the functions given in (3.8)

are in Z0 and have norms bounded independently of a, we obtain that

lim
|z|−→1−

(

1 − |z|2
)∣
∣
∣u(z)

(

ϕ′(z)
)2
∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
= 0. (4.30)

Similarly, note that the functions given in (3.16) are in Z0 and have norms bounded
independently of a, we obtain that

lim
|z|−→1−

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

1

1 − ∣∣ϕ(z)∣∣2

≤ C lim
|z|−→1−

(

1 − |z|2
)∣
∣
∣

(

uCϕga
)′′(z)

∣
∣
∣ + lim

|z|−→1−

(

1 − |z|2
)∣
∣u′′(z)

∣
∣
∥
∥ga
∥
∥
∗

+ lim
|z|−→1−

(

1 − |z|2
) 2

∣
∣ϕ(z)

∣
∣

1 − ∣∣ϕ(z)∣∣2
∣
∣
∣u(z)

(

ϕ′(z)
)2
∣
∣
∣,

(4.31)

for |ϕ(z)| > 1/2. So by (4.30) and u ∈ Z0, it follows that

lim
|z|−→1−

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

1

1 − ∣∣ϕ(z)∣∣2
= 0, (4.32)
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for |ϕ(z)| > 1/2. However, if |ϕ(z)| ≤ 1/2, by (3.24), we easily have

lim
|z|→ 1−

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ log

1

1 − ∣∣ϕ(z)∣∣2

≤ log
4
3

lim
|z|−→1−

(

1 − |z|2
)∣
∣2ϕ′(z)u′(z) + ϕ′′(z)u(z)

∣
∣ = 0.

(4.33)

This completes the proof of Theorem 4.5.

Corollary 4.6. Let ϕ be an analytic self-map ofD. Then Cϕ is a compact operator on Z0 if and only if

lim
|z|−→1−

(

1 − |z|2
)∣
∣
∣

(

ϕ′(z)
)2
∣
∣
∣

1 − ∣∣ϕ(z)∣∣2
= 0,

lim
|z|−→1−

(

1 − |z|2
)∣
∣ϕ′′(z)

∣
∣ log

1

1 − ∣∣ϕ(z)∣∣2
= 0.

(4.34)

In the formulation of corollary, we use the notationMu onH(D) defined byMuf = uf
for f ∈ H(D).

Corollary 4.7. Let u be an analytic function on the unit disc D. Then the pointwise multiplier Mu :
Z(resp.Z0) → Z(resp.Z0) is a compact operator if and only if u ≡ 0.
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[23] S. Stević andA. K. Sharma, “Composition operators from the space of Cauchy transforms to Bloch and
the little Bloch-type spaces on the unit disk,” Applied Mathematics and Computation, vol. 217, no. 24,
pp. 10187–10194, 2011.

[24] S. Ye, “A weighted composition operator between different weighted Bloch-type spaces,” Acta Mathe-
matica Sinica. Chinese Series, vol. 50, no. 4, pp. 927–942, 2007.

[25] S. Ye, “Weighted composition operators from F(p, q, s) into logarithmic Bloch space,” Journal of the
Korean Mathematical Society, vol. 45, no. 4, pp. 977–991, 2008.

[26] S. Ye, “Weighted composition operators between the little logarithmic Bloch space and the α-Bloch
space,” Journal of Computational Analysis and Applications, vol. 11, no. 3, pp. 443–450, 2009.

[27] B. R. Choe, H. Koo, and W. Smith, “Composition operators on small spaces,” Integral Equations and
Operator Theory, vol. 56, no. 3, pp. 357–380, 2006.


