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We obtain in this paper the solutions of the following recursive sequences xn+1 = xnxn−3/xn−2(±1±
xnxn−3), n = 0, 1, . . . , where the initial conditions are arbitrary real numbers and we study the
behaviors of the solutions and we obtained the equilibrium points of the considered equations.
Some qualitative behavior of the solutions such as the boundedness, the global stability, and the
periodicity character of the solutions in each case have been studied.We presented some numerical
examples by giving some numerical values for the initial values and the coefficients of each case.
Some figures have been given to explain the behavior of the obtained solutions in the case of
numerical examples by using the mathematical program Mathematica to confirm the obtained
results.

1. Introduction

In this paper, we obtain the solutions of the following recursive sequences:

xn+1 =
xnxn−3

xn−2(±1 ± xnxn−3)
, n = 0, 1, . . . , (1.1)

where the initial conditions are arbitrary real numbers. Also, we study the behavior of the
solutions.

Recently, there has been a great interest in studying the qualitative properties of ratio-
nal difference equations. For the systematical studies of rational and nonrational difference
equations, one can refer to the papers [1–31] and references therein.
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The study of rational difference equations of order greater than one is quite challeng-
ing and rewarding because some prototypes for the development of the basic theory of the
global behavior of nonlinear difference equations of order greater than one come from the
results for rational difference equations. However, there have not been any effective general
methods to deal with the global behavior of rational difference equations of order greater
than one so far. Therefore, the study of rational difference equations of order greater than one
is worth further consideration.

Recently, Agarwal and Elsayed [4] investigated the global stability and periodicity
character and gave the solution of some special cases of the difference equation:

xn+1 = a +
dxn−lxn−k
b − cxn−s

. (1.2)

Aloqeili [5] has obtained the solutions of the difference equation:

xn+1 =
xn−1

a − xnxn−1
. (1.3)

Çinar [8, 9] investigated the solutions of the following difference equations:

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1
−1 + axnxn−1

. (1.4)

Elabbasy et al. [10, 12] investigated the global stability and periodicity character and gave the
solution of special case of the following recursive sequences:

xn+1 = axn − bxn

cxn − dxn−1
, xn+1 =

αxn−k
β + γ

∏k
i=0 xn−i

. (1.5)

Ibrahim [19] got the solutions of the rational difference equation:

xn+1 =
xnxn−2

xn−1(a + bxnxn−2)
. (1.6)

Karatas et al. [20] got the form of the solution of the difference equation:

xn+1 =
xn−5

1 + xn−2xn−5
. (1.7)

Simsek et al. [26] obtained the solutions of the following difference equations:

xn+1 =
xn−3

1 + xn−1
. (1.8)

Here, we recall some notations and results which will be useful in our investigation.
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Let I be some interval of real numbers and let

f : Ik+1 → I (1.9)

be a continuously differentiable function. Then, for every set of initial conditions x−k, x−k+1,
. . . , x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (1.10)

has a unique solution {xn}∞n=−k [21].

Definition 1.1 (Equilibrium Point). A point x ∈ I is called an equilibrium point of (1.10) if

x = f(x, x, . . . , x). (1.11)

That is, xn = x, for n ≥ 0, is a solution of (1.10), or equivalently, x is a fixed point of f .

Definition 1.2 (Stability). (i) The equilibrium point x of (1.10) is locally stable if, for every
ε > 0, there exists δ > 0 such that for all x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < δ, (1.12)

we have

|xn − x| < ε ∀n ≥ −k. (1.13)

(ii) The equilibrium point x of (1.10) is locally asymptotically stable if x is locally stable
solution of (1.10) and there exists γ > 0, such that for all x−k, x−k+1, . . . , x−1, x0 ∈
I with

|x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < γ, (1.14)

we have

lim
n→∞

xn = x. (1.15)

(iii) The equilibrium point x of (1.10) is global attractor if, for all x−k, x−k+1, . . . , x−1, x0 ∈
I, we have

lim
n→∞

xn = x. (1.16)
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(iv) The equilibrium point x of (1.10) is globally asymptotically stable if x is locally
stable, and x is also a global attractor of (1.10).

(v) The equilibrium point x of (1.10) is unstable if x is not locally stable.

The linearized equation of (1.10) about the equilibrium x is the linear difference
equation

yn+1 =
k∑

i=0

∂f(x, x, . . . , x)
∂xn−i

yn−i. (1.17)

Theorem A (see [22]). Assume that pi ∈ R, i = 1, 2, . . . , k, and k ∈ {0, 1, 2, . . .}. Then,

k∑

i=1

∣
∣pi

∣
∣ < 1 (1.18)

is a sufficient condition for the asymptotic stability of the difference equation:

xn+k + p1xn+k−1 + · · · + pkxn = 0, n = 0, 1, . . . . (1.19)

Definition 1.3 (Periodicity). A sequence {xn}∞n=−k is said to be periodic with period p if xn+p =
xn for all n ≥ −k.

2. On the Equation Xn+1 = xnxn−3/(xn−2(1 + xnxn−3))

In this section, we give a specific form of the solution of the first equation in the form:

xn+1 =
xnxn−3

xn−2(1 + xnxn−3)
, n = 0, 1, . . . , (2.1)

where the initial values are arbitrary positive real numbers.

Theorem 2.1. Let {xn}∞n=−3 be a solution of (2.1). Then, for n = 0, 1, . . .,

x6n−3 = d
n−1∏

i=0

(
1 + 6iad

1 + (6i + 3)ad

)

, x6n−2 = c
n−1∏

i=0

(
1 + (6i + 1)ad
1 + (6i + 4)ad

)

,

x6n−1 = b
n−1∏

i=0

(
1 + (6i + 2)ad
1 + (6i + 5)ad

)

, x6n = a
n−1∏

i=0

(
1 + (6i + 3)ad
1 + (6i + 6)ad

)

,

x6n+1 =
ad

c(1 + ad)

n−1∏

i=0

(
1 + (6i + 4)ad
1 + (6i + 7)ad

)

, x6n+2 =
ad

b(1 + 2ad)

n−1∏

i=0

(
1 + (6i + 5)ad
1 + (6i + 8)ad

)

,

(2.2)

where x−3 = d, x−2 = c, x−1 = b, x0 = a.
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Proof. For n = 0, the result holds. Now, suppose that n > 0 and that our assumption holds for
n − 1. That is,

x6n−9 = d
n−2∏

i=0

(
1 + 6iad

1 + (6i + 3)ad

)

, x6n−8 = c
n−2∏

i=0

(
1 + (6i + 1)ad
1 + (6i + 4)ad

)

,

x6n−7 = b
n−2∏

i=0

(
1 + (6i + 2)ad
1 + (6i + 5)ad

)

, x6n−6 = a
n−2∏

i=0

(
1 + (6i + 3)ad
1 + (6i + 6)ad

)

,

x6n−5 =
ad

c(1 + ad)

n−2∏

i=0

(
1 + (6i + 4)ad
1 + (6i + 7)ad

)

, x6n−4 =
ad

b(1 + 2ad)

n−2∏

i=0

(
1 + (6i + 5)ad
1 + (6i + 8)ad

)

.

(2.3)

Now, it follows from (2.1) that

x6n−3

=
x6n−4x6n−7

x6n−6(1 + x6n−4x6n−7)

=

ad

b(1 + 2ad)
∏n−2

i=0

(
1 + (6i + 5)ad
1 + (6i + 8)ad

)

b
∏n−2

i=0

(
1 + (6i + 2)ad
1 + (6i + 5)ad

)

a
∏n−2

i=0

(
1 + (6i + 3)ad
1 + (6i + 6)ad

)(

1 +
ad

b(1 + 2ad)
∏n−2

i=0

(
1 + (6i + 5)ad
1 + (6i + 8)ad

)

b
∏n−2

i=0

(
1 + (6i + 2)ad
1 + (6i + 5)ad

))

=

(
ad

1 + 2ad

)
∏n−2

i=0

(
1 + (6i + 5)ad
1 + (6i + 8)ad

)
∏n−2

i=0

(
1 + (6i + 2)ad
1 + (6i + 5)ad

)

a
∏n−2

i=0

(
1 + (6i + 3)ad
1 + (6i + 6)ad

)(

1 +
ad

(1 + 2ad)
∏n−2

i=0

(
1 + (6i + 2)ad
1 + (6i + 8)ad

))

=

(
ad

(1 + (6n + 2)ad)

)

(

a
∏n−2

i=0

(
1 + (6i + 3)ad
1 + (6i + 6)ad

))(

1 +
ad

(1 + (6n + 2)ad)

)

=
d

(
∏n−2

i=0

(
1 + (6i + 3)ad
1 + (6i + 6)ad

))

((1 + (6n + 2)ad) + ad)

= d
∏n−2

i=0

(
1 + (6i + 6)ad
1 + (6i + 3) ad

)
1

(1 + (6n + 3)ad)
.

(2.4)
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Hence, we have

x6n−3 = d
n−1∏

i=0

(
1 + 6iad

1 + (6i + 3)ad

)

. (2.5)

Similarly,

x6n+1 =
x6nx6n−3

x6n−2(1 + x6nx6n−3)

=
ad

∏n−1
i=0

(
1 + (6i + 3)ad
1 + (6i + 6)ad

)

d
∏n−1

i=0

(
1 + 6iad

1 + (6i + 3)ad

)

c
∏n−1

i=0

(
1 + (6i + 1)ad
1 + (6i + 4)ad

)(

1 + a
∏n−1

i=0

(
1 + (6i + 3)ad
1 + (6i + 6)ad

)

d
∏n−1

i=0

(
1 + 6iad

1 + (6i + 3)ad

))

=
ad

∏n−1
i=0

(
1 + 6iad

1 + (6i + 6)ad

)

(

c
∏n−1

i=0

(
1 + (6i + 1)ad
1 + (6i + 4)ad

))(

1 + ad
∏n−1

i=0

(
1 + 6iad

1 + (6i + 6)ad

))

=

(
ad

(1 + 6nad)

)

(

c
∏n−1

i=0

(
1 + (6i + 1)ad
1 + (6i + 4)ad

))(

1 +
ad

1 + 6nad

)

=
ad

(

c
∏n−1

i=0

(
1 + (6i + 1)ad
1 + (6i + 4)ad

))

(1 + 6nad + ad)

=
n−1∏

i=0

(
1 + (6i + 4)ad
1 + (6i + 1)ad

)(
ad

c(1 + 7nad)

)

.

(2.6)

Hence, we have

x6n+1 =
ad

c(1 + ad)

n−1∏

i=0

(
1 + (6i + 4)ad
1 + (6i + 7)ad

)

. (2.7)

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 2.2. Equation (2.1) has a unique equilibrium point which is the number zero and this equi-
librium point is not locally asymptotically stable.
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Proof. For the equilibrium points of (2.1), we can write

x =
x2

x
(
1 + x3

) . (2.8)

Then, we have

x2
(
1 + x2

)
= x2,

x2
(
1 + x2 − 1

)
= 0,

(2.9)

or

x4 = 0. (2.10)

Thus the equilibrium point of (2.1) is x = 0.
Let f : (0,∞)3 → (0,∞) be a function defined by

f(u, v,w) =
uw

v(1 + uw)
. (2.11)

Therefore, it follows that

fu(u, v,w) =
w

v(1 + uw)2
, fv(u, v,w) = − uw

v2(1 + uw)
,

fw(u, v,w) =
u

v(1 + uw)2
,

(2.12)

we see that

fu(x, x, x) = 1, fv(x, x, x) = 1, fw(x, x, x) = 1. (2.13)

The proof follows by using Theorem A.

Numerical Examples

For confirming the results of this section, we consider numerical examples which represent
different types of solutions to (2.1).

Example 2.3. We assume x−3 = 11, x−2 = 7, x−1 = 13, x0 = 3, (see Figure 1).

Example 2.4. See Figure 2, since x−3 = 2, x−2 = 9, x−1 = 3, x0 = 5.
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3. On the Equation Xn+1 = xnxn−3/(xn−2(−1 + xnxn−3))

In this section, we obtain the solution of the second equation in the form:

xn+1 =
xnxn−3

xn−2(−1 + xnxn−3)
, n = 0, 1, . . . , (3.1)

where the initial values are arbitrary nonzero real numbers with x0x−3 /= 1.
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Theorem 3.1. Let {xn}∞n=−3 be a solution of (3.1). Then, (3.1) has unboundedness solution and, for
n = 0, 1, . . .,

x6n−3 =
d

(−1 + ad)n
, x6n−2 = c(−1 + ad)n, x6n−1 =

b

(−1 + ad)n
,

x6n = a(−1 + ad)n, x6n+1 =
ad

c(−1 + ad)n+1
, x6n+2 =

ad

b
(−1 + ad)n,

(3.2)

where x−3 = d, x−2 = c, x−1 = b, x0 = a.

Proof. For n = 0 the result holds. Now, suppose that n > 0 and that our assumption holds for
n − 1. That is,

x6n−9 =
d

(−1 + ad)n−1
, x6n−8 = c(−1 + ad)n−1, x6n−7 =

b

(−1 + ad)n−1
,

x6n−6 = a(−1 + ad)n−1, x6n−5 =
ad

c(−1 + ad)n
, x6n−4 =

ad

b
(−1 + ad)n−1.

(3.3)

Now, it follows from (3.1) that

x6n−3 =
x6n−4x6n−7

x6n−6(−1 + x6n−4x6n−7)
=

(ad/b)(−1 + ad)n−1b/(−1 + ad)n−1

a(−1 + ad)n−1
(
−1 + (ad/b)(−1 + ad)n−1b/(−1 + ad)n−1

)

=
d

(−1 + ad)n−1(−1 + ad)
=

d

(−1 + ad)n
,

x6n−2 =
x6n−3x6n−6

x6n−5(−1 + x6n−3x6n−6)
=

(
d/(−1 + ad)n

)
a(−1 + ad)n−1

ad/c(−1 + ad)n
(
−1 + (

d/(−1 + ad)n
)
a(−1 + ad)n−1

)

=
c(−1 + ad)n−1

(−1 + (ad/(−1 + ad)))
(−1 + ad)
(−1 + ad)

= c(−1 + ad)n,

x6n−1 =
x6n−2x6n−5

x6n−4(−1 + x6n−2x6n−5)
=

c(−1 + ad)nad/c(−1 + ad)n

(ad/b)(−1 + ad)n−1
(−1 + c(−1 + ad)n

(
ad/c(−1 + ad)n

))

=
b

(−1 + ad)n−1(−1 + ad)
=

b

(−1 + ad)n
.

(3.4)

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 3.2. Equation (3.1) has a periodic solution of period six iff ad = 2 and will take the form:
{d, c, b, a, ad/c, ad/b, d, c, b, a, ad/c, ad/b, . . .}.
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Proof. First suppose that there exists a prime period six solution:

d, c, b, a,
ad

c
,
ad

b
, d, c, b, a,

ad

c
,
ad

b
, . . . , (3.5)

of (3.1), we see from the form of the solution of (3.1) that

d =
d

(−1 + ad)n
, c = c(−1 + ad)n, b =

b

(−1 + ad)n
,

a = a(−1 + ad)n,
ad

c
=

ad

c(−1 + ad)n+1
,

ad

b
=

ad

b
(−1 + ad)n,

(3.6)

or

(−1 + ad)n = 1. (3.7)

Then,

ad = 2. (3.8)

Second, assume that ad = 2. Then, we see from the form of the solution of (3.1) that

x6n−3 = d, x6n−2 = c, x6n−1 = b, x6n = a, x6n+1 =
ad

c
, x6n+2 =

ad

b
.

(3.9)

Thus, we have a periodic solution of period six and the proof is complete.

Theorem 3.3. Equation (3.1) has two equilibrium points which are 0, 3
√
2 and these equilibrium

points are not locally asymptotically stable.

Proof. For the equilibrium points of (3.1), we can write

x =
x2

x
(
−1 + x2

) . (3.10)

Then, we have

x2
(
−1 + x2

)
= x2, (3.11)

or

x2
(
x2 − 2

)
= 0, (3.12)

Thus, the equilibrium points of (3.1) are 0,±√2.
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Let f : (0,∞)3 → (0,∞) be a function defined by

f(u, v,w) =
uw

v(−1 + uw)
. (3.13)

Therefore, it follows that

fu(u, v,w) = − w

v(−1 + uw)2
, fv(u, v,w) = − uw

v2(−1 + uw)
,

fw(u, v,w) = − u

v(−1 + uw)2
,

(3.14)

we see that

fu(x, x, x) = −1, fv(x, x, x) = ±1, fw(x, x, x) = −1. (3.15)

The proof follows by using Theorem A.

Numerical Examples

Here, we will represent different types of solutions of (3.1).

Example 3.4. We consider x−3 = 2, x−2 = 9, x−1 = 3, x0 = 5, (see Figure 3).

Example 3.5. See Figure 4 since x−3 = 7, x−2 = 2, x−1 = 8, x0 = 2/7.

The following cases can be proved similarly.

4. On the Equation Xn+1 = xnxn−3/(xn−2(1 − xnxn−3))

In this section, we get the solution of the third following equation:

xn+1 =
xnxn−3

xn−2(1 − xnxn−3)
, n = 0, 1, . . . , (4.1)

where the initial values are arbitrary positive real numbers.

Theorem 4.1. Let {xn}∞n=−3 be a solution of (4.1). Then, for n = 0, 1, . . .,

x6n−3 = d
n−1∏

i=0

(
1 − 6iad

1 − (6i + 3)ad

)

, x6n−2 = c
n−1∏

i=0

(
1 − (6i + 1)ad
1 − (6i + 4)ad

)

,

x6n−1 = b
n−1∏

i=0

(
1 − (6i + 2)ad
1 − (6i + 5)ad

)

, x6n = a
n−1∏

i=0

(
1 − (6i + 3)ad
1 − (6i + 6)ad

)

,

x6n+1 =
ad

c(1 − ad)

n−1∏

i=0

(
1 − (6i + 4)ad
1 − (6i + 7)ad

)

, x6n+2 =
ad

b(1 − 2ad)

n−1∏

i=0

(
1 − (6i + 5)ad
1 − (6i + 8)ad

)

.

(4.2)
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Theorem 4.2. Equation (4.1) has a unique equilibrium point which is the number zero and this equi-
librium point is not locally asymptotically stable.

Example 4.3. Assume that x−3 = 1, x−2 = 8, x−1 = 3, x0 = 9, (see Figure 5).

Example 4.4. See Figure 6 since x−3 = 11, x−2 = 8, x−1 = 18, x0 = 9.
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5. On the Equation Xn+1 = xnxn−3/(xn−2(−1 − xnxn−3))

Here, we obtain a form of the solutions of the equation

xn+1 =
xnxn−3

xn−2(−1 − xnxn−3)
, n = 0, 1, . . . , (5.1)

where the initial values are arbitrary nonzero real numbers with x−3x0 /= − 1.
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Theorem 5.1. Let {xn}∞n=−3 be a solution of (5.1). Then, (5.1) has unboundedness solution and, for
n = 0, 1, . . .,

x6n−3 =
d

(−1 − ad)n
, x6n−2 = c(−1 − ad)n, x6n−1 =

b

(−1 − ad)n
,

x6n = a(−1 − ad)n, x6n+1 =
ad

c(−1 − ad)n+1
, x6n+2 =

ad

b
(−1 − ad)n.

(5.2)
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Theorem 5.2. Equation (5.1) has a periodic solution of period six if and only if ad = −2 and will take
the form:{d, c, b, a, ad/c, ad/b, d, c, b, a, ad/c , ad/b , . . .}.

Theorem 5.3. Equation (5.1) has a unique equilibrium point which is 0, and this equilibrium point
is not locally asymptotically stable.

Example 5.4. Consider x−3 = 6, x−2 = 8, x−1 = 12, x0 = 4, (see Figure 7).

Example 5.5. Figure 8 shows the solutions when x−3 = −6, x−2 = 11, x−1 = 3, x0 = 2/6.
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[29] I. Yalçinkaya, C. Çinar, andM. Atalay, “On the solutions of systems of difference equations,”Advances
in Difference Equations, vol. 2008, Article ID 143943, 9 pages, 2008.

[30] I. Yalcinkaya, “On the global asymptotic stability of a second-order system of difference equations,”
Discrete Dynamics in Nature and Society, vol. 2008, Article ID 860152, 12 pages, 2008.

[31] E. M. E. Zayed and M. A. EL-Moneam, “On the rational recursive sequence xn+1 = (α + βxn +
γxn−1)/(A + Bxn + Cxn−1),” Communications on Applied Nonlinear Analysis, vol. 12, no. 4, pp. 15–28,
2005.


