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We consider the maximal dissipative second-order difference (or discrete Sturm-Liouville)
operators acting in the Hilbert space �2w(Z) (Z:= {0,±1,±2, . . .}), that is, the extensions of a minimal
symmetric operator with defect index (2, 2) (in the Weyl-Hamburger limit-circle cases at ±∞).
We investigate two classes of maximal dissipative operators with separated boundary conditions,
called “dissipative at −∞” and “dissipative at∞.” In each case, we construct a self-adjoint dilation
of the maximal dissipative operator and its incoming and outgoing spectral representations, which
make it possible to determine the scattering matrix of the dilation. We also establish a functional
model of the maximal dissipative operator and determine its characteristic function through the
Titchmarsh-Weyl function of the self-adjoint operator. We prove the completeness of the system of
eigenvectors and associated vectors of the maximal dissipative operators.

1. Introduction

Method of contour integration of the resolvent is one of the general methods of the spectral
analysis of nonself-adjoint (dissipative) operators. It is related to a fine estimate of the
resolvent on expanding contours which separates the spectrum. The feasibility of this method
is restricted to weak perturbations of self-adjoint operators and operators having sparse
discrete spectrum. Since there are no asymptotics of the solutions for a wide class of singular
problems, this method cannot be applied properly.

It is well known [1–4] that the theory of dilations with application of functional models
gives an adequate approach to the spectral theory of dissipative (contractive) operators.
In this theory, a key role is played by the characteristic function, which carries the full
information on the spectral properties of the dissipative operator. Thus, the dissipative
operator becomes the model in the incoming spectral representation of the dilation. The
completeness problem of the system of eigenvectors and associated vectors is solved by the
factorization of the characteristic function. The computation of the characteristic functions
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of dissipative operators is preceded by the construction and investigation of the self-adjoint
dilation and the corresponding scattering problem, in which the characteristic function is
realized as the scattering matrix [5]. The adequacy of this approach for dissipative Jacobi
operators and second-order difference (or discrete Sturm-Liouville) operators has been
indicated in [6–9].

In this paper, we consider the maximal dissipative second-order difference (or discrete
Sturm-Liouville) operators acting in the Hilbert space �2w(Z), that is the extensions of a
minimal symmetric operator with defect index (2, 2) (in the Weyl-Hamburger limit-circle
cases at ±∞). We investigate two classes of maximal dissipative operators with separated
boundary conditions, called “dissipative at −∞” and “dissipative at∞.” In each of these cases
we construct a self-adjoint dilation of the maximal dissipative operator and its incoming and
outgoing spectral representations, which make it possible to determine the scattering matrix
of the dilation according to the scheme of Lax and Phillips [5]. By means of the incoming
spectral representation, we establish a functional model of the maximal dissipative operator
and construct its characteristic function using the Titchmarsh-Weyl function of the self-adjoint
operator. Finally, on the basis of the results obtained for the characteristic functions, we prove
the theorems on completeness of the system of eigenvectors and associated vectors (or root
vectors) of the maximal dissipative second-order difference operators.

2. Preliminaries

Let y = {yn} be a sequence of complex numbers yn (n ∈ Z) and �1y denote the sequence with
components (�1y)n. We consider the following second-order difference (or discrete Sturm-
Liouville) equation on the whole line:

(
�1y

)
n := −an−1yn−1 + bnyn − anyn+1 = λwnyn, (2.1)

where λ is a complex spectral parameter, wn > 0, an /= 0, and an, bn ∈ R:= (−∞,∞), n ∈ Z.
If we let pn = an, qn = bn − an − an−1, and Δxn = xn+1 − xn, (2.1) can be written in

Sturm-Liouville form as follows:

−Δ(
pn−1Δyn−1

)
+ qnyn = λwnyn, n ∈ Z. (2.2)

For arbitrary sequences y = {yn} and z = {zn}, n ∈ Z, we denote by [y, z] the
sequence with components [y, z]n defined as:

[
y, z

]
n := an

(
ynzn+1 − yn+1zn

)
, n ∈ Z. (2.3)

Letm,n ∈ Z with n < m. Then we have the Green’s formula:

m∑

j=n

[(
�1y

)
jzj − yj(�1z)j

]
=
[
y, z

]
m − [

y, z
]
n−1. (2.4)

For any sequence y = {yn}, let �y denote the sequence with components (�y)n given
by (�y)n = (1/wn)(�1y)n, n ∈ Z. We denote by �2w(Z) (w := {wn}, n ∈ Z) the Hilbert space of
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all complex sequences y = {yn}, n ∈ Z such that
∑∞

n=−∞wn|yn|2 < ∞, with the inner product
(y, z) =

∑∞
n=−∞wnynzn. Next, we denote by D the set of all vectors y ∈ �2w(Z) such that

�y ∈ �2w(Z). We define a maximal operator L on D by setting Ly = �y.
It follows from Green’s formula (2.4) that the limits [y, z]∞ = limn→∞[y, z]n and

[y, z]−∞ = limn→−∞[y, z]n exist and are finite for arbitrary vectors y, z ∈ D. Therefore, taking
the limit as n → −∞ andm → ∞ in (2.4), for all y, z ∈ D, we have

(
Ly, z

) − (
y, Lz

)
=
[
y, z

]
∞ − [

y, z
]
−∞. (2.5)

Denote by L0 the closure of the symmetric operator L′
0 defined by L′

0y = Ly on the
linear setD′

0 of finite sequences (i.e., vectors having only finitely many nonzero components)
y = {yn} (n ∈ Z). The minimal operator L0 is symmetric and L∗

0 = L. The computation of
the defect index of L0 can be reduced to the computation of the defect index for the half-
line case. In fact, �2w(Z) is the orthogonal sum of the space �2w(N−), (N− = {−1,−2,−3, . . .})
and �2w(N0) (N0 = {0, 1, 2, . . .}) which are imbedded in the natural way in �2w(Z). Denote by
L−
0 (L−) and L+

0 (L+) the minimal (maximal) operators generated by �− and �+ in the spaces
�2w(N−) and �2w(N0), respectively, and D∓

0 (D∓) is a domain of L∓
0 (L∓), where (�∓y)n := (�y)n,

n ∈ Z \ {−1, 0}, (�−y)−1 := (1/w−1)(−a−2y−2 + b−1y−1), (�+y)0 := (1/w0)(b0y0 − a0y1). Then
it is easy to see that the equality defL0 = defL−

0 + defL+
0 is satisfied for the defect number

defL0:= dim{(L0 − λI)D(L0)}⊥, Imλ/= 0, of L0. This shows that the defect index of L0 has the
form (k, k), where k = 0, 1 or 2. For defect index (0, 0) the operator L0 is self-adjoint, that is,
L∗
0 = L0 = L.

Assume that the symmetric operator L0 has defect index (2, 2). There are several
sufficient conditions that guarantee Weyl-Hamburger limit-circle cases at ±∞ (i.e., the
operator L0 has defect index (2, 2), see [10–17]). The domain of L0 consists of precisely those
vectors y ∈ D satisfying the condition

[
y, z

]
∞ − [

y, z
]
−∞ = 0, ∀z ∈ D. (2.6)

Denote by P (1)(λ) = {P (1)
n (λ)} and P (2)(λ) = {P (2)

n (λ)}, n ∈ Z the solutions of (2.1)
satisfying the initial conditions:

P
(1)
−1 (λ) = 0, P

(1)
0 (λ) = 1,

P
(2)
−1 (λ) = − 1

a−1
, P

(2)
0 (λ) = 0.

(2.7)

The Wronskian of the two solutions y = {yn} and z = {zn}, n ∈ N of (2.1) is defined
as Wn(y, z) := an(ynzn+1 − yn+1zn), so that Wn(y, z) = [y, z]n, n ∈ Z. The Wronskian of the
two solutions of (2.1) is independent of n, and the two solutions of this equation are linearly
independent if and only if their Wronskian is nonzero. It follows from the conditions (2.7)
and the constancy of the Wronskian thatWn(P (1), P (2)) = 1, n ∈ Z. Consequently, P (1)(λ) and
P (2)(λ) form a fundamental system of solutions of (2.1), and P (1)(λ), P (2)(λ) ∈ �2w(Z) for all
λ ∈ C. The theory of difference equations can be seen in [18, 19].

Let u = P (1)(0) and v = P (2)(0). Since the vectors u = {un} and v = {vn} (n ∈ Z) are
real valued and [u, v]n = 1 (n ∈ Z), the following assertion can be verified easily using (2.3).
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Lemma 2.1. For arbitrary vectors y = {yn} ∈ D and z = {zn} ∈ D, one has the equality:

[
y, z

]
n =

[
y, u

]
n[z, v]n −

[
y, v

]
n[z, u]n, (n ∈ Z ∪ {−∞,∞}). (2.8)

The domain D0 of the operator L0 consists of precisely those vectors y ∈ D satisfying
the boundary conditions:

[
y, u

]
−∞ =

[
y, v

]
−∞ =

[
y, u

]
∞ =

[
y, v

]
∞ = 0. (2.9)

Let us consider the following linear maps from D into C
2

Γ1y =

([
y, v

]
−∞

[
y, u

]
∞

)

, Γ2y =

([
y, u

]
−∞

[
y, v

]
∞

)

, y ∈ D. (2.10)

Then we have the following result (see [8]).

Theorem 2.2. For any contractionK in C
2 the restriction of the operator L to the set of vectors y ∈ D

satisfying the boundary conditions

(K − I)Γ1y + i(K + I)Γ2y = 0, (2.11)

or

(K − I)Γ1y − i(K + I)Γ2y = 0 (2.12)

is, respectively, a maximal dissipative or a accretive extension of the operator L0. Conversely, every
maximal dissipative (accretive) extension of L0 is the restriction of L to the set of vectors y ∈ D
satisfying (2.11) (2.12), and the contraction K is uniquely determined by the extension. These
conditions give a self-adjoint extension if and only if K is unitary. In the latter case (2.11) and (2.12)
are equivalent to the condition (cosS)Γ1y − (sinS)Γ2y = 0, where S is a self-adjoint (Hermitian
matrix) operator in C

2. The general form of dissipative and accretive extensions of the operator L0 is
given by the conditions

K
(
Γ1y + iΓ2y

)
= Γ1y − iΓ2y, Γ1y + iΓ2y ∈ D(K),

K
(
Γ1y − iΓ2y

)
= Γ1y + iΓ2y, Γ1y − iΓ2y ∈ D(K),

(2.13)

respectively, where K is a linear operator in C
2 with ‖Kf‖ ≤ ‖f‖, f ∈ D (K) ⊆ C

2. The general
form of symmetric extensions is given by the formulae (2.13), where K is an isometric operator.

In particular, if K is a diagonal matrix, the boundary conditions

[
y, v

]
−∞ − h1

[
y, u

]
−∞ = 0, (2.14)

[
y, u

]
∞ − h2

[
y, v

]
∞ = 0, (2.15)
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with Imh1 ≥ 0 or h1 = ∞, and Imh2 ≥ 0 or h2 = ∞ (Imh1 ≤ 0 or h1 = ∞, and Imh2 ≤ 0 or h2 = ∞)
describe all the maximal dissipative (maximal accretive) extensions of L0 with separated boundary
conditions. The self-adjoint extensions of L0 are obtained precisely when Imh1 = 0 or h1 = ∞, and
Imh2 = 0 or h2 = ∞. Here for h1 = ∞(h2 = ∞) condition (2.14) (2.15) should be replaced by
[y, u]−∞ = 0 ([y, v]∞ = 0).

In what follows, we will study the dissipative operators L∓
h1h2

generated by � and the
boundary conditions (2.14) and (2.15) of two types: “dissipative at −∞,” that is, when either
Imh1 > 0 and Imh2 = 0 or h2 = ∞; “dissipative at ∞,” when Imh1 = 0 or h1 = ∞ and
Imh2 > 0.

3. Self-Adjoint Dilations of the Maximal Dissipative Operators

In order to construct a self-adjoint dilation of the maximal dissipative operator L−
h1h2

in the
case of “dissipative at −∞” (i.e., Imh1 > 0 and Imh2 = 0 or h2 = ∞), we associate with
H := �2w(Z) the “incoming” and “outgoing” channelsD− := L2(−∞, 0) andD+ := L2(0,∞), we
form the orthogonal sumH = D− ⊕H ⊕D+ and we call it the main Hilbert space of the dilation.
In the space H, we consider the operator L−

h1h2
generated by the expression

L〈
ϕ−, y, ϕ+

〉
=
〈
i
dϕ−
dξ

, �y, i
dϕ+

dς

〉
(3.1)

on the set D(L−
h1h2

) of vectors 〈ϕ−, y, ϕ+〉 satisfying the conditions ϕ− ∈ W1
2 (−∞, 0), ϕ+ ∈

W1
2 (0,∞), y ∈ D and

[
y, v

]
−∞ − h1

[
y, u

]
−∞ = αϕ−(0),

[
y, v

]
−∞ − h1

[
y, u

]
−∞ = αϕ+(0),

[
y, u

]
∞ − h2

[
y, v

]
∞ = 0,

(3.2)

whereW1
2 denotes the Sobolev space and α2 := 2 Imh1, α > 0.

Theorem 3.1. The operator L−
h1h2

is self-adjoint in H and it is a self-adjoint dilation of the maximal
dissipative operator L−

h1h2
.

Proof. We assume that f, g ∈ D(L−
h1h2

) with f = 〈ϕ−, y, ϕ+〉 and g = 〈ψ−, z, ψ+〉. Then using
integration by parts and (3.1), we obtain

(
L−
h1h2

f, g
)

H
=
∫∞

0
iϕ′

−ψ−dξ +
(
Ly, z

)
H +

∫∞

0
iϕ′

+ψ+dξ

= iϕ−(0)ψ−(0) − iϕ+(0)ψ+(0) +
[
y, z

]
∞ − [

y, z
]
−∞ +

(
f,L−

h1h2
g
)

H
.

(3.3)

If we use the boundary conditions (3.2) for the components of the vectors f, g and Lemma 2.1,
we see that iϕ−(0)ψ−(0) − iϕ+(0)ψ+(0) + [y, z]∞ − [y, z]−∞ = 0. Thus, L−

h1h2
is symmetric.
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Therefore, to prove that L−
h1h2

is self-adjoint, it is sufficient to show that (L−
h1h2

)∗ ⊆ L−
h1h2

.
Let us take g = 〈ψ−, z, ψ+〉 ∈ D((L−

h1h2
)∗) and let (L−

h1h2
)∗g = g∗ = 〈ψ∗

−, z
∗, ψ∗

+〉 ∈ H so that

(L−
h1h2

f, g)H =
(
f, g∗)

H, ∀f ∈ D
(
L−
h1h2

)
. (3.4)

If we choose the components of f ∈ D(L−
h1h2

) properly in (3.4), it becomes easy to show that
ψ− ∈ W1

2 (−∞, 0), ψ+ ∈ W1
2 (0,∞), z ∈ D, and g∗ = Lg, where the operator L is given by

(3.1). As a result, (3.4) takes the form (Lf, g)H = (f,Lg)H, for all f ∈ D(L−
h1h2

). Hence, in the
bilinear form (Lf, g)H, the sum of the integral terms must be equal to zero:

iϕ−(0)ψ−(0) − iϕ+(0)ψ+(0) +
[
y, z

]
∞ − [

y, z
]
−∞ = 0, (3.5)

for all f = 〈ϕ−, y, ϕ+〉 ∈ D(L−
h1h2

). In addition, if we solve the boundary conditions (3.2) for
[y, u]−∞ and [y, v]−∞, we get

[
y, u

]
−∞ = − i

α

(
ϕ+(0) − ϕ−(0)

)
,

[
y, v

]
−∞ = αϕ−(0) − ih1

α

(
ϕ+(0) − ϕ−(0)

)
. (3.6)

It follows from Lemma 2.1 and (3.6) that (3.5) is equivalent to the following equality:

iϕ−(0)ψ−(0) − iϕ+(0)ψ+(0) =
[
y, z

]
−∞ − [

y, z
]
∞

= − i
α

(
ϕ+(0) − ϕ−(0)

)
[z, v]−∞

− α
[
ϕ−(0) − ih1

α2
(
ϕ+(0) − ϕ−(0)

)
]
[z, u]−∞

− [
y, u

]
∞[z, v]∞ +

[
y, v

]
∞[z, u]∞

= − i
α

(
ϕ+(0) − ϕ−(0)

)
[z, v]−∞

− α
[
ϕ−(0) − ih1

α2
(
ϕ+(0) − ϕ−(0)

)
]
[z, u]−∞

+ ([z, u]∞ − h2[z, v]∞)
[
y, v

]
∞.

(3.7)

Note that the values ϕ±(0) can be any complex numbers. Therefore, when we compare
the coefficients of ϕ±(0) on the left and right of the last equality we see that the vector
g = 〈ψ−, z, ψ+〉 satisfies the boundary conditions [z, v]−∞ − h1[z, u]−∞ = αψ−(0), [z, v]−∞ −
h1[z, u]−∞ = αψ+(0), [z, u]∞ − h2[z, v]∞ = 0. Consequently, we obtain (L−

h1h2
)∗ ⊆ L−

h1h2
, and

hence L−
h1h2

= (L−
h1h2

)∗.
The self-adjoint operator L−

h1h2
generates in H a unitary group U−

t = exp[iL−
h1h2

t],
t ∈ R. Let P : H → H and P1 : H → H denote the mappings acting according to the
formulas P : 〈ϕ−, y, ϕ+〉 → y and P1 : y → 〈0, y, 0〉. Let Z−

t = PU−
t P1 t ≥ 0. The family {Z−

t },
t ≥ 0, of operators is a strongly continuous semigroup of completely nonunitary contractions
on H. (We recall that the linear bounded operator A acting in the Hilbert space H is called
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completely nonunitary if invariant subspaceM ⊆ H (M/= {0} of operatorAwhose restriction to
M is unitary, does not exist). Let us denote byAh1h2 the generator of this semigroup:Ah1h2y =
limt→+0(it)

−1(Z−
t y − y). The domain of Ah1h2 consists of all the vectors for which the limit

exists. Ah1h2 is a maximal dissipative operator. The operator L−
h1h2

is called the self-adjoint
dilation of Ah1h2 [1–4]. We show that Ah1h2 = L−

h1h2
, and thus L−

h1h2
is a self-adjoint dilation of

L−
h1h2

. To do this, we first verify the equality [1–4]:

P
(
L−
h1h2

− λI
)−1

P1y =
(
L−
h1h2

− λI
)−1

y, y ∈ H, Imλ < 0. (3.8)

Denote (L−
h1h2

− λI)−1P1y = g = 〈ψ−, z, ψ+〉. Then (L−
h1h2

− λI)g = P1y, and hence Lz − λz = y,
ψ−(ξ) = ψ−(0)e−iλξ and ψ+(ς) = ψ+(0)e−iλς. Since g ∈ D(L−

h1h2
), and hence, ψ− ∈ L2(−∞, 0);

it follows that ψ−(0) = 0, and, consequently, z satisfies the boundary conditions [z, v]−∞ −
h1[z, u]−∞ = 0, [z, u]∞ − h2[z, v]∞ = 0. Therefore, z ∈ D(L−

h1h2
) and since a point λ with

Imλ < 0 cannot be an eigenvalue of a dissipative operator, it follows that z = (L−
h1h2

− λI)−1y.
Note that ψ+(0) is obtained from the formula ψ+(0) = α−1([z, v]−∞ − h1[z, u]−∞). Then

(
L−
h1h2

− λI
)−1

P1y =
〈
0,

(
L−
h1h2

− λI
)−1

y, α−1
(
[z, v]−∞ − h1[z, u]−∞

)
e−iλς

〉
, (3.9)

for y ∈ H and Imλ < 0. By applying P , one can obtain (3.8).
Now, it is not difficult to show that Ah = L−

h
. In fact, it follows from (3.8) that

(
L−
h1h2

− λI
)−1

= P
(
L−
h1h2

− λI
)−1

P1 = −iP
∫∞

0
U−
t e

−iλtdtP1

= −i
∫∞

0
Z−
t e

−iλtdt = (Ah1h2 − λI)−1, Imλ < 0,

(3.10)

and thus L−
h1h2

= Ah1h2 . Theorem 3.1. is proved.

In order to construct a self-adjoint dilation of the maximal dissipative operator L+
h1h2

in the case “dissipative at ∞” (i.e., Imh1 = 0 or h1 = ∞ and Imh2 > 0) in H, we consider
the operator L+

h1h2
generated by the expression (3.1) on the setD(L+

h1h2
) of vectors 〈ϕ−, y, ϕ+〉

satisfying the conditions ϕ− ∈W1
2 (−∞, 0), ϕ+ ∈W1

2 (0,∞), y ∈ D and

[
y, v

]
−∞ − h1

[
y, u

]
−∞ = 0,

[
y, u

]
∞ − h2

[
y, v

]
∞ = αϕ−(0),

[
y, u

]
∞ − h2

[
y, v

]
∞ = αϕ+(0),

(3.11)

where α2 := 2 Imh2, α > 0.
The proof of the next theorem is similar to that of Theorem 3.1.

Theorem 3.2. The operator L+
h1h2

is self-adjoint in H and it is a self-adjoint dilation on the maximal
dissipative operator L+

h1h2
.
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4. Scattering Theory of the Dilations and Functional Models of
the Maximal Dissipative Operators

The unitary group U±
t = exp[iL±

h1h2
t] (t ∈ R) has a crucial property which enables us to

apply the Lax-Phillips scheme [5]. In other words, it has incoming and outgoing subspaces
D− = 〈L2(−∞, 0), 0, 0〉 and D+ = 〈0, 0, L2(0,∞)〉 satisfying the following properties:

(1) U±
t D− ⊂ D−, t ≤ 0 andU±

t D+ ⊂ D+, t ≥ 0;

(2)
⋂
t≤0U

±
t D− =

⋂
t≥0U

±
t D+ = {0};

(3)
⋃
t≥0U

±
t D− =

⋃
t≤0U

±
t D+ = H;

(4) D− ⊥ D+.

Property (4) is obvious. To verify property (1) for D+ (the proof for D− is similar), we
set R±

λ = (L±
h1h2

− λI)−1, for all λwith Imλ < 0. Then, for any f = 〈0, 0, ϕ+〉 ∈ D+, we have

R±
λf =

〈
0, 0,−ie−iλς

∫ ς

0
e−iλsϕ+(s)ds

〉
. (4.1)

Hence, we find Rλf ∈ D+. Therefore, if g ⊥ D+, then it follows that

0 =
(
R±
λf, g

)
H = −i

∫∞

0
e−iλt

(
U±
t f, g

)
Hdt, Imλ < 0. (4.2)

From this, we conclude that (U±
t f, g)H = 0 for all t ≥ 0. Hence U±

t D+ ⊂ D+, for t ≥ 0, which
completes the proof of property (1).

To prove property (2), we denote by P+ : H → L2(0,∞) and P+
1 : L2(0,∞) → D+ the

mappings acting according to the formulas P+ : 〈ϕ−, u, ϕ+〉 → ϕ+ and P+
1 : ϕ → 〈0, 0, ϕ〉,

respectively. Note that the semigroup of isometries V ±
t = P+U±

t P
+
1 , t ≥ 0 is a one-sided shift

in L2(0,∞). Indeed, the generator of the semigroup of the one-sided shift Vt in L2(0,∞)
is the differential operator i(d/dξ) satisfying the boundary condition ϕ(0) = 0. On the
other hand, the generator A± of the semigroup of isometries V ±

t , t ≥ 0, is the operator
A±ϕ = P+L±

h1h2
P+
1 f = P+L±

h1h2
〈0, 0, ϕ〉 = P+〈0, 0, i(dϕ/dξ)〉 = i(dϕ/dξ), where ϕ ∈ W1

2 (0,∞)
and ϕ(0) = 0. As a semigroup is uniquely determined by its generator, it follows that V ±

t = Vt,
and thus,

⋂
t≥0U

±
t D+ = 〈0, 0,⋂t≥0 VtL

2(0,∞)〉 = {0}, which verifies the property (2).
The scattering matrix is defined in terms of the spectral representations theory in this

scheme of the Lax-Phillips scattering theory. We will continue with their construction and
prove property (3) of the incoming and outgoing subspaces along the way.

We recall that the linear operatorA (with domainD(A)) acting in the Hilbert spaceH
is called completely nonself-adjoint (or simple) if the invariant subspaceM ⊆ D(A) (M/= {0}) of
the operator Awhose restriction toM is self-adjoint, does not exist.

Lemma 4.1. The operator L±
h1h2

is completely nonself-adjoint (simple).

Proof. LetH ′ ⊂ H be a nontrivial subspace where L−
h1h2

(the proof for L+
h1h2

is similar) induces
a self-adjoint operator L′ with domain D(L′) = H ′ ∩ D(L−

h1h2
). If f ∈ D(L′), then we get

f ∈ D(L′∗) and [y, u]−∞ −h1[y, v]−∞ = 0, [y, u]−∞ −h1[y, v]−∞ = 0. It follows that [y, u]−∞ = 0,
[y, v]−∞ = 0 and y(λ) = 0 for the eigenvectors y(λ) of the operator L−

h1h2
that lie inH ′ and are
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eigenvectors of L′. Since all solutions of (2.1) belong to �2w(Z), we conclude that the resolvent
Rλ(L−

h1h2
) of the operator L−

h1h2
is a Hilbert-Schmidt operator, and hence the spectrum of L−

h1h2
is purely discrete. Using the theorem on expansion in eigenvectors of the self-adjoint operator
L′, we see thatH ′ = {0}, that is, the operator L−

h1h2
is simple. The lemma is proved.

To prove property (3) we first set

H±
− =

⋃

t≥0
U±
t D−, H±

+ =
⋃

t≤0
U±
t D+, (4.3)

and prove the following lemma.

Lemma 4.2. The equalityH±
− +H±

+ = H holds.

Proof. Using property (1) of the subspace D±, we can easily show that the subspace H′
± =

H� (H±
− +H±

+) is invariant with respect to the group {U±
t } and has the formH′

± = 〈0,H ′
±, 0〉,

where H ′
± is a subspace in H. Accordingly, if the subspace H′

± (and thus, H ′
± as well) were

nontrivial, then the unitary group {U±′
t }, restricted to this subspace, would be a unitary part

of the group {U±
t }, and thus the restriction L±′

h1h2
of L±

h1h2
toH ′

± would be a self-adjoint operator
inH ′

±. It follows from the simplicity of the operator L±
h1h2

thatH ′
± = {0}, that is,H′

± = {0}. The
proof is completed.

Let ϕ(λ) and ψ(λ) be the solutions of (2.1) satisfying the conditions:

[
ϕ, u

]
−∞ = −1, [

ϕ, v
]
−∞ = 0,

[
ψ, u

]
−∞ = 0,

[
ψ, v

]
−∞ = 1.

(4.4)

The Titchmarsh-Weyl function m∞h2(λ) of the self-adjoint operator L−
∞h2

is determined
by the condition [ψ +m∞h2ϕ, u]∞ − h2[ψ +m∞h2ϕ, v]∞ = 0. Then, we have

m∞h2(λ) = −
[
ψ, u

]
∞ − h2

[
ψ, v

]
∞[

ϕ, u
]
∞ − h2

[
ϕ, v

]
∞
. (4.5)

The last equality implies that m∞h2(λ) is a meromorphic function on the complex plane C

with a countable number of poles on the real axis, which coincide with the eigenvalues of
the self-adjoint operator L∞h2 . One can also show that the functionm∞h2(λ) has the following
properties: Imλ Imm∞h2(λ) > 0 for Imλ/= 0 and m∞h2(λ) = m∞h2(λ) for complex λ with the
exception of the real poles ofm∞h2(λ).

We adopt the following notations: θ(λ) = ψ(λ) +m∞h2(λ)ϕ(λ),

S−
h1h2

(λ) =
m∞h2(λ) − h1
m∞h2(λ) − h1

. (4.6)

Let

U−
λ(ξ, ς) =

〈
e−iλξ, (m∞h2(λ) − h1)−1αθ(λ), S

−
h1h2(λ)e

−iλς
〉
. (4.7)
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For real values of λ, the vectors U−
λ(ξ, ς) do not belong to the space H, but they satisfy

the equation LU = λU and the boundary conditions (3.2). Using U−
λ
(ξ, ς), we define the

transformation F− : f → f̃−(λ) by (F−f)(λ) := f̃−(λ) := (1/
√
2π)(f,U−

λ)H on the vector f =
〈ϕ−, y, ϕ+〉, where ϕ−, ϕ+ are smooth, compactly supported functions, and y = {yn}, n ∈ Z, is
a finite sequence.

Lemma 4.3. The transformation F− isometrically maps H− onto L2(R). For all vectors f, g ∈ H−
−,

the Parseval equality and the inversion formula hold:

(
f, g

)
H =

(
f̃−, g̃−

)

L2
=
∫∞

−∞
f̃−(λ)g̃−(λ)dλ, f =

1√
2π

∫∞

−∞
f̃−(λ)U−

λdλ, (4.8)

where f̃−(λ) = (F−f)(λ) and g̃−(λ) = (F−g)(λ).

Proof. For f, g ∈ D−, f = 〈ϕ−, 0, 0〉, g = 〈ψ−, 0, 0〉, we have

f̃−(λ) :=
1√
2π

(f,U−
λ)H =

1√
2π

∫0

−∞
ϕ−(ξ)eiλξdξ ∈ H2

−, (4.9)

and, by the usual Parseval equality for Fourier integrals,

(
f, g

)
H =

∫0

−∞
ϕ−(ξ)ψ−(ξ)dξ =

∫∞

−∞
f̃−(λ)g̃−(λ)dλ =

(
F−f, F−g

)
L2 . (4.10)

From now on, letH2
± denote the Hardy classes in L2(R) consisting of the functions which are

analytically extendable to the upper and lower half-planes, respectively.
Let us extend the Parseval equality to the whole H−

−. To this end, we consider in H−
−

the dense setH′
− of vectors obtained from the smooth, compactly supported functions inD− :

f ∈ H′
− if f = U−

Tf0, f0 = 〈ϕ−, 0, 0〉, ϕ− ∈ C∞
0 (−∞, 0), where T = Tf is a nonnegative number

(depending on f). In this case, if f, g ∈ H′
−, then U

−
−Tf, U

−
−Tg ∈ D− for T > Tf and T > Tg .

Furthermore, the first components of these vectors belong to C∞
0 (−∞, 0). Since the operators

U−
t , t ∈ R, are unitary, the equality F−U−

−Tf = (U−
−Tf,U

−
λ
)H = e−iλT(f,U−

λ
)H = e−iλTF−f gives

us that

(
f, g

)
H =

(
U−

−Tf,U
−
−Tg

)
H =

(
F−U−

−Tf, F−U−
−Tg

)
L2

=
(
e−iλTF−f, e−iλTF−g

)

L2
=
(
F−f, F−g

)
L2.

(4.11)

If we take the closure in (4.11), we get the Parseval equality for the whole space H−
−. The

inversion formula follows from the Parseval equality if all integrals in it are considered
as limits in the mean of integrals over finite intervals. In conclusion, we have F−H−

− =
⋃
t≥0 F−U−

t D− =
⋃
t≥0 e−iλtH

2
− = L2(R)which implies that F− mapsH−

− onto the whole of L2(R).
The lemma is proved.
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Now, we let

U+
λ(ξ, ς) =

〈
S−
h1h2

(λ)e−iλξ,
(
m−

∞h2
(λ) − h1

)−1
αθ(λ), e−iλς

〉
. (4.12)

Note as in the previous case that the vectors U+
λ(ξ, ς), for real values of λ, do not belong

to the space H. But, U+
λ
(ξ, ς) satisfies the equation LU = λU, λ ∈ R, and the boundary

conditions (3.2). By means of U+
λ(ξ, ς), we consider the transformation F+ : f → f̃+(λ) by

setting (F+f)(λ) := f̃+(λ) := (1/
√
2π)(f,U+

λ
)H on vectors f = 〈ϕ−, y, ϕ+〉, where ϕ−, ϕ+ are

smooth, compactly supported functions, and y = {yn}, n ∈ Z, is a finite sequence. The proof
of the next result is similar to that of Lemma 4.3.

Lemma 4.4. The transformation F+ isometrically mapsH−
+ onto L

2(R), and for all vectors f, g ∈ H−
+,

the Parseval equality and the inversion formula hold:

(f, g)H =
(
f̃+, g̃+

)

L2
=
∫∞

−∞
f̃+(λ)g̃+(λ)dλ, f =

1√
2π

∫∞

−∞
f̃+(λ)U+

λdλ, (4.13)

where f̃+(λ) = (F+f)(λ) and g̃+(λ) = (F+g)(λ).

From (4.6), we see that |S−
h1h2

(λ)| = 1 for all λ ∈ R. Therefore, it follows from the explicit
formula for the vectorsU+

λ andU−
λ that

U−
λ = S

−
h1h2(λ)U

+
λ , (λ ∈ R). (4.14)

Lemmas 4.3 and 4.4 imply thatH−
− = H−

+. Together with Lemma 4.2, this results inH = H−
− =

H−
+ and the property (3) of the incoming and outgoing subspaces forU−

t .
Therefore, the transformation F− maps isometrically onto L2(R) with the subspace D−

mapped onto H2
− and the operators U−

t are transformed into the operators of multiplication
by eiλt, that is, F− is the incoming spectral representation for the group {U−

t }. Similarly F+ is
the outgoing spectral representation for {U−

t }. It is seen from (4.14) that we can realize the
passage from the F+-representation of a vector f ∈ H to its F−-representation multiplying
by the function S−

h1h2
(λ) : f̃−(λ) = S−

h1h2
(λ)f̃+(λ). According to [5], the scattering function

(matrix) of the group {U−
t } with respect to the subspaces D− and D+, is the coefficient

by which the F−-representation of a vector f ∈ H must be multiplied in order to get
the corresponding F+-representation: f̃+(λ) = S

−
h1h2(λ)f̃−(λ) and, thus, we have proved the

following theorem.

Theorem 4.5. The function S
−
h1h2(λ) is the scattering matrix of the group {U−

t } (of the self-adjoint
operator L−

h1h2
).

Let S(λ) be an arbitrary nonconstant inner function [1–4] on the upper half-plane (the
analytic function S(λ) on the upper half-plane C+ is called inner function on C+ if |S(λ)| ≤ 1
for λ ∈ C+ and |S(λ)| = 1 for almost all λ ∈ R). Let K = H2

+ � SH2
+. We can see that K/= {0}

is a subspace of the Hilbert space H2
+. Now, let us consider the semigroup of the operators

Zt, t ≥ 0, acting in K according to the formula Ztϕ = P[eiλtϕ], ϕ := ϕ(λ) ∈ K, where P
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denotes the orthogonal projection from H2
+ onto K. The generator of the semigroup {Zt} is

denoted by T : Tϕ = limt→+0(it)
−1(Ztϕ−ϕ), which is a maximal dissipative operator acting in

Kwith the domainD(T) consisting of all vectors ϕ ∈ K, so that the limit exists. The operator
T is called a model dissipative operator (note that this model dissipative operator, which is
associated with the names of Lax and Phillips [5], is a special case of a more general model
dissipative operator constructed by Sz-Nagy and Foiaş [1, 2]). The basic assertion is that S(λ)
is the characteristic function of the operator T .

Let K = 〈0,H, 0〉 so that H = D− ⊕K ⊕D+. It can be concluded from the explicit form
of the unitary transformation F− that

H −→ L2(R), f −→ f̃−(λ) =
(
F−f

)
(λ),

D− −→ H2
−, D+ −→ S−

h1h2
H2

+,

K −→ H2
+ � S−

h1h2
H2

+, U−
t f −→

(
F−U−

t F
−1
− f̃−

)
(λ) = eiλtf̃−(λ).

(4.15)

The formulas (4.15) show that the operator L−
h1h2

is unitarily equivalent to the model
dissipative operator with the characteristic function S−

h1h2
(λ). Since the characteristic

functions of unitarily equivalent dissipative operators coincide [1–4], we have proved the
theorem below.

Theorem 4.6. The characteristic function of the maximal dissipative operator L−
h1h2

coincides with the
function S−

h1h2
(λ) defined in (4.6).

Ifmh1∞(λ) is the Titchmarsh-Weyl function of the self-adjoint operator Lh1∞, then it can
be expressed in terms of the Wronskian of the solutions as follows:

mh1∞(λ) = −
[
χ, v

]
∞[

φ, v
]
∞
. (4.16)

Here φ(λ) and χ(λ) are solutions of (2.1) and normalized by

[
φ, u

]
−∞ = − 1

√
1 + h21

,
[
φ, v

]
−∞ = − h1√

1 + h21
,

[
χ, u

]
−∞ =

h1√
1 + h21

,
[
χ, v

]
−∞ =

1
√
1 + h21

.

(4.17)

Let us adopt the following notations:

n(λ) :=

[
φ, u

]
∞[

χ, v
]
∞
, m(λ) := mh1∞(λ),

S+(λ) := S+
h1h2

(λ) :=
m(λ)n(λ) − h2
m(λ)n(λ) − h2

.

(4.18)
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Let

V −
λ (ξ, ς) =

〈
e−iλξ, αm(λ)

[
(m(λ)n(λ) − h2)

[
χ, v

]
∞
]−1

φ(λ), S
+
(λ)e−iλς

〉
. (4.19)

One can see that the vector V −
λ
(ξ, ς) does not belong to H for λ ∈ R, but V −

λ
satisfies the

equation LV = λV , λ ∈ R, and the boundary conditions (3.11). By means of V −
λ
, we define

the transformation F− : f → f̃−(λ) by (F−f)(λ) := f̃−(λ) := (1/
√
2π)(f, V −

λ
)H on the vector

f = 〈ϕ−, y, ϕ+〉, where ϕ−, ϕ+ are smooth, compactly supported functions, and y = {yn}, n ∈
Z, is a finite sequence. The next result can be proved following the steps similar to the proof
of Lemma 4.3.

Lemma 4.7. The transformation F− isometrically maps H+
− onto L2(R). For all vectors f, g ∈ H+

−,
the Parseval equality and the inversion formula hold:

(
f, g

)
H =

(
f̃−, g̃−

)

L2
=
∫∞

−∞
f̃−(λ)g̃−(λ)dλ, f =

1√
2π

∫∞

−∞
f̃−(λ)U−

λdλ, (4.20)

where f̃−(λ) = (F−f)(λ) and g̃−(λ) = (F−g)(λ).

Let

V +
λ (ξ, ς) =

〈
S+(λ)e−iλξ, αm(λ)

[(
m(λ)n(λ) − h2

)[
χ, v

]
∞
]−1

φ(λ), e−iλς
〉
. (4.21)

The vector V +
λ (ξ, ς) does not belong to H for λ ∈ R. However, V +

λ satisfies the equation
LV = λV , λ ∈ R, and the boundary conditions (3.11). Using V +

λ
(ξ, ς), let us consider the

transformation F+ : f → f̃+(λ) on vectors f = 〈ϕ−, y, ϕ+〉, in which ϕ−, ϕ+ are smooth,
compactly supported functions, and y = {yn}, n ∈ Z, is a finite sequence, by setting
(F+f)(λ) := f̃+(λ) := (1/

√
2π)(f,U+

λ)H.

Lemma 4.8. The transformation F+ isometrically maps H+
+ onto L2(R). For all vectors f, g ∈ H+

+,
the Parseval equality and the inversion formula hold:

(
f, g

)
H =

(
f̃+, g̃+

)

L2
=
∫∞

−∞
f̃−(λ)g̃−(λ)dλ, f =

1√
2π

∫∞

−∞
f̃+(λ)U+

λdλ, (4.22)

where f̃+(λ) = (F+f)(λ) and g̃+(λ) = (F+g)(λ).

It is seen from (4.18) that the function S+
h1h2

(λ) satisfies |S+
h1h2

(λ)| = 1 for λ ∈ R.
Therefore, the explicit formula for the vectorsU+

λ
andU−

λ
gives us that

V −
λ = S

+
h1h2(λ)V

+
λ , λ ∈ R. (4.23)
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Hence, we conclude the equality H+
− = H+

+ from Lemmas 4.7 and 4.8. Together with
Lemma 4.2, we get H = H+

− = H+
+. We can see from (4.23) that the passage from the F−-

representation of a vector f ∈ H to its F+-representation is realized as follows: f̃+(λ) =
S
+
h1h2(λ)f̃−(λ). Thus, we have proved the following assertion.

Theorem 4.9. The function S
+
h1h2(λ) is the scattering matrix of the group {U+

t } (of the self-adjoint
operator L+

h1h2
).

Using the explicit form of the unitary transformation F−, we obtain

H −→ L2(R), f −→ f̃−(λ) =
(
F−f

)
(λ),

D− −→ H2
−, D+ −→ S+

h1h2
H2

+,

K −→ H2
+ � S+

h1h2
H2

+, U+
t f −→

(
F−U+

t F
−1
− f̃−

)
(λ) = eiλtf̃−(λ).

(4.24)

We conclude from (4.24) that the operator L+
h1h2

is a unitary equivalent to the model
dissipative operator with characteristic function S+

h1h2
(λ), which in turn proves the next

theorem.

Theorem 4.10. The characteristic function of the maximal dissipative operator L+
h1h2

coincides with
the function S+

h1h2
(λ) defined by (4.18).

5. Completeness Theorems for the System of Eigenvectors and
Associated Vectors of the Maximal Dissipative Operators

We know that the characteristic function of a maximal dissipative operator L±
h1h2

carries
complete information about the spectral properties of this operator [1–4]. For example,
completeness of the system of eigenvectors and associated vectors of the maximal dissipative
operators L±

h1h2
is guaranteed by the absence of a singular factor of the characteristic function

S±
h1h2

(λ) in the factorization S±
h1h2

(λ) = S±(λ)B±(λ) (where B±(λ) is a Blaschke product).
Let A be a linear operator in the Hilbert space H with the domain D(A). The complex

number λ0 is called an eigenvalue of the operator A if there exists a nonzero element y0 ∈
D(A) satisfying Ay0 = λ0y0. Such an element y0 is called the eigenvector of the operator A
corresponding to the eigenvalue λ0. The elements y1, y2, . . . , yk are called the associated vectors
of the eigenvector y0 if they belong to D(A) and satisfy Ayj = λ0yj + yj−1, j = 1, 2, . . . , k.
The element y ∈ D(A), y /= 0 is called a root vector of the operator A corresponding to the
eigenvalue λ0, if all powers of A are defined on this element and (A − λ0I)my = 0 for some
integer m. The set of all root vectors of A corresponding to the same eigenvalue λ0 with the
vector y = 0 forms a linear setNλ0 and is called the root lineal. The dimension of the linealNλ0

is called the algebraic multiplicity of the eigenvalue λ0. The root lineal Nλ0 coincides with the
linear span of all eigenvectors and associated vectors of A corresponding to the eigenvalue
λ0. Therefore, the completeness of the system of all eigenvectors and associated vectors of A
is equivalent to the completeness of the system of all root vectors of this operator.

Theorem 5.1. For all values of h1 with Imh1 > 0, except possibly for a single value h1 = h01, and
for fixed h2 (Imh2 = 0 or h2 = 0), the characteristic function S−

h1h2
(λ) of the maximal dissipative
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operator L−
h1h2

is a Blaschke product and the spectrum of L−
h1h2

is purely discrete and belongs to the
open upper half plane. The operator L−

h1h2
(h1 /=h

0
1) has a countable number of isolated eigenvalues

with finite algebraic multiplicity and limit points at infinity, and the system of all eigenvectors and
associated vectors (or root vectors) of this operator is complete in the space �2w(Z).

Proof. It can be easily seen from (4.6) that S−
h1h2

(λ) is an inner function in the upper half-plane
and, moreover, it is meromorphic in the whole λ-plane. Then, it can be factorized as

S−
h1h2

(λ) = eiλcBh1h2(λ), c = c(h1) ≥ 0, (5.1)

where Bh1h2(λ) is a Blaschke product. It can be inferred from (5.1) that

∣
∣
∣S−

h1h2
(λ)

∣
∣
∣ ≤ e−c(h1) Im λ, Imλ ≥ 0. (5.2)

Further, if we expressm∞h2(λ) in terms of S−
h1h2

(λ) and then use (4.6), we find

m∞h2(λ) =
h1S

−
h1h2

(λ) − h1
S−
h1h2

(λ) − 1
. (5.3)

If c(h1) > 0 for a given value h1 (Imh1 > 0), then limt→+∞S−
h1h2

(it) = 0 follows
from (5.2). Hence, we obtain limt→+∞m∞h2(it) = h1 in the light of (5.3). Since m∞h2(λ) is
independent of h1, c(h1) can be nonzero at not more than a single point h1 = h01 (and, further,
h01 = limt→+∞m∞h2(it)). Hence, the theorem is proved.

The proof of the next result is similar to that of Theorem 5.1.

Theorem 5.2. For all values of h2 with Imh2 > 0, except possibly for a single value h2 = h02, and
for fixed h1 (Imh1 = 0 or h1 = ∞), the characteristic function S+

h1h2
(λ) of the maximal dissipative

operator L+
h1h2

is a Blaschke product and the spectrum of L+
h1h2

is purely discrete and belongs to the
open upper half-plane. The operator L+

h1h2
(h2 /=h

0
2) has a countable number of isolated eigenvalues

with finite algebraic multiplicity and limit points at infinity, and the system of all eigenvectors and
associated vectors of this operator is complete in the space �2w(Z).

Since a linear operator S acting in a Hilbert space H is maximal accretive if and only
if −S is maximal dissipative, all results obtained for maximal dissipative operators can be
immediately transferred to maximal accretive operators.
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