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This paper presents some efficient spectral algorithms for solving linear sixth-order two-point
boundary value problems in one dimension based on the application of the Galerkin method.
The proposed algorithms are extended to solve the two-dimensional sixth-order differential
equations. A family of symmetric generalized Jacobi polynomials is introduced and used as
basic functions. The algorithms lead to linear systems with specially structured matrices that can
be efficiently inverted. The various matrix systems resulting from the proposed algorithms are
carefully investigated, especially their condition numbers and their complexities. These algorithms
are extensions to some of the algorithms proposed by Doha and Abd-Elhameed (2002) and
Doha and Bhrawy (2008) for second- and fourth-order elliptic equations, respectively. Three
numerical results are presented to demonstrate the efficiency and the applicability of the proposed
algorithms.

1. Introduction

The classical Jacobi polynomials P
(α,β)
n (x) play important roles in mathematical analysis

and its applications (see, e.g., [1–4]). In particular, the Legendre, the Chebyshev, and the
ultraspherical polynomials have played important roles in spectral methods for partial
differential equations (see, e.g., [5, 6]). It is proven that the Jacobi polynomials are precisely
the only polynomials arising as eigenfunctions of a singular Sturm-Liouville problem, (see
[7, Section 9.2]). This class of polynomials comprises all the polynomial solution to singular
Sturm-Liouville problems on [−1,1].

Spectral methods have developed rapidly over the past four decades. Their fascinating
merit is the high accuracy; they have been applied successfully to numerical simulations of
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many problems in science and engineering. The spectral methods that are mostly used are
based on the Chebyshev and Legendre approximations.

Sixth-order boundary value problems arise in astrophysics, that is, the narrow
convecting layers bounded by stable layers which are believed to surroundA-type stars may
be modelled by sixth-order boundary value problems (see [8]).

Chandrasekhar [9] determined that when an infinite horizontal layer of fluid is heated
from below and is under the action of rotation, instability sets in. When this instability
is as ordinary convection, the ordinary differential equation is sixth-order. Agarwal [10]
presented the theorems stating the conditions for the existence and uniqueness of solutions of
sixth order boundary value problems, while no numerical methods are contained therein. In
[11] Bhrawy discussed the solution of sixth-order boundary value problems using Legendre
Galerkin method. Lamnii et al. [12] used Spline collocation method for solving linear sixth-
order boundary-value problems. Boutayeb and Twizell [8] developed a family of numerical
methods for the solution of special nonlinear sixth-order boundary value problems. Siddiqi
and Twizell [13] presented the solution of sixth order boundary value problem using the
sextic spline. El-Gamel et al. [14] used Sinc-Galerkin method for the solutions of sixth order
boundary value problems.

Guo et al. [15] extended the definition of the classical Jacobi polynomials with indexes
α, β > −1 to allow α and/or β to be negative integers. They showed also that the generalized
Jacobi polynomials, with indexes corresponding to the number of boundary conditions
in a given partial differential equation, are the natural basis functions for the spectral
approximation of this equation. Moreover, it is shown that the use of generalized Jacobi
polynomials not only simplified the numerical analysis for the spectral approximations of
differential equations, but also led to very efficient numerical algorithms.

From the numerical point of view, Doha and Abd-Elhameed [16, 17], Doha and
Bhrawy [18], and Doha et al. [19, 20] have constructed efficient spectral Galerkin algorithms
using compact combinations of orthogonal polynomials for solving elliptic equations of
second-, third-, fourth-, and fifth-order equations in various situations.

In this paper we are concerned with the direct solution techniques for sixth-
order two-point boundary value problems, using symmetric generalized Jacobi-Galerkin
approximations. Our algorithms lead to discrete linear systems with specially structured
matrices that can be efficiently inverted.

We organize the materials of this paper as follows. In Section 2, we give some
properties of classical and generalized Jacobi polynomials. In Section 3, we discuss two
algorithms for solving the sixth-order elliptic linear differential equations subject to
homogeneous and nonhomogeneous boundary conditions using symmetric generalized
Jacobi Galerkin method (SGJGM). In Section 4, we explain how the idea of Section 3 can be
extended to handle the sixth-order two dimensional differential equations. Three Numerical
examples are given in Section 5 to show the efficiency of our algorithms. Some Concluding
remarks are given in Section 6.

2. Some Properties of Classical and Generalized Jacobi Polynomials

2.1. Classical Jacobi Polynomials

The classical Jacobi polynomials, associated with the real parameters (α > −1, β > −1)
(see [4, 21]), are a sequence of polynomials, P (α,β)

n (x), x ∈ (−1, 1) (n = 0, 1, 2, . . .), each,
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respectively, of degree n. For our present purposes, it is more convenient to introduce
the normalized orthogonal polynomials R

(α,β)
n (x) = (P (α,β)

n (x))/(P (α,β)
n (1)). This means that

R
(α,β)
n (x) = (n!Γ(α + 1))/(Γ(n + α + 1))P (α,β)

n (x). In such case R
(α−(1/2),α−(1/2))
n (x) is identical to

the ultraspherical polynomialsC(α)
n (x), and the polynomialsR(α,β)

n (x)may be generated using
the recurrence relation

2(n + λ)(n + α + 1)(2n + λ − 1)R(α,β)
n+1 (x) = (2n + λ − 1)3xR

(α,β)
n (x)

+
(
α2 − β2

)
(2n + λ)R(α,β)

n (x) − 2n
(
n + β

)
(2n + λ + 1)R(α,β)

n−1 (x), n = 1, 2, . . . ,
(2.1)

starting from R
(α,β)
0 (x) = 1 and R

(α,β)
1 (x) = (1/2(α + 1))[α − β + (λ + 1)x], or obtained from

Rodrigues’ formula

R
(α,β)
n (x) =

(−1
2

)n Γ(α + 1)
Γ(n + α + 1)

(1 − x)−α(1 + x)−βDn
[
(1 − x)α+n(1 + x)β+n

]
, (2.2)

where

λ = α + β + 1, (a)k =
Γ(a + k)
Γ(a)

, D =
d

dx
, (2.3)

and satisfy the orthogonality relation

∫1
−1
(1 − x)α(1 + x)βR(α,β)

m (x)R(α,β)
n (x)dx =

{
0, m/=n,

h
α,β
n , m = n,

(2.4)

where

h
α,β
n =

2λn!Γ
(
n + β + 1

)
[Γ(α + 1)]2

(2n + λ)Γ(n + λ)Γ(n + α + 1)
. (2.5)

These polynomials are eigenfunctions of the following singular Sturm-Liouville equation:

(
1 − x2

)
φ′′(x) +

[
β − α − (λ + 1)x

]
φ′(x) + n(n + λ)φ(x) = 0. (2.6)

The following relations will be of important use later:

(
1 − x2

)
R

(α+1,α+1)
k−1 (x) =

2(α + 1)
2k + 2α + 1

[
R

(α,α)
k−1 (x) − R

(α,α)
k+1 (x)

]
, (2.7)

DR
(α,α)
k (x) =

k(k + 2α + 1)
2(α + 1)

R
(α+1,α+1)
k−1 (x), k = 1, 2, . . . . (2.8)

The following two theorems are needed hereafter.
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Theorem 2.1. The qth derivative of the symmetric normalized Jacobi polynomial R(α,α)
n (x) is given

explicitly by

DqR
(α,α)
k (x)

=
2qk!(

q − 1
)
!Γ(k + 2α + 1)

×
k−q∑
m=0

(k+m−q)even

(m + α + 1/2)Γ(m + 2α + 1)
((
k −m + q − 2

)
/2
)
!Γ
((
k +m + q + 2α + 1

)
/2
)

m!
((
k − q −m

)
/2
)
!Γ
((
k +m − q + 2α + 3

)
/2
)

× R
(α,α)
m (x), k ≥ q.

(2.9)

(For the proof of Theorem 2.1, see [22].)

Theorem 2.2. If one defines the q times repeated integration of the symmetric normalized Jacobi
polynomials R(α,α)

k
(x) by

I
(q,α)
k (x) =

q times︷ ︸︸ ︷∫∫
. . .

∫
R

(α,α)
k (x)

q times︷ ︸︸ ︷
dx dx · · ·dx, (2.10)

then

I
(q,α)
k (x) =

2−qk!
Γ(k + 2α + 1)

q∑
j=0

(−1)j
(

q
j

)
Γ
(
k − j + α + 1/2

)
Γ
(
k + q − 2j + 2α + 1

)
(
k + q − 2j

)
!Γ
(
k + q − j + α + 3/2

)

×
(
k+q−2j+α+ 1

2

)
R

(α,α)
k+q−2j(x), q ≥ 0, k ≥ q + 1 for α = 0, q ≥ 0, k ≥ q forα/= 0.

(2.11)

(For the proof of Theorem 2.2, see [23].)
Also, the following two lemmas are needed in the sequel.

Lemma 2.3. For all k ≥ 0, one has

−D2
[(

1 − x2
)
R

(1,1)
k (x)

]
= (k + 1)(k + 2) R(1,1)

k (x). (2.12)

(For the proof of Lemma 2.3, see [16].)

Lemma 2.4. For all k ≥ 0, one has

D4
[(

1 − x2
)2
R

(2,2)
k (x)

]
= (k + 1)4R

(2,2)
k (x). (2.13)
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Proof. Setting α = β = 2 in relation (2.7), we get

(
1 − x2

)
R

(2,2)
k (x) =

4
2k + 5

[
R

(1,1)
k (x) − R

(1,1)
k+2 (x)

]
. (2.14)

Making use of this relation and with the aid of Lemma 2.3, we obtain

D4
[(

1 − x2
)2
R

(2,2)
k (x)

]
=

4
2k + 5

D2
[
(k + 3)(k + 4)R(1,1)

k+2 (x) − (k + 1)(k + 2)R(1,1)
k (x)

]
,

(2.15)

which in turn gives with the aid of relation (2.8)

D4
[(

1 − x2
)2
R

(2,2)
k (x)

]
=

1
2k + 5

D
[
(k + 2)4R

(2,2)
k+1 (x) − (k)4R

(2,2)
k−1 (x)

]
. (2.16)

Finally, from relation (2.9) (for q = 1 and α = 2), we get

D4
[(

1 − x2
)2
R

(2,2)
k (x)

]
= (k + 1)4R

(2,2)
k (x). (2.17)

This completes the proof of Lemma 2.4.

2.2. Generalized Jacobi Polynomials

Following Guo et al. [15], we define a family of generalized Jacobi polynomials/functions
with indexes α, β ∈ R.

Let wα,β(x) = (1 − x)α(1 + x)β. We denote by L2
wα,β(−1, 1) the weighted L2 space with

inner product:

(u, v)wα,β(x) :=
∫

I

u(x)v(x)wα,β(x)dx, (2.18)

and the associated norm ‖u‖wα,β = (u, u)1/2
wα,β . We are interested in defining Jacobi polynomials

with indexes α and/or β ≤ −1, referred hereafter as generalized Jacobi polynomials (GJPs), in
such a way that they satisfy some selected properties that are essentially relevant to spectral
approximations. In this work, we will restrict our attention to the cases when α and β are
negative integers.

Let �,m ∈ Z (the set of all integers), and define

J
(�,m)
k (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − x)−�(1 + x)−m R
(−�,−m)
k−k0 (x), k0 = −(� +m), �,m ≤ −1,

(1 − x)−�R(−�,m)
k−k0 (x), k0 = −�, � ≤ −1, m > −1,

(1 + x)−mR(�,−m)
k−k0 (x), k0 = −m, � > −1, m ≤ −1,

R
(�,m)
k−k0 (x), k0 = 0, �,m > −1.

(2.19)



6 Abstract and Applied Analysis

An important property of the GJPs is that for �,m ∈ Z
+,

DiJ
(−�,−m)
k (1) = 0, i = 0, 1, . . . , � − 1,

DjJ
(−�,−m)
k (−1) = 0, j = 0, 1, . . . , m − 1.

(2.20)

Using relation (2.7), and after performing some manipulation, J(−3,−3)
k

(x) can be written in
terms of Legendre polynomials as:

J
(−3,−3)
k (x) =

48
(2k − 9)(2k − 7)(2k − 5)

+
[
Lk−6(x) − 3(2k − 7)

2k − 3
Lk−4(x) +

3(2k − 9)
2k − 1

Lk−2(x) − (2k − 7)(2k − 9)
(2k − 3)(2k − 1)

Lk(x)
]
.

(2.21)

3. Spectral-Galerkin Algorithms for One-Dimensional
Sixth-Order Equations

In this section, we are interested in using SGJGM to solve the sixth-order two-point boundary
value problems in one dimension subject to homogeneous and nonhomogeneous boundary
conditions.

3.1. Homogeneous Boundary Conditions

Let us consider the sixth-order differential equation

−u(6)(x) +
6∑

q=1

δqη6−qu(6−q)(x) = f(x), x ∈ (−1, 1), (3.1)

subject to the homogeneous boundary conditions

u(j)(±1) = 0, j = 0, 1, 2, (3.2)

where u(j)(x) denotes the jth derivative of u(x) with respect to x and {η6−q, q = 1, . . . , 6} are
positive constants, and

δq =

{
(−1)1+q/2, q even,
1, q odd.

(3.3)

Let us denote Hr
w(I) (r = 0, 1, 2, . . .), as the weighted Sobolev spaces, whose inner products

and norms are denoted by (·, ·)r,w and ‖ · ‖r,w, respectively. To account for homogeneous
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boundary conditions, we define

H3
0,w(I) =

{
v ∈ H3

w(I) : v
(j)(±1) = 0, 0 ≤ j ≤ 2

}
, (3.4)

where v(j)(x) = (djv)/(dxj). The superscript w will be omitted in case of w = 1.
Let PN be the space of all polynomials of degree less than or equal to N. Setting VN =

PN ∩H3
0(I), then

VN := span
{
J
(−3,−3)
6 (x), J(−3,−3)7 (x), . . . , J(−3,−3)N (x)

}
. (3.5)

The symmetric generalized Jacobi-Galerkin procedure for solving (3.1)-(3.2) is to find uN ∈
VN such that

(
−D6uN(x), v(x)

)
+

6∑
q=1

δqη6−q
(
D6−quN(x), v(x)

)
=
(
f(x), v(x)

)
, ∀v ∈ VN, (3.6)

where (u, v) =
∫1
−1 uv dx is the scalar inner product in the space L2(−1, 1).

3.2. The Choice of Basis Functions

We choose the basis functions of expansion to be

φk(x) = J
(−3,−3)
k+6 (x) =

(
1 − x2

)3
R

(3,3)
k (x), k = 0, 1, . . . ,N − 6, (3.7)

which fulfills the boundary conditions (3.2).
It is obvious that {φk(x)} are linearly independent. Therefore, we have

VN = span
{
φk(x) : k = 0, 1, 2, . . . ,N − 6

}
. (3.8)

Now, the following two lemmas are needed hereafter.

Lemma 3.1. For all k ≥ 0, one has

−D6
[
J
(−3,−3)
k+6 (x)

]
= (k + 1)6R

(3,3)
k (x). (3.9)

Proof. Setting α = β = 3 in relation to (2.7), we get

(
1 − x2

)
R

(3,3)
k (x) =

6
2k + 7

[
R

(2,2)
k (x) − R

(2,2)
k+2 (x)

]
. (3.10)
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Making use of this relation and with the aid of Lemma 2.4, we obtain

−D6
[
J
(−3,−3)
k+6 (x)

]
=

6
2k + 7

D2
[
(k + 3)4R

(2,2)
k+2 (x) − (k + 1)4R

(2,2)
k (x)

]
. (3.11)

The last relation with the aid of the two relations (2.8) and (2.9) yields

−D6
[
J
(−3,−3)
k+6 (x)

]
= (k + 1)6R

(3,3)
k (x). (3.12)

This completes the proof of Lemma 3.1.

Lemma 3.2. For all k ≥ 0, one has

D6−q
[
J
(−3,−3)
k+6 (x)

]
=

q∑
j=0

dj,k,qR
(3,3)
k−2j+q, 1 ≤ q ≤ 6, (3.13)

where

dj,k,q =
(−1)j+1

(
q
j

)
Γ
(
k − j + (7/2)

)(
k + q − 2j + 6

)
!
(
k + q − 2j + (7/2)

)

2q
(
k + q − 2j

)
!Γ
(
k + q − j + (9/2)

) . (3.14)

Proof. Integrating formula (3.9) q times, q ∈ {1, 2, . . . , 6}, and with the aid of relation (2.11)
(in case of α = 3), we obtain the desired formula.

Based on the results of the two Lemmas 3.1 and 3.2, we are able to state and prove the
following two theorems.

Theorem 3.3. One has, for arbitrary constants ak,

−D6

[
N−6∑
k=0

akJ
(−3,−3)
k+6 (x)

]
=

N−6∑
k=0

bkR
(3,3)
k (x), (3.15)

where

bk = (k + 1)6ak. (3.16)

Theorem 3.4. One has, for arbitrary constants ak, and 1 ≤ q ≤ 6,

D6−q
[
N−6∑
k=0

akJ
(−3,−3)
k+6 (x)

]
=

N+q−6∑
k=0

rk,qR
(3,3)
k (x), (3.17)
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where

rk,q =
q∑
i=0

dq−i,k+q−2i,qak+q−2i. (3.18)

Now, the application of Galerkin method to (3.1) gives

⎛
⎝−D6uN(x) +

6∑
q=1

δqη6−qD6−quN(x), φk(x)

⎞
⎠ =

(
f(x), φk(x)

)
, (3.19)

where

uN(x) =
N−6∑
k=0

akφk(x), φk(x) = J
(−3,−3)
k+6 (x), k = 0, 1, . . . ,N − 6. (3.20)

The variational formulation (3.19) is equivalent to

(
−D6uN(x), R(3,3)

k (x)
)
w3,3(x)

+
6∑

q=1

δqη6−q
(
D6−quN(x), R(3,3)

k (x)
)
w3,3(x)

=
(
f(x), R(3,3)

k (x)
)
w3,3(x)

, w3,3(x) =
(
1 − x2

)3
.

(3.21)

Substitution of formulae (3.15) and (3.17) into (3.21) yields

⎛
⎝

N−6∑
j=0

bjR
(3,3)
j (x) +

6∑
q=1

N+q−6∑
j=0

δqη6−q rj,qR
(3,3)
j (x), R(3,3)

k (x)

⎞
⎠

w3,3(x)

=
(
f(x), R(3,3)

k (x)
)
w3,3(x)

,

(3.22)

where bk and rk,q are as given by (3.16) and (3.18), respectively.
Now, if we apply the orthogonality relation of R

(3,3)
k (x) on (3.22), we obtain the

following linear system of equations:

⎛
⎝bk +

6∑
q=1

δqη6−qrk,q

⎞
⎠h3,3

k = fk; k = 0, 1, . . . ,N − 6, (3.23)

where

fk =
(
f(x), R(3,3)

k (x)
)
w3,3(x)

, (3.24)

h3,3
k =

4608
(k + 1)6(2k + 7)

. (3.25)
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The linear system (3.23) may be put in the form

⎛
⎝bk +

6∑
q=1

δqη6−qrk,q

⎞
⎠ = f∗

k , k = 0, 1, . . . ,N − 6, (3.26)

where

f∗
k =

fk

h3,3
k

. (3.27)

This system of equations may be put in the matrix form

⎛
⎝B +

6∑
q=1

η6−qG6−q

⎞
⎠a = f∗, (3.28)

where

a = (a0, a1, . . . , aN−6)T , f∗ =
(
f∗
0 , f

∗
1 , . . . , f

∗
N−6
)T
, (3.29)

and the nonzero elements of the matrices B and G6−q, 1 ≤ q ≤ 6 are given explicitly in the
following theorem.

Theorem 3.5. If uN(x) =
∑N−6

k=0 akJ
(−3,−3)
k+6 (x) is the symmetric generalized Jacobi-Galerkin

approximation to (3.1)-(3.2), then the expansion coefficients {ak : k = 0, 1, . . . ,N − 6} satisfy the
matrix system (3.28), where the nonzero elements of the matrices B = (bkj) and G6−q = (g6−q

kj
) =

(δqr
6−q
kj

), 0 ≤ k, j ≤ N − 6, 1 ≤ q ≤ 6 are given as:

bkk = (k + 1)6,

g
6−q
k,k+q−2i =

δq(−1)q+i+1(2k + 7)(k + 6)!q!Γ(−i + k + (7/2))

2q+1i!k!
(
q − i
)
!Γ
(
k − i + q + (9/2)

) , 0 ≤ i ≤ q. (3.30)

It is worthy to note here that the case corresponding to η6−q = 0, 1 ≤ q ≤ 6 leads to a
linear system with diagonal matrix. The result for such case is summarized in the following
important corollary.

Corollary 3.6. If uN(x) =
∑N−6

k=0 akJ
(−3,−3)
k+6 (x) and η6−q = 0, 1 ≤ q ≤ 6, is the symmetric

generalized Jacobi-Galerkin approximation to problem (3.1)-(3.2), then the expansion coefficients
{ak : k = 0, 1, . . . ,N − 6} are given explicitly by

ak =
2k + 7
4608

∫1
−1

(
1 − x2

)3
f(x)R(3,3)

k (x), k = 0, 1, . . . ,N − 6. (3.31)
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Table 1: Condition numbers for the two matrices B and D.

N Cond(B) Cond(D) Cond(B)/N6 Cond(D)/N6

16 8008 7627.89 4.773 · 10−4 4.547 · 10−4
32 906192 860739 8.439 · 10−4 8.016 · 10−4
64 7.497 · 107 7.117 · 107 1.091 · 10−3 1.035 · 10−3
128 5.424 · 109 5.148 · 109 1.233 · 10−3 1.171 · 10−3
256 3.685 · 1011 3.497 · 1011 1.309 · 10−3 1.243 · 10−3

Remark 3.7. Each of the matrices G6−q, q = 1, 2, . . . , 6 in (3.28) is a band matrix whose total
number of nonzero diagonals upper or lower the main diagonal does not exceed q. Thus the
coefficient matrix D = B +

∑6
q=1 η6−qG6−q is seven-band matrix at most. This special structure

of D simplifies greatly the solution of the linear system (3.28). The system in such case can
be factorized by LU-decomposition and the number of operations necessary to construct this
factorization is of order 78 (N − 5), and the number of operations needed to solve the two
triangular systems is of order 25 (N − 5).

Note

The total number of operations mentioned in the previous discussion includes the number of
all subtractions, additions, divisions, and multiplications (see [24]).

3.3. Condition Number

For the direct collocation method, the condition number behaves like O(N12) (N: maximal
degree of polynomials). In this paper we obtain an improved condition number withO(N6).
The advantages with respect to propagation of rounding errors are demonstrated.

For GJGM, the resulting system from the equation −u(6) = f(x) is Ba = f∗, where
the matrix B is a diagonal matrix whose elements are bkk = (k + 1)6. Thus we note that
the condition number of the matrix B behaves like O(k6) for large values of k. Moreover,
if we add

∑6
q=1 η6−qG6−q to the matrix B, then we find that the eigenvalues of matrix D =

B +
∑6

q=1 η6−qG6−q(η6−q = 1, (1 ≤ q ≤ 6)) are all real positive and the effect of these additions
does not significantly change the values of the condition number for the system. This means
that matrix B, which resulted from the highest derivatives of the differential equations under
investigation, play the most important role in the propagation of the roundoff errors. In
Table 1 we list the values of the condition numbers for the two matrices B and D.

3.4. Nonhomogeneous Boundary Conditions

Let us consider the sixth-order differential equation,

−u(6)(x) +
6∑

q=1

δqη6−qu(6−q)(x) = f(x), x ∈ (−1, 1), (3.32)
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subject to the nonhomogeneous boundary conditions

u(j)(±1) = α
j
±, j = 0, 1, 2. (3.33)

In such case we can proceed as.
Set

V (x) = u(x) +
5∑
i=0

cix
i, (3.34)

where ci, i = 0, 1, . . . , 5 are coefficients to be determined such that V (x) satisfies the
homogeneous boundary conditions, namely:

V (j)(±1) = 0, j = 0, 1, 2. (3.35)

Therefore the set of coefficients {ci, i = 0, . . . , 5} are determined by solving the following
system of six equations:

5∑
i=j

(±1)i−j(i − j + 1
)
jci = −αj

±, j = 0, 1, 2. (3.36)

The system of (3.36) is equivalent to the following matrix equation:

Mc = −α, (3.37)

where c = (c0, c1, . . . , c5)
T is the vector of unknowns, α = (α0

+, α
0
−, . . . , α

5
+, α

5
−)

T , and M =
(mkj)0≤k,j≤5 is a nonsingular matrix of order six and is given explicitly by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 −1 1 −1 1 −1
0 1 2 3 4 5
0 1 −2 3 −4 5
0 0 2 6 12 20
0 0 2 −6 12 −20

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.38)

The transformation (3.34) turns the nonhomogeneous boundary conditions (3.36) into the
homogeneous boundary conditions (3.35). Hence it suffices to solve the following modified
one-dimensional sixth-order differential equation:

−V (6)(x) +
6∑

q=1

δqη6−qV (6−q)(x) = f∗(x), x ∈ (−1, 1), (3.39)
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subject to the homogeneous boundary conditions (3.35), and

f∗(x) = f(x) +
6∑

q=1

δqη6−q
5∑

j=6−q
cj
(
j + q − 5

)
6−qx

j+q−6. (3.40)

Now, with the aid of the relation (see, [25])

x� =
�∑
j=0

D�,jR
(3,3)
j (x),

D�,j =
2j�!
(
2j + 7

)(
j + 1
)
3

n!

�−j∑
i=0

(−2)i(j + 4
)
i

i!
(
� − i − j

)
!
(
j + 7
)
i+1

(
i + j + 8

)
j

,

(3.41)

we can write f∗(x) as

f∗(x) = f(x) +
6∑

q=1

δqη6−q
5∑

j=6−q
cj
(
j + q − 5

)
6−q

j+q−6∑
k=0

Dj+q−6,kR
(3,3)
k (x). (3.42)

If we apply Galerkin method to the modified equation (3.39), we get the following system of
equations:

⎛
⎝B +

6∑
q=1

η6−qG6−q

⎞
⎠a = f∗, (3.43)

where f∗ = (f∗
0 , f

∗
1 , . . . , f

∗
N−6)

T ; f∗
k
= (f∗(x), R(3,3)

k
(x))

w
/h3,3

k
, and the nonzero elements of the

matrices B and G2n−q, 1 ≤ q ≤ 6 are given explicitly as in Theorem 3.5.

4. Two-Dimensional Sixth-Order Equations

In this section, we consider the basis functions φk(x) as defined in (3.7) to solve numerically
the two-dimensional even-order equations

−Δ3u
(
x, y
)
+

2∑
r=0

γr(−Δ)ru
(
x, y
)
= f
(
x, y
)
, in Ω, (4.1)

subject to the homogeneous boundary conditions

∂i

∂xi
u
(±1, y) = ∂i

∂yi
u(x,±1) = 0, i = 0, 1, 2, (4.2)
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where Ω = (−1, 1) × (−1, 1), the differential operator Δ is the well-known Laplacian defined
by Δ ≡ ∂2/∂x2 + ∂2/∂y2, and γr , 1 ≤ r ≤ n − 1 are constant, and f(x, y) is a given function.

The symmetric generalized Jacobi-Galerkin approximation to (4.1)-(4.2) is to find uN ∈
V 2
N such that

(
−Δ3uN, v

)
+

2∑
r=0

γr
(
(−Δ)ruN, v

)
=
(
f, v
)
, ∀v ∈ V 2

N. (4.3)

It is clear that if we take φk(x) as defined in (3.7), then

V 2
N = span

{
φi(x)φj

(
y
)
, i, j = 0, 1, . . . ,N − 6

}
. (4.4)

Let us denote

uN =
N−6∑
k=0

N−6∑
j=0

ukjφk(x)φj

(
y
)
, f∗

kj =
1

h3,3
k h3,3

j

(
f
(
x, y
)
, R

(3,3)
k (x)R(3,3)

j

(
y
))

w(x,y)
, (4.5)

U =
(
ukj

)
, F∗ =

(
f∗
kj

)
, k, j = 0, 1, . . . ,N − 6,

w
(
x, y
)
= w(3,3)(x)w(3,3)(y) = (1 − x2)3(1 − y2)3.

(4.6)

Taking v(x, y) = φ�(x)φm(y) in (4.3) for �,m = 0, 1, . . . ,N − 6, then we find that (4.3) is
equivalent to the following equation:

N−6∑
�,m=0

{{
bi�u�mg

0
jm + 3g4

i�u�mg
2
jm + 3g2

i�u�mg
4
jm + g0

�mu�mbjm
}

+ γ2
{
g4
i�u�mg

0
jm + 2g2

i�u�mg
2
jm + g0

i�u�mg
4
jm

}
+ γ1
{
g2
i�u�mg

0
jm + g0

i�u�mg
2
jm

}

+γ0g0
i�u�mg

0
jm

}
= f∗

ij , i, j = 0, 1 . . . ,N − 6,

(4.7)

which may be written in the matrix form:

BUGT
0 + 3 G4UGT

2 + 3 G2UGT
4 +G0UBT + γ2

{
G4UGT

0 + 2 G2UGT
2 +G0UGT

4

}

+ γ1
{
G2UGT

0 +G0UGT
2

}
+ γ0G0UGT

0 = F∗,
(4.8)

where U and F∗ are as defined in (4.6) and the nonzero elements of the matrices B and
G6−q, 1 ≤ q ≤ 6, are those given as in Theorem 3.5.



Abstract and Applied Analysis 15

We can also rewrite (4.7) in the following form using the Kronecker matrix algebra
(see, [26]):

Lv ≡ [B ⊗G0 + 3G4 ⊗G2 + 3G2 ⊗G4 +G0 ⊗ B + γ2{G4 ⊗G0 + 2G2 ⊗G2 +G0 ⊗G4}
+γ1{G2 ⊗G0 +G0 ⊗G2} + γ0G0 ⊗G0

]
v = f∗,

(4.9)

where f and v are F∗ andU written in a column vector, that is,

f∗ =
(
f∗
00, f

∗
10, . . . , f

∗
N−6,0; f

∗
01, f

∗
11, . . . , f

∗
N−6,1; . . . ; f

∗
0,N−6, . . . , f

∗
N−6,N−6

)T
,

v = (u00, u10, . . . , uN−6,0;u01, u11, . . . , uN−6,1; . . . ;u0,N−6, . . . , uN−6,N−6)T ,
(4.10)

and ⊗ denotes the tensor product of matrices, that is, A ⊗ B = (Abij)i,j=0,1,...,N−6.
A good review for the properties of the Kronecker product can be found in Graham

[26] and Horn and Johnson [27].
In summary, the solution of (4.1)-(4.2) consists of the following six steps.

(i) Compute the matrices F∗, B, G0, G2, and G4.

(ii) Compute the tensor products which appear in (4.9).

(iii) Write F∗ in a column vector f∗.

(iv) Obtain a column vector v by solving (4.9).

(v) Rewrite a column vector v in the form U.

(vi) Find uN .

Remark 4.1. Since B is a diagonal matrix and each of the matrices G6−q, 1 ≤ q ≤ 6, is seven-
band at most, so the matrix L in system (4.9) is 6 (N − 4)-band at most, thus this system can
be factorized by LU-decomposition and the number of operations necessary to construct this
factorization is of order 6(N −5)(N −4)[12(N −4)+1], and the number of operations needed
to solve the two triangular systems is of order (N − 5)[24 (N − 4) − 3].

5. Numerical Results

We consider here three different examples.

Example 5.1. Consider the following one-dimensional sixth-order equation:

−u(6)(x) +
6∑

q=1

δqη6−q u(6−q)(x) = f(x), x ∈ (−1, 1),

u(j)(±1) = 0, j = 0, 1, 2,

(5.1)
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Table 2: Maximum pointwise error of u − uN forN = 8, 12, 16, 20.

N ηi E ηi E ηi E

8

0

6.661 · 10−4

1

9.391 · 10−4 8i+1 2.391 · 10−3
12 2.791 · 10−8 2.272 · 10−18 12i+1 1.674 · 10−7
16 1.342 · 10−13 1.269 · 10−13 16i+1 1.241 · 10−12
20 2.512 · 10−16 3.703 · 10−16 20i+1 5.490 · 10−16

where f(x) is chosen such that the exact solution of (5.1) is u(x) = (1 − x2)3 cosx. The
approximate spectral solution of (5.1) is given by

uN(x) =
N−6∑
k=0

ak J
(−3,−3)
k+6 (x), (5.2)

and the vector of unknowns a = (a0, a1, . . . , aN−6)
T is the solution of the system

⎛
⎝B +

6∑
q=1

η6−qG6−q

⎞
⎠a = f∗, (5.3)

where the nonzero elements of the matrices B and G6−q, 1 ≤ q ≤ 6, are given explicitly as in
Theorem 3.5 and f∗

k
= (f(x), R(3,3)

k
(x))

w
/h3,3

k
.

Table 2 lists the maximum pointwise error E for u − uN to (5.1), using SGJGM for
various values N and the set of coefficients {ηi, 0 ≤ i ≤ 5}.

Example 5.2. Consider the following BVP (see [28]):

y(6)(x) + y(x) = 6(2x cosx + 5 sinx), x ∈ [−1, 1],
y(−1) = y(1) = 0,

y(1)(−1) = y(1)(1) = 2 sin(1),

y(2)(−1) = −y(2)(1) = −4 cos(1) − 2 sin(1).

(5.4)

The exact solution of the above problem is

y(x) =
(
x2 − 1

)
sinx. (5.5)

Table 3 lists the maximum pointwise error E = u − uN using SGJGM for various valuesof N.
This table shows that the best accuracy obtained by our method is [2.256 · 10−16 forN = 16]
which is much better than the best accuracy obtained in Akram and Siddiqi [28] [3.81 · 10−16].
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Table 3: Maximum pointwise error of u − uN forN = 8, 10, 12, 14, 16.

N E

8 8.301 · 10−6
10 2.247 · 10−8
12 4.499 · 10−11

14 7.707 · 10−14

16 2.256 · 10−16

Table 4: Maximum pointwise error of u − uN forN = 20, 30, 40.

N γ0 γ1 γ2 SGJGM γ0 γ1 γ2 SGJGM
20

3 1 1
1.18 · 10−3

0 0 0
1.18 · 10−3

30 2.39 · 10−9 1.18 · 10−9
40 2.11 · 10−14 2.08 · 10−14

Example 5.3. Consider the two-dimensional sixth-order equation:

−Δ3u + γ2Δ2u − γ1Δu + γ0u = f
(
x, y
)
,

∂iu

∂xi

(±1, y) = ∂iu

∂yi
(x,±1) = 0, i = 0, 1, 2, (5.6)

where f(x, y) is chosen such that the exact solution of (5.6) is

u
(
x, y
)
=
(
1 − x2

)(
1 − y2

)
sin2(2πx)sin2(2πy). (5.7)

In Table 4, we list the maximum pointwise errors of u−uN , using SGJGMwith various choices
ofN.

6. Concluding Remarks

We have presented some efficient direct solvers for sixth-order equations in one- and two-
dimensions using the symmetric generalized Jacobi-Galerkin method. The algorithms are
very efficient. In particular, we have found that, for some particular differential equations,
the resulting systems of linear equations are diagonal. This, of course greatly simplify the
numerical computations for these special cases. The use of symmetric generalized Jacobi
polynomials leads to simplified analysis and very efficient numerical algorithms. Numerical
results are presented which exhibit the high accuracy of the proposed algorithms.
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