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We consider the best approximation by Jackson-Matsuoka polynomials in the weighted Lp space
on the unit sphere of R

d. Using the relation betweenK-functionals and modulus of smoothness on
the sphere, we obtain the direct and inverse estimate of approximation by these polynomials for
the h-spherical harmonics.

1. Introduction and Notations

Let S := S
d−1 = {x : ‖x‖ = 1} denote the unit sphere in R

d (d ≥ 3), d ∈ N, where ‖x‖
denotes the usual Euclidean norm, R the set of real numbers. For a nonzero vector v ∈ R

d,
let σv denote the reflection with respect to the hyperplane perpendicular to v, xσv := x −
2(〈x, v〉/‖v‖2)v, x ∈ R

d, where 〈x, v〉 denote the usual Euclidean inner product. Let G be a
finite reflection group on R

d with a fixed positive root system R+, normalized so that 〈v, v〉 =
2 for all v ∈ R+. Then G is a subgroup of the orthogonal group generated by the reflections
{σv : v ∈ R+}. Let κ be a nonnegative multiplicity function v �→ κv defined on R+ with the
property that κu = κv whenever σu is conjugate to σv in G, then v �→ κv is a G-invariant
function. We consider the weighted best Lp approximation with respect to the measure h2

κdω
on S, where h2

κ is defined by

hκ =
∏

v∈R+

|〈x, v〉|κv , x ∈ R
d, (1.1)

dω is the surface (Lebesgue) measure on S. The function hκ is a positive homogeneous
function of degree γκ :=

∑
v∈R+

κv, and it is invariant under the reflection group. We denote
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by aκ the normalization constant of hκ, a
−1
κ =

∫
S
h2
κ(y)dω and denote by Lp(h2

κ), 1 ≤ p ≤ ∞,
the space of functions defined on S with the finite norm

∥∥f
∥∥
κ,p :=

(
aκ

∫

S

|f(y)|ph2
κ(y)dω(y)

)1/p

, 1 ≤ p < ∞, (1.2)

and for p = ∞ we assume that L∞ is replaced by C(S) the space of continuous functions on S

with the usual uniform norm ‖f‖∞.
Δh denote the h-Laplacian. Δh,0 is the Laplace-Beltrami operator on the sphere.

Pd
n denote the subspace of homogeneous polynomials of degree n in d variables. The h-

harmonics are defined as the homogeneous polynomials satisfying the equationΔhP = 0, P ∈
Pd

n . Furthermore, let Hd
n(h

2
κ) denote the space of h-spherical harmonics of degree n in d

variables. The spherical h-harmonics are the restriction of h-harmonics on the unit sphere.
It is well known that spherical h-harmonics are eigenfunctions of Δh,0; that is,

Δh,0Y (x) = −n(n + 2λ)Y (x), x ∈ S, Y ∈ Hd
n

(
h2
κ

)
. (1.3)

The standard Hilbert space theory shows that L2(h2
κ) =

∑∞
n=0 ⊕Hd

n(h
2
κ). That is, with

each f ∈ L2(h2
κ) we can associate its h-harmonic expansion

f(x) =
∞∑

n=0

Yn

(
h2
κ; f, x

)
, x ∈ S, (1.4)

in L2(h2
κ) norm. For the surface measure (κ = 0), such a series is called the Laplace series (see

[1]). The orthogonal projection Yn(h2
κ) : L2(h2

κ) → Hd
n(h

2
κ) takes the form

Yn

(
h2
κ; f, x

)
:=
∫

S

f
(
y
)
Pn

(
h2
κ;x, y

)
h2
κ

(
y
)
dω
(
y
)
, (1.5)

where Pn(h2
κ;x, y) is the reproducing kernel of the space of h-harmonics Hd

n(h
2
κ), which is

given by (see [2])

Pn

(
h2
κ;x, y

)
=

n + λ

λ
Vκ

[
Cλ

n

(〈·, y〉)
]
(x). (1.6)

Cλ
n is the ultraspherical polynomial of degree n, λ := γκ + (d − 2)/2, γκ =

∑
v∈R+

κv, and the
intertwining operator Vκ is a linear operator uniquely determined by

VκPn ⊂ Pn, Vκ1 = 1, DiVκ = Vκ∂i, 1 ≤ i ≤ d. (1.7)
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The spherical means are denoted by

Tθ
(
f
)
=

1
∣∣Sd−2∣∣(sin θ)d−2

∫

〈x,y〉=cos θ
f
(
y
)
dω
(
y
)
, (1.8)

where |Sd−2| = ∫
Sd−2 dω = 2π(d−1)/2/Γ((d − 1)/2).

The spherical means associated with h2
κdω, in which Tκ

θ
(f) is defined by

cλ

∫π

0
Tκ
θ

(
f, x
)
g(cos θ)(sin θ)2λdθ = aκ

∫

S

f
(
y
)
Vκg
(〈
x, y
〉)
h2
κ

(
y
)
dω
(
y
)
, (1.9)

where g is any function [−1, 1] �→ R such that the integral in the right-hand side is finite,
c−1λ =

∫1
−1 (1 − t2)λ−1/2dt = Γ(λ + 1/2)

√
π/Γ(λ + 1). Tκ

θ (f) is a proper extension of Tθ(f), since
Tθ(f) satisfies Tκ

θ
(f) when κ = 0 and Vκ = id, and the properties of Tκ

θ
are well known (see

[2]). In particular, the function Tκ
θ
f(x) has the expansion

Tκ
θ

(
f
) ∼

∞∑

n=0

Cλ
n(cos θ)

Cλ
n(1)

Yn

(
h2
κ; f
)
:=

∞∑

n=0

Qλ
n(cos θ)Yn

(
h2
κ; f
)
. (1.10)

Simultaneously, they lead to the following definition of an analog of the modulus of
smoothness.

Definition 1.1 (see [2]). For f ∈ Lp(h2
κ), 1 ≤ p < ∞, or f ∈ C(S), the modulus of smoothness

on the sphere is given by

ω
(
f ; t
)
κ,p := sup

0<θ≤t

∥∥f − Tκ
θ

(
f
)∥∥

κ,p
. (1.11)

The K-functional of the sphere is given by

K
(
f ; t2
)

κ,p
= inf

g∈Wp(h2
κ)

{∥∥f − g
∥∥
κ,p + t2

∥∥Δh,0g
∥∥
κ,p

}
, (1.12)

where Wp(h2
κ) := {f : f ∈ Lp(h2

κ),−k(k + 2λ)Pk(h2
κ; f) = Pk(h2

κ; g) for some g ∈ Lp(h2
κ)},

0 < t < t0, t0 is a positive constant.

In [2], Xu proved the weak equivalence relation

C−1ω
(
f ; t
)
κ,p ≤ K

(
f ; t2
)

κ,p
≤ Cω

(
f ; t
)
κ,p. (1.13)

Throughout this paper, C denotes a positive constant independent on n and f and C(a)
denotes a positive constant dependent on a, which may be different according to the
circumstances.
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Based on the classical Jackson-Matsuoka kernel (see [3]), we define a new kernel

Mn;j,i,s(θ) :=
1

Ωn;j,i,s

(
sin2jnθ/2

sin2iθ/2

)2s

, n = 1, 2, . . . , θ ∈ R, (1.14)

where j, i, s ∈ N, Ωn;j,i,s is a constant chosen such that cλ
∫π
0 Mn;j,i,s(θ)sin2λθdθ = 1. It is

known thatMn;j,i,s(θ) is an even nonnegative operator. In particular, it is an even nonnegative
trigonometric polynomial of degree atmost 2s(nj+2j−2i) for j > i and the Jackson polynomial
for j = i. Using Mn;j,i,s(θ)we consider the spherical convolution

Jn;j,i,s
(
f ;x
)
:=
(
f ∗Mn;j,i,s

)
(x) := cλ

∫π

0
Tκ
θ

(
f ;x
)
Mn;j,i,s(θ)(θ)sin2λθ dθ. (1.15)

It is called the Jackson-Matsuoka polynomials on the sphere based on the Jackson-Matsuoka
kernel. In particular, (f0 ∗ Mn;j,i,s)(x) = 1 for f0(x) = 1. The classical Jackson-Matsuoka
polynomials in the classical Lp space have been studied by many authors (see [3, 4]).

The purpose of this paper is to consider approximation by h-harmonic polynomials,
which in the Lp metric can be viewed as weighted approximation, in which the measure dω
on the sphere is replaced by h2

κdω. It is well known that the situation can be quite different
from that of ordinary harmonics; the weighted approximation is not a simple extension. Since
the orthogonal group acts transitively on the sphere S, much of the results for the ordinary
harmonics can be proved by considering just one point; the reflection groups do not act
transitively on the sphere.

In this paper, we consider weighted approximation of the Jackson-Matsuoka
polynomials on the sphere. With the help of the relation betweenK-functionals and modulus
of smoothness of sphere and the properties of the spherical means, we obtain the direct
and inverse estimate for the best approximation by Jackson-Matsuoka polynomials in the
weighted Lp space on the unit sphere of R

d. We only consider best weighted approximation
by Jackson-Matsuoka polynomials, and for the other polynomials on the unit sphere of R

d,
the methods and the results are similar.

2. Auxiliary Lemmas

We need the following lemmas.

Lemma 2.1. Let Ωn;,j,i,s =
∫π
0 ((sin2jnθ/2)/(sin2i θ/2))

2s
sin2λθ dθ. Then, the weak equivalence

Ωn;j,i,s � n4is−2λ−1 (2.1)

holds true for 4si > 2λ + 1, j ≥ i, where the weak equivalence relation A(n) � B(n) means that
A(n) � B(n) and B(n) � A(n), and relation An � Bn means that there is a positive constant C
independent on n such that A(n) ≤ CB(n) holds.

The proof is similar to that of Lemma 2.2 and we omit it.
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Lemma 2.2. For 4is > r + 2λ + 1, j ≥ i, r ∈ R, there is a constant C(λ, j, i, s) such that

∫π

0
θrMn;j,i,s(θ)sin2λθ dθ ≤ C

(
λ, j, i, s

)
n−r . (2.2)

Proof. Since θ/π ≤ sin(θ/2) ≤ θ/2 and sin θ ≤ θ hold for 0 ≤ θ ≤ π , by Ωn;j,i,s � n4is−2λ−1, we
have

∫π

0
θrMn;j,i,s(θ)sin2λθdθ ≤ C

(
λ, j, i, s

)
n−4is+2λ+1

∫π

0
θr

(
sin2jnθ/2

sin2iθ/2

)2s

sin2λθ dθ

≤ C
(
λ, j, i, s

)
n−4is+2λ+1n4is−r−2λ−1

∫nπ/2

0
tr+2λ

(
sin2j t

t2i

)2s

dt

≤C(λ, j, i, s)n−r

⎛
⎝
∫π/2

0
tr+2λ

(
sin2j t

t2i

)2s

dt+
∫∞

π/2
tr+2λ

(
sin2j t

t2i

)2s

dt

⎞
⎠

≤ C
(
λ, j, i, s

)
C2n

λ ≤ C
(
λ, j, i, s

)
nλ,

(2.3)

where

C2 =
∫π/2

0
tλ
(

sin2j t

t2i

)2s

dt +
∫∞

π/2
tλ
(

sin2j t

t2i

)2s

dt, 4is > r + 2λ + 1, j ≥ i. (2.4)

Lemma 2.2 has been proved.

Lemma 2.3 (see [2]). For 0 ≤ θ ≤ π , one has

Tκ
θ

(
g;x
) − g(x) =

∫θ

0
sin−2λt dt

∫ t

0
Tκ
u

(
Δh,0g

)
sin2λu du

=
∫θ

0
sin−2λtΦ(t)Bt

(
Δh,0g, x

)
dt,

(2.5)

where

Bt

(
Δh,0g, x

)
=

1
Φ(t)

∫ t

0
Tκ
u

(
Δh,0g

)
sin2λu du, (2.6)

and Φ(t) = c−1
λ

∫ t
0 sin

2λu du.
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Lemma 2.4. Let g,Δh,0g,Δ2
h,0g ∈ Lp(h2

κ), 1 ≤ p ≤ ∞, Jn;j,i,s(f ;x) be the Jackson-Matsuoka
polynomials on the sphere based on the Jackson-Matsuoka kernel, 4is > 2λ + 5, j ≥ i. Then, there
is a constant C(λ, j, i, s) such that

∥∥Jn;j,i,sg − g − α(n)Δh,0g
∥∥
κ,p

≤ C
(
λ, j, i, s

)
n−4
∥∥∥Δ2

h,0g
∥∥∥
κ,p

, (2.7)

where α(n) � n−2.

Proof. By Lemma 2.3, we have

Jn;j,i,s
(
g;x
) − g(x) = cλ

∫π

0
Mn;j,i,s(θ)

(
Tκ
θ

(
g;x
) − g(x)

)
sin2λθ dθ

= cλ

∫π

0
Mn;j,i,s(θ)sin2λθdθ

∫θ

0

Φ(t)

sin2λt
Bt

(
Δh,0g, x

)
dt

= cλΔh,0g(x)
∫π

0
Mn;j,i,s(θ)sin2λθ dθ

∫θ

0

Φ(t)

sin2λt
dt

+ cλ

∫π

0
Mn;j,i,s(θ)sin2λθ dθ

∫θ

0

Φ(t)

sin2λt

(
Bt

(
Δh,0g, x

) −Δh,0g(x)
)
dt

= Δh,0g(x)
∫π

0
Mn;j,i,s(θ)sin2λθ dθ

∫θ

0

dt

sin2λt

∫ t

0
sin2λudu

+
∫π

0
Mn;j,i,s(θ)sin2λθ dθ

∫θ

0

dt

sin2λt

∫ t

0
sin2λu

(
Bt

(
Δh,0g, x

) −Δh,0g(x)
)
du

:= α(n)Δh,0g(x) +
∫π

0
Mn;j,i,s(θ)sin2λθΨθ

(
g, x
)
dθ,

(2.8)

where

α(n) :=
∫π

0
Mn;j,i,s(θ)sin2λθ dθ

∫θ

0

dt

sin2λt

∫ t

0
sin2λu du,

Ψθ

(
g, x
)
:=
∫θ

0

dt

sin2λt

∫ t

0
sin2λu

(
Bt

(
Δh,0g, x

) −Δh,0g(x)
)
du.

(2.9)

By Lemma 2.1, we have

α(n) =
∫π

0
Mn;j,i,s(θ)sin2λθ dθ

∫θ

0

dt

sin2λt

∫ t

0
sin2λu du

�
∫π

0
Mn;j,i,s(θ)sin2λθ dθ

∫θ

0

tsin2λξ

sin2λt
dt

�
∫π

0
θ2Mn;j,i,s(θ)sin2λθ dθ � n−2, (0 < ξ < t).

(2.10)
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We now estimate, using Lemma 2.3 again, the expression Bt(Δh,0g, x) −Δh,0g(x), and obtain

∥∥Ψθ

(
g
)∥∥

κ,p ≤ C
(
λ, j, i, s

)
θ4
∥∥∥Δ2

h,0g
∥∥∥
κ,p

. (2.11)

By Lemma 2.2 and Hölder-Minkowski inequality shows that

∥∥∥∥

∫π

0
Mn;j,i,s(θ)sin2λθΨθ

(
g, x
)
dθ

∥∥∥∥
κ,p

≤ C
(
λ, j, i, s

)∥∥∥Δ2
h,0g
∥∥∥
κ,p

∫π

0
θ4Mn;j,i,s(θ)sin2λθ dθ

≤ C
(
λ, j, i, s

)
n−4
∥∥∥Δ2

h,0g
∥∥∥
κ,p

.

(2.12)

Consequently, by (2.8), (2.10), and (2.12)we complete the proof of this lemma.

Lemma 2.5. For t ≥ 0, there is a constant C such that

ω
(
f ; tδ

)
κ,p ≤ Cmax

{
1, t2
}
ω
(
f ; δ
)
κ,p. (2.13)

Proof. By the equivalence relation between the modulus of smoothness andK-functional, and
the definition of K(f ; t2)κ,p, we have

ω
(
f ; tδ

)
κ,p ≤ CK

(
f ; (tδ)2

)

κ,p
≤ C
(∥∥f − g

∥∥
κ,p + t2δ2∥∥Δh,0g

∥∥
κ,p

)

≤ Cmax
{
1, t2
}(∥∥f − g

∥∥
κ,p + δ2∥∥Δh,0g

∥∥
κ,p

)

≤ Cmax
{
1, t2
}
K
(
f ; δ2

)

κ,p
≤ Cmax

{
1, t2
}
ω
(
f ; δ
)
κ,p.

(2.14)

Lemma 2.5 has been proved.

3. Main Results

Our main results are the following.

Theorem 3.1. Suppose that f ∈ Lp(h2
κ), 1 ≤ p ≤ ∞, Jn;j,i,s(f ;x) is the Jackson-Matsuoka polyno-

mials on the sphere based on the Jackson-Matsuoka kernel, 4is > 2λ + 5, j ≥ i. Then

∥∥Jn;j,i,s
(
f
) − f

∥∥
κ,p

� ω
(
f ;n−1

)

κ,p
. (3.1)
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Proof. First we prove ‖Jn;j,i,s(f) − f‖κ,p � ω(f ;n−1)κ,p. Since (f0 ∗Mn;j,i,s)(x) = 1 for f0(x) = 1,
therefore, we have that

∥∥Jn;j,i,s
(
f
) − f

∥∥
κ,p

=
∥∥∥∥

∫π

0
Mn;j,i,s(θ)

(
f(x) − Tκ

θ (f ;x)
)
sin2λθ dθ

∥∥∥∥
κ,p

≤
∫π

0

∥∥f − Tκ
θ

(
f
)∥∥

κ,p
Mn;j,i,s(θ)sin2λθ dθ.

(3.2)

Splitting the integral over [0, π] into two integrals over [0, 1/n] and [1/n, π], respectively,
and using the definition of ω(f ; t)κ,p, we conclude that

∥∥f − Tκ
θ

(
f
)∥∥

κ,p
≤ ω
(
f ;n−1

)

κ,p
+
∫π

1/n
ω
(
f ; θ
)
κ,pMn;j,i,s(θ)sin2λθdθ. (3.3)

From Lemma 2.5 it follows that, for θ ≥ n−1,

ω
(
f ; θ
)
κ,p = ω

(
f ;n

θ

n

)

κ,p

≤ Cmax
{
1, n2θ2

}
ω
(
f ; θ
)
κ,p ≤ Cn2θ2ω

(
f ; θ
)
κ,p. (3.4)

Therefore, it follows that

∥∥Jn;j,i,s
(
f
) − f

∥∥
κ,p

≤ ω
(
f ; θ
)
κ,p

(
1 + Cn2

∫π

1/n
θ2Mn;j,i,s(θ)sin2λθdθ

)
. (3.5)

From Lemma 2.2, we get

∥∥Jn;j,i,s
(
f
) − f

∥∥
κ,p

≤ C
(
λ, j, i, s

)
ω
(
f ;n−1

)

κ,p
. (3.6)

Next we prove ω(f ;n−1)κ,p � ‖Jn;j,i,s(f) − f‖
κ,p

. Let m be a fixed positive integer Denote by

Jmn;j,i,s
(
f
)
:=

m∑

k=0

(∫π

0
Mn;j,i,s(θ)Qλ

k(cos θ)sin
2λθdθ

)m

Yk

(
h2
κ; f
)
. (3.7)

By orthogonality of the orthogonal projector Yk, we have that

Jm+l(f
)
=

m∑

k=0

(∫π

0
Mn;j,i,s(θ)Qλ

k(cos θ)sin
2λθ dθ

)m

× Yk

(
h2
κ;

m∑

v=0

(∫π

0
Mn;j,i,s(θ)Qλ

v(cos θ)sin
2λθ dθ

)l

Yv

(
h2
κ; f
))

= Jmn;j,i,s

(
Jln;j,i,s

(
f
))

.

(3.8)
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Leting g = Jmn;j,i,s(f), by (3.8)we get

∥∥f − g
∥∥
κ,p =

∥∥∥f − Jmn;j,i,s
(
f
)∥∥∥

κ,p

≤
m∑

k=1

∥∥∥Jk−1n;j,i,s

(
f
) − Jkn;j,i,s

(
f
)∥∥∥

κ,p

≤ C
(
λ, j, i, s

) m∑

k=1

∥∥∥Jk−1n;j,i,s

((
f
) − Jn;j,i,s

(
f
))∥∥∥

κ,p

≤ C
(
λ, j, i, s

)
m
∥∥f − Jn;j,i,s

(
f
)∥∥

κ,p

(3.9)

where J0n;j,i,s(f) = f .

On the other hand,

∥∥∥Δh,0J
m
n;j,i,s

(
f
)∥∥∥

κ,p
≤

m∑

k=0

k(k + 2λ)
(∫π

0
Mn;j,i,s(θ)

∣∣∣Qλ
k(cos θ)

∣∣∣sin2λθdθ

)m

Yk

(
h2
κ; f
)
.

(3.10)

Note that [5]

∣∣∣Qλ
k(cos θ)

∣∣∣ ≡
∣∣∣∣∣
Cλ

k(cos θ)

Cλ
k(1)

∣∣∣∣∣ ≤ Cmin
{
(kθ)−1, 1

}
. (3.11)

For kθ ≥ 1, from (2.2) it follows that

∥∥∥Δh,0J
m
n;j,i,s

(
f
)∥∥∥

κ,p
≤ C
(
λ, j, i, s

)
∥∥∥∥∥

m∑

k=0

k(k + 2λ)k−mλ

(∫π

0
Mn;j,i,s(θ)θ−λsin2λθdθ

)m

Yk

(
h2
κ; f
)∥∥∥∥∥

κ,p

≤ C
(
λ, j, i, s

)
nmλ
∥∥f
∥∥
κ,p

∞∑

k=0

k2−mλ ≤ C
(
λ, j, i, s

)
nmλ
∥∥f
∥∥
κ,p.

(3.12)
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holds for m > 3/λ. For kθ < 1, by (2.2), we get

∥∥∥Δh,0J
m
n;j,i,s

(
f
)∥∥∥

κ,p

≤
∥∥∥∥∥

m∑

k=0

(∫π

0
Mn;j,i,s(θ)θ−2/m(θ2k(k + 2λ))1/m|Qλ

k(cos θ)|sin2λθdθ

)m

Yk

(
h2
κ; f
)∥∥∥∥∥

κ,p

≤ C
(
λ, j, i, s

)
∥∥∥∥∥

m∑

k=0

(∫π

0
Mn;j,i,s(θ)θ−2/m((kθ)2)2/msin2λθdθ

)m

Yk

(
h2
κ; f
)∥∥∥∥∥

κ,p

≤ C
(
λ, j, i, s

)
∥∥∥∥∥

m∑

k=0

(∫π

0
Mn;j,i,s(θ)θ−2/msin2λθdθ

)m

Yk

(
h2
κ; f
)∥∥∥∥∥

κ,p

≤ C
(
λ, j, i, s

)
n2

∥∥∥∥∥

∞∑

k=0

Yk

(
h2
κ; f
)∥∥∥∥∥ κ,p≤ Cn2 ∥∥f

∥∥
κ,p.

(3.13)

Consequently, the inequality

∥∥∥Δh,0J
m
n;j,i,s

(
f
)∥∥∥

κ,p
≤ C
(
λ, j, i, s

)
n2∥∥f

∥∥
κ,p (3.14)

holds uniformly for m > 3/λ. Without loss of generality, we may assume m1 > 3/λ, m >
m1 + 3/λ. Using Lemma 2.4 and (3.8), we have

α(n)
∥∥∥Δh,0J

m
n;j,i,s

(
f
)∥∥∥

κ,p
=
∥∥∥α(n)Δh,0J

m
n;j,i,s

(
f
)∥∥∥

κ,p

≤
∥∥∥Jmn;j,i,s

(
f
) − f

∥∥∥
κ,p

+ C
(
λ, j, i, s

)
n−4
∥∥∥Δ2

h,0J
m
n;j,i,s

(
f
)∥∥∥

κ,p

≤ m
∥∥Jn;j,i,s

(
f
) − f

∥∥
κ,p

+ C
(
λ, j, i, s

)
n−2
∥∥∥Δ2

h,0J
m−m1
n;j,i,s

(
f
)∥∥∥

κ,p

≤ m
∥∥Jn;j,i,s

(
f
) − f

∥∥
κ,p

+C
(
λ, j, i, s

)(
n−2
∥∥∥Δh,0J

m
n;j,i,s

(
f
)∥∥∥

κ,p
+n−2

∥∥∥Jmn;j,i,s
(
f
)−Jm−m1

n;j,i,s

(
f
)∥∥∥

κ,p

)

≤ m
∥∥Jn;j,i,s

(
f
) − f

∥∥
κ,p

+ C
(
λ, j, i, s

)(
n−2
∥∥∥Δh,0J

m
n;j,i,s

(
f
)∥∥∥

κ,p
+
∥∥∥Jm1

n;j,i,s

(
f
) − f

∥∥∥
κ,p

)

≤ C
(
λ, j, i, s

)(∥∥Jn;j,i,s
(
f
) − f

∥∥
κ,p

+ n−2
∥∥∥Δh,0J

m
n;j,i,s

(
f
)∥∥∥

κ,p

)

≤ C
(
λ, j, i, s

)(∥∥Jn;j,i,s
(
f
) − f‖κ,p + ‖(f)∥∥

κ,p

)
.

(3.15)
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Consequently, n−2‖Δh,0J
m
n;j,i,s(f)‖κ,p ≤ C(λ, j, i, s)‖f − Jn;j,i,s(f)‖κ,p, by the definition of

K(f ; t2)κ,p and (1.13) shows that

ω
(
f ;n−1

)

κ,p
≤ CK

(
f ;n−2

)

κ,p

≤ C

(∥∥∥f − Jmn;j,i,s
(
f
)∥∥∥

κ,p
+ n−2

∥∥∥Δh,0J
m
n;j,i,s

(
f
)∥∥∥

κ,p

)

≤ C
(
λ, j, i, s

)∥∥f − Jn;j,i,s
(
f
)∥∥

κ,p
,

(3.16)

that is, ω(f ;n−1)κ,p � ‖f − Jn;j,i,s(f)‖κ,p.
The proof is completed.
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