
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 417051, 11 pages
doi:10.1155/2012/417051

Research Article
Some Oscillation Results of
Higher-Order Linear Differential Equations
with Meromorphic Coefficients

Zhigang Huang

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215011, China

Correspondence should be addressed to Zhigang Huang, alexehuang@sina.com

Received 5 February 2012; Accepted 13 March 2012

Academic Editor: Gaston Mandata N’Guerekata

Copyright q 2012 Zhigang Huang. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We investigate the growth of solutions of higher-order nonhomogeneous linear differential
equations with meromorphic coefficients. We also discuss the relationship between small functions
and solutions of such equations.

1. Introduction and Main Results

Let f(z) be a meromorphic function in the whole complex plane. Throughout this paper, we
assume that the reader is familiar with the fundamental results of the Nevanlinna’s value
distribution theory of meromorphic functions and the standard notations such as the order
σ(f), the exponent of convergence of zero-sequence λ(f), and the exponent of convergence of
the sequence of distinct zeros λ(f). Moreover, a meromorphic function ψ(z) is called a small
function with respect to f(z) if T(r, ψ) = o(T(r, f)) as r → ∞, possible outside of a set of r
with finite measure, where T(r, f) is the Nevanlinna characteristic function of f(z). The study
of oscillation of solutions of linear differential equations has attractedmany interests since the
work of Bank and Laine; for more details see [1]. One of the main subject of this research is
the growth and zero distribution of solutions of linear differential equations. In this paper,
we first discuss the growth of solutions of higher-order linear differential equation

f (k) +Hk−1f (k−1) + · · · +H0f = F(z), k ≥ 2, (1.1)

where Hj (j = 1, . . . , k − 1), H0 /≡ 0 and F /≡ 0 are entire functions of finite order. Some results
on the growth of solutions of (1.1) have been obtained by several researchers, see [2–4]. In
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the case that the coefficientsHj (j = 0, . . . , k − 1) are polynomials, the growth of solutions of
(1.1) has been extensively studied; see [2]. In 1992, Hellerstein et al. [3] proved that every
transcendental solution of (1.1) is of infinite order, if there exists some d ∈ {0, 1, . . . , k − 1}
such that maxj /=d{σ(Hj), σ(F)} < σ(Hd) ≤ 1/2. As for sectorial growth conditions on the
coefficients of (1.1) that imply that all solutions are of infinite order, see, for example, [5]. In
addition, a special case for this was investigated by Wang and Laine [6]. Recently, Wang and
Laine [4] obtain the following.

TheoremA. Suppose thatHj(z) = Dj(z)ePj (z) (j = 0, . . . , k−1)where Pj(z) = ajnzn+· · ·+aj0 (j =
0, . . . , k − 1) are polynomials with degree n ≥ 1,Dj(z) are entire functions of order less than n, not all
vanishing, and F(z)/≡ 0 is an entire function of order less than n. If ajn (j = 0, . . . , k − 1) are distinct
complex numbers, then every solution of (1.1) is of infinite order.

Thus a natural question is whether every meromorphic solution of (1.1) has infinite
order, if the coefficients of (1.1) are meromorphic? The following theorem partially answers
this question.

Theorem 1.1. Let Aj(z) (j = 1, . . . , k − 1), A0 /≡ 0 and F /≡ 0 be meromorphic functions with
max{σ(Aj), j = 0, 1, . . . , k − 1), σ(F)} < 1, and let a0, a1, . . . , ak−1 be complex constants such that
(i) argaj = arga0 and aj = cja0(0 < cj < 1) or (ii) argaj /= arga0 (j = 1, . . . , k − 1). Then every
meromorphic solution f /≡ 0 of the equation

f (k) +Ak−1eak−1zf (k−1) + · · · +A0e
a0zf = F, k ≥ 2, (1.2)

satisfies λ(f) = λ(f) = σ(f) = ∞.

Remark 1.2. In Theorem 1.1, if ajz (j = 0, . . . , k−1) are replaced by Pj(z) = ajnzn+ · · ·+aj0 (j =
0, . . . , k−1), with additional hypothesis on ajn similar to aj , and furthermore σ(F) is replaced
by σ(F) < n, then we have the same conclusion with Theorem 1.1.

In 2000, Chen [7] first studied the fixed points of solutions of second-order linear
differential equations and obtained some precise estimation on the number of fixed points.
After that, a number of results on fixed points of solutions of differential equations with
entire coefficients were obtained; see [8–10]. In 2006, Chen and Shon [11] further studied
the relation between small functions and solutions of differential equations and obtain the
following.

Theorem B. Let Aj(z)/≡ 0 (j = 0, 1) be entire functions with σ(Aj) < 1, and let a, b be complex
constants such that ab /= 0 and arga/= arg b or a = cb (0 < c < 1). If ψ(z)/≡ 0 is an entire function
with finite order, then every solution f /≡ 0 of equation

f ′′+A1(z)eazf ′ +A0(z)ebzf = 0 (1.3)

satisfies λ(f − ψ) = λ(f ′ − ψ) = λ(f ′′ − ψ) = ∞.

Motivated by Theorem B, we try to consider the relation between small functions
with meromorphic solutions of (1.2). Indeed, such relationship on higher order differential
equations is more difficult than that of second order differential equations. Moreover, the
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method used in the proof of Theorem B cannot deal with the case of higher-order linear
differential equations.

Theorem 1.3. Under the assumption of Theorem 1.1, if φ/≡ 0 is a meromorphic function of finite order
and satisfies max{λ(φ), λ(1/φ)} < 1, then every non-trivial meromorphic solution of (1.2) satisfies
λ(f − φ) = λ(f ′ − φ) = ∞.

Remark 1.4. As the remark on Theorem 1.1 in Remark 1.2, the conclusion of Theorem 1.3 can
also be extended to the case that ajz (j = 0, . . . , k − 1) are replaced by Pj(z) = ajnz

n + · · · +
aj0 (j = 0, . . . , k − 1), with some similar additional hypothesis on ajn, F and φ in Theorem 1.3.

2. Preliminary Lemmas

To prove our theorems, we need some lemmas.

Lemma 2.1 (see [12]). Let w(z) be a transcendental meromorphic function with σ(f) = σ < ∞.
Let Γ = {(k1, j1), . . . , (km, jm)} be a finite set of distinct pairs of integers satisfying ki > ji ≥ 0 for
i = 1, 2, . . . , m. Also let ε > 0 be a given constant. Then, there exists a set E1 ⊂ (1,∞) that has finite
logarithmic measure, such that for all z satisfying z /∈ E ∪ [0, 1] and for all (k, j) ∈ Γ, One has

∣
∣w(k)(z)

∣
∣

∣
∣w(j)(z)

∣
∣
≤ |z|(k−j)(σ−1+ε). (2.1)

Let P(z) = (α + βi)zn + · · · is a nonconstant polynomial and α, β are real constants. For
θ ∈ [0, 2π), set δ(P(z), θ) = α cosnθ − β sinnθ.

Lemma 2.2 (see [13]). Let P(z) be a non-constant polynomial of degree n. Let w(z) be a
meromorphic function, not identically zero, of order less than n, and set g(z) = w(z)eP(z). Then for
any given ε > 0 there exists a zero measure setH1 ⊂ [0, 2π) such that if θ ∈ θ ∈ [0, 2π)\ (H1 ∪H2),
then for |z| > r(θ).

(1) If δ(P, θ) < 0, then exp((1 + ε)δ(P, θ)rn) ≤ |g(reiθ)| ≤ exp((1 − ε)δ(P, θ)rn);
(2) If δ(P, θ) > 0, then exp((1 − ε)δ(P, θ)rn) ≤ |g(reiθ)| ≤ exp((1 + ε)δ(P, θ)rn), where

H2 = {θ : δ(P, θ) = 0, 0 ≤ θ < 2π} is a finite set.

Lemma 2.3 (see [14]). Let A0, . . . , Ak−1, F /≡ 0 be finite-order meromorphic functions. If f is an
infinite-order meromorphic solution of the equation

f(k) +Ak−1f (k−1) + · · · +A0f = F, (2.2)

then f satisfies λ(f) = λ(f) = σ(f) = ∞.

Lemma 2.4 (see [15], page 79). Suppose that f1(z), f2(z), . . . , fn(z) (n ≥ 2) are meromorphic
functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the following conditions:

(1)
∑n

j=1 fj(z)e
gj (z) ≡ 0;

(2) gj(z) − gk(z) are not constants for 1 ≤ j < k ≤ n;



4 Abstract and Applied Analysis

(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T(r, fj) = o{T(r, egh−gk)} (r → ∞, r /∈ E), where E has a
finite measure.

Then fj(z) ≡ 0 (j = 1, 2, . . . , n).

Lemma 2.5 (see [4], Lemma 2.6). Let f(z) be a an entire function of order σ(f) = σ <∞. Suppose
that there exists a set E ⊂ [0, 2π) which has linear measure zero, such that log+|f(reiθ)| ≤ Mrρ for
any ray arg z = θ ∈ [0, 2π) \ E, whereM is a positive constant depending on θ, while ρ is a positive
constant independent of θ. Then σ(f) ≤ ρ.

Lemma 2.6 (see [16]). Let f(z) be a transcendental meromorphic function of order σ(f) = σ < ∞.
Then for any given ε > 0, there exists a set E3 ⊂ [0, 2π) which has linear measure zero, such that if
ψ1 ∈ [0, 2π) \ E3, then there is a constant R1 = R1(ψ1) > 1 such that for all z satisfying arg z = ψ1

and |z| = r ≥ R2, One has

exp{−rσ+ε} ≤ ∣
∣f(z)

∣
∣ ≤ exp{rσ+ε}. (2.3)

3. Proof of Theorem 1.1

Assume that f(z) is a meromorphic solution of (1.2) of finite order. We will deduce a
contradiction later. First, we have σ(f) ≥ 1. Otherwise, it follows from Lemma 2.4 thatA0 ≡ 0
which is a contradiction.

Since f is a meromorphic solution of (1.2), we know that the poles of f can occur only
at the poles of Aj (j = 0, . . . , k − 1) and F. Let f = g(z)/d(z), where d(z) is the canonical
product formed with the nonzero poles of f(z), with σ(d) ≤ max{σ(F), σ(Aj), j = 0, . . . , k −
1} < 1, and g is an entire function with 1 ≤ σ(g) = σ(f) = σ < ∞. Substituting f = g/d into
(1.2), by some calculation we can get

dF = g(k) + g(k−1)[Ak−1eak−1z + Bk,k−1] + · · ·

+ g ′
[

A1e
a1z +

k−1∑

i=2

Aie
aizBi,1 + Bk,1

]

+ g

[

A0e
a0z +

k−1∑

i=1

Aie
aizBi,1 + Bk,0

]

,
(3.1)

where Bi,j are defined as a sum of a finite number of terms of the type

∑

(j1···ji)
Cjj1···ji

(
d′

d

)j1

· · ·
(

d(i)

d

)ji

. (3.2)

Cjj1···ji are constants, and j + j1 + 2j2 + · · · + iji = k. Now, we rewrite (3.1) into

dF

g
=
g(k)

g
+ · · · +

[

A1e
a1z +

k−1∑

i=2

Aie
aizBi,1 + Bk,1

]

g ′

g
+

[

A0e
a0z +

k−1∑

i=1

Aie
aizBi,1 + Bk,0

]

. (3.3)
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Set max{σ(Aj), σ(F), σ(d), j = 0, . . . , k − 1} = β. By Lemma 2.1, for any given ε > 0
there exists a set E1 ∈ [0, 2π)which has linear measure zero, such that if θ ∈ [0, 2π) \E1, then
there is a constant R1 = r1(θ) > 1 such that for all z satisfying arg z = θ and |z| ≥ R1, we have

∣
∣g(i)(z)

∣
∣

∣
∣g(z)

∣
∣

≤ |z|k(σ−1+ε),
∣
∣d(i)(z)

∣
∣

|d(z)| ≤ |z|k(β−1+ε), i = 1, . . . , k. (3.4)

Meanwhile, by Lemma 2.6, for the above ε there exists a set E2 of zero linear measure, such
that if θ ∈ [0, 2π) \ E2, we have for sufficiently large r = |z|,

∣
∣Aj(z)

∣
∣ ≤ exp

{

rβ+ε
}

, j = 0, . . . , k − 1. (3.5)

Next we divide our proof into two cases.

Case 1. Suppose that argaj = arga0 and aj = cja0 (0 < cj < 1), j = 1, . . . , k − 1. Then for any
ray arg z = θ, we have

δ
(

ajz, θ
)

= cjδ(a0z, θ). (3.6)

By Lemma 2.2, for any given εwe can find a ray arg z = θ ∈ [0, 2π) \E1 ∪E2 ∪H1 ∪H2,
whereH1 andH2 are defined in Lemma 2.2, E1 ∪ E2 ∪H1 ∪H2 has zero linear measure, such
that δ(ajz, θ) = cjδ(a0z, θ) > 0, and for sufficiently large r,

∣
∣
∣A0

(

reiθ
)

ea0re
iθ
∣
∣
∣ ≥ exp{(1 − ε)δ(a0z, θ)r},

∣
∣
∣Aj

(

reiθ
)

eajre
iθ
∣
∣
∣ ≤ exp

{

(1 + ε)cjδ(a0z, θ)r
}

, j = 1, . . . , k − 1.
(3.7)

Thus, by (3.4) and (3.7), we have for sufficiently large r,

∣
∣
∣
∣
∣
A0e

a0z +
k−1∑

i=1

Aie
aizBi,1 + Bk,0

∣
∣
∣
∣
∣
≥M0 exp{(1 − ε)δ(a0z, θ)r},

|Ak−1eak−1z + Bk,k−1| ≤Mk−1 exp
{

(1 − ε)δ(ajz, θ
)

r
}

=Mk−1 exp{(1 − ε)ck−1δ(a0z, θ)r},
· · ·

∣
∣
∣
∣
∣
A1e

a1z +
k−1∑

i=2

Aie
aizBi,1 + Bk,1

∣
∣
∣
∣
∣
≤M1 exp{(1 + ε)δ(a1z, θ)r} =M1 exp{(1 + ε)c1δ(a0z, θ)r},

(3.8)

whereMj (j = 0, . . . , k − 1) are positive constants.
For θ ∈ [0, 2π) \ E1 ∪ E2 ∪H1 ∪H2, we claim that

log+
∣
∣g(z)

∣
∣

|z|β+ε
(3.9)
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is bounded on the ray arg z = θ. Otherwise, there exists a sequence of points zm = rmeiθ, such
that rm → ∞, and that

log+
∣
∣g(zm)

∣
∣

r
β+ε
m

−→ ∞. (3.10)

From (3.10) and the definition of order, we see that

∣
∣
∣
∣

d(zm)F(zm)
g(zm)

∣
∣
∣
∣
−→ 0 (3.11)

form is large enough.
By (3.3),(3.4), and (3.8)–(3.11), we get for sufficiently largem,

M0 exp{(1 − ε)δ(a0z, θ)rm} ≤
∣
∣
∣
∣
∣
A0e

a0rme
iθ

+
k−1∑

i=1

Aie
airme

iθ

Bi,1 + Bk,0

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
−d

(

rme
iθ
)

F
(

rme
iθ
)

g

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

g(k)

g

∣
∣
∣
∣
∣

+ · · · +
∣
∣
∣
∣
∣

[

A1e
a1rme

iθ

+
k−1∑

i=2

Aie
airme

iθ

Bi,1 + Bk,1

]

g ′

g

∣
∣
∣
∣
∣

≤
k−1∑

j=1

rk(σ+ε)Mj exp
{

(1 + ε)cjδ(a0z, θ)rmeiθ
}

+ rk(σ−1+ε).

(3.12)

Clearly, we can choose sufficiently small ε such that 0 < ε < min{(1 − cj)/(1 + cj) : j =
1, . . . , k − 1}. Then by (3.12), we can obtain a contradiction provided that m is sufficiently
large.

Therefore,

log+
∣
∣g(z)

∣
∣

|z|β+ε
(3.13)

is bounded, and we have |g(z)| ≤M exp{rβ+ε} on the ray arg z = θ.

Case 2. Suppose that argaj /= arga0 (j = 1, . . . , k − 1). By Lemma 2.2, there exists a ray arg z =
θ ∈ [0, 2π) \E1 ∪E2 ∪H1 ∪H2, where E1, E2, H1, andH2 are defined, respectively, as in Case
1, such that

δ(a0z, θ) > 0, δ
(

ajz, θ
)

< 0, j = 1, . . . , k − 1. (3.14)
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Further, for any given ε > 0, we have for sufficiently large r,

∣
∣
∣A0

(

reiθ
)

ea0re
iθ
∣
∣
∣ ≥ exp{(1 − ε)δ(a0z, θ)r},

∣
∣
∣Aj

(

reiθ
)

eajre
iθ
∣
∣
∣ ≤ exp

{

(1 − ε)δ(ajz, θ
)

r
}

, j = 1, . . . , k − 1.
(3.15)

Thus, by (3.4) and (3.15), we have for sufficiently large r,

∣
∣
∣
∣
∣
A0e

a0z +
k−1∑

i=1

Aie
aizBi,1 + Bk,0

∣
∣
∣
∣
∣
≥M0 exp{(1 − ε)δ(a0z, θ)r},

|Ak−1eak−1z + Bk,k−1| ≤Mk−1rk(σ−1+ε),

· · ·
∣
∣
∣
∣
∣
A1e

a1z +
k−1∑

i=2

Aie
aizBi,1 + Bk,1

∣
∣
∣
∣
∣
≤M1r

k(σ−1+ε),

(3.16)

whereMj (j = 0, . . . , k − 1) are positive constants.
For θ ∈ [0, 2π) \ E1 ∪ E2 ∪H1 ∪H2, we claim that

log+
∣
∣g(z)

∣
∣

|z|β+ε
(3.17)

is bounded on the ray arg z = θ. Otherwise, there exists a sequence of points zm = rmeiθ, such
that rm → ∞, and that

log+
∣
∣g(zm)

∣
∣

r
β+ε
m

−→ ∞. (3.18)

From (3.18) and the definition of order, we see that

∣
∣
∣
∣

d(zm)F(zm)
g(zm)

∣
∣
∣
∣
−→ 0 (3.19)

form is large enough.
Then by similar reasoning as in Case 1, we can also obtain a contradiction. So

log+
∣
∣g(z)

∣
∣

|z|β+ε
(3.20)

is bounded, and we have |g(z)| ≤M exp{rβ+ε} on the ray arg z = θ.
Combining Case 1 and Case 2, for any given ray arg z = θ ∈ [0, 2π) \ E, E of

linear measure zero, we have |g(z)| ≤ M exp{rβ+ε} on the ray arg z = θ, provided that r
is sufficiently large. Thus by Lemma 2.5, we get σ(g) ≤ β + ε < 1, which is a contradiction.
Again by Lemma 2.3, we complete the proof of Theorem 1.1.
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4. Proof of Theorem 1.3

Let f(z)/≡ 0 be a meromorphic solution of (1.2). Set Bj(z) = Aj(z)eajz. First, we prove that
λ(f − φ) = ∞.

Set f = g0 +φ. By Theorem 1.1, we have σ(g0) = σ(f) = ∞. Substituting f = g0 +φ into
(1.2), we get

g
(k)
0 + Bk−1g

(k−1)
0 + · · · + B0g0 = F −

(

φ(k) + Bk−1φ(k−1) + · · · + B0φ
)

. (4.1)

We remark that (4.1) may have finite-order solutions, but we only need to discuss the
solutions whose order are ∞.

If φ(k) + Bk−1φ(k−1) + · · · + B0φ = F, then by Theorem 1.1, we have σ(φ) = ∞. It is a
contradiction. Hence we have F − (φ(k) + Bk−1φ(k−1) + · · · + B0φ)/≡ 0. It follows from Lemmas 3
and (4.1) that λ(g0) = λ(g0) = σ(g0) = ∞.

Now we prove that λ(f ′ −φ) = ∞. Set g1 = f ′ −φ. Differentiating both side of (1.2), we
get

f (k+1) + Bk−1f (k) +
(

B′
k−1 + Bk−2

)

f (k−1) + · · · + (

B′
1 + B0

)

f ′ + B′
0f = F ′. (4.2)

Rewriting (1.2), we have

f = F − 1
B0

[

f (k) + Bk−1f (k−1) + · · · + B1f
′
]

. (4.3)

Substituting (4.3) into (4.2), we get

f (k+1) +

[

Bk−1 −
B′
0

B0

]

f (k) +

[

B′
k−1 + Bk−2 −

B′
0

B0
Bk−1

]

f (k−1)

+ · · · +
[

B′
1 + B0 −

B′
0

B0
B1

]

f ′ = F ′ − B′
0F.

(4.4)

We rewrite (4.4) into the following form:

f (k+1) + Ck−1f (k) + Ck−2f (k−1) + · · · + C0f
′ = F ′ − B′

0F, (4.5)

where Ck−1 = Bk−1 − B′
0/B0, Cj = B′

j+1 + Bj − (B′
0/B0)Bj+1, j = 0, . . . , k − 2. Substituting f ′ =

g1 + φ, . . . , f (k+1) = g(k)
1 + φ(k) into (4.5), we have

g
(k)
1 + Ck−1g

(k−1)
1 + Ck−2g

(k−2)
1 + · · · + C0g1

= F ′ − B′
0F −

[

φ(k) + Ck−1φ(k−1) + Ck−2φ(k−2) + · · · + C0φ
]

.
(4.6)
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Next we prove

Q1(z) = φ(k) + Ck−1φ(k−1) + Ck−2φ(k−2) + · · · + C0φ − F ′ + B′
0F /≡ 0. (4.7)

Conversely, assume that Q1(z) ≡ 0.
Dividing φ into both sides of Q1(z) ≡ 0, we have

Dk−1eak−1z + · · · +D1e
a1z +D0e

a0z +D(z) ≡ 0, (4.8)

where

D0 = A0 +A′
0F + a0A0F,

D1 = A1
φ′

φ
+

(

A′
1 +A1a1 −

A′
0

A0
A1

)

,

D2 = A2
φ′′

φ
+

(

A′
2 +A2a2 −

A′
0

A0
A2

)

φ′

φ
,

· · ·

Dj = Aj
φ(j)

φ
+

(

A′
j +Ajaj −

A′
0

A0
Aj

)

φ(j−1)

φ
,

· · ·

Dk−1 = Ak−1
φ(k−1)

φ
+

(

A′
k−1 +Ak−1ak−1 −

A′
0

A0
Ak−1

)

φ(k−2)

φ
,

D =
φ(k)

φ
− A′

0

A0

φ(k−1)

φ
− F ′.

(4.9)

Set max{σ(Aj), σ(F), j = 0, . . . , k − 1} = β. Clearly from (4.9),

σ(D0(z)) ≤ β. (4.10)

Meanwhile, by (4.9), we have

m
(

r,Dj

) ≤ 3m
(

r,Aj

)

+m

(

r,
φ(j)

φ

)

+m

(

r,
φ(j−1)

φ

)

+m
(

r,A′
j

)

+m

(

r,
A′

0

A0

)

+O(1)

≤ 4m
(

r,Aj

)

+O
(

log r
)

, j = 1, . . . , k − 1,

m(r,D) ≤ m(

r, F ′) +O
(

log r
)

,

(4.11)
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outside a possible exceptional set E of finite linear measure. On the other hand, again by (4.9),
we have

N
(

r,Dj

) ≤N
(

r,
1
φ

)

+N
(

r,
1
A0

)

+ k
(

N(r,A0) +N
(

r, φ
)

+N
(

r,Aj

))

,

j = 1, . . . , k − 1,

N(r,D) ≤N
(

r,
1
φ

)

+N
(

r,
1
A0

)

+ 2N(r,A0) + kN
(

r, φ
)

+N
(

r, F ′).

(4.12)

Combining (4.11) and (4.12), we get

σ
(

Dj

) ≤ max
{

λ
(

φ
)

, λ

(
1
φ

)

, σ
(

Aj

)

, j = 0, . . . , k − 1
}

< 1, j = 1, . . . , k − 1,

σ(D) ≤ max
{

λ
(

φ
)

, λ

(
1
φ

)

, σ
(

F ′), σ(A0)
}

< 1.
(4.13)

By Lemma 2.6, for any given positive constants ε, there exists a ray arg z = θ ∈ [0, 2π) \ E1,
where E1 has zero linear measure, such that for sufficiently large r,

|D(z)| ≤ exp
{

rσ(D)+ε
}

. (4.14)

Therefore by (4.13), and Lemma 2.2, we can find a ray arg z = θ ∈ [0, 2π) \ E1 ∪ H1 ∪ H2,
where H1 and H2 are defined in Lemma 2.2, H1 ∪ H2 has zero linear measure, such that
δ(ajz, θ) = cjδ(a0z, θ) > 0, and for sufficiently large r,

∣
∣
∣D0

(

reiθ
)

ea0re
iθ
∣
∣
∣ ≥ exp{(1 − ε)δ(a0z, θ)r},

∣
∣
∣Dj

(

reiθ
)

eajre
iθ
∣
∣
∣ ≤ exp

{

(1 + ε)cjδ(a0z, θ)r
}

, j = 1, . . . , k − 1.
(4.15)

Thus, by (4.8) and (4.14) and (4.15), we have

exp{(1 − ε)δ(a0z, θ)r} ≤
k−1∑

j=1

exp
{

(1 + ε)cjδ(a0z, θ)r
}

+ exp
{

rσ(D)+ε
}

. (4.16)

Since ε can be chosen arbitrarily small, we can obtain a contradiction. Thus we haveQ1(z)/≡ 0.
By Lemma 2.3 and (4.6), we get λ(f ′ − φ) = ∞.
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