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We give some identities on the q-Bernoulli and q-Euler numbers by using p-adic integral equations
on Zp.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote the
ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic
closure of Qp, respectively. Let N be the set of natural numbers and Z+ = N ∪ {0}. The p-adic
norm | · |p is normally defined by |p|p = 1/p.

As it is well known, the Euler polynomials are defined by

2
et + 1

ext = eE(x)t =
∞∑

n=0

En(x)
tn

n!
, (1.1)

with the usual convention about replacing En(x) by En(x) (see [1–14]). In the special case,
x = 0, En(0) = En is called the nth Euler number.

The ordinary Bernoulli polynomials are also defined by

t

et − 1
ext = eB(x)t =

∞∑

n=0

Bn(x)
tn

n!
, (1.2)
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with the usual convention about replacing Bn(x) by Bn(x) (see [1–14]). In the special case,
x = 0, Bn(0) = Bn is called the nth Bernoulli number.

LetUD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈ UD(Zp),
the bosonic p-adic integral on Zp is defined by

I
(
f
)
=
∫

Zp

f(x)dμ(x) = lim
N→∞

pN−1∑

x=0

f(x)μ
(
x + pNZp

)
= lim

N→∞
1
pN

pN−1∑

x=0

f(x), (1.3)

(see [1, 7]). Let f1 be the translation of f with f1(x) = f(x + 1). From (1.3) we have

I
(
f1
) − I

(
f
)
= f ′(0), (1.4)

(see [1, 7]).
The fermionic p-adic integral on Zp is also defined by T. Kim as follows:

I−1
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)μ−1
(
x + pNZp

)
= lim

N→∞

pN−1∑

x=0

f(x)(−1)x, (1.5)

(see [6, 15, 16]). By (1.5), we get

I−1
(
f1
)
+ I−1

(
f
)
= 2f(0), (1.6)

(see [6, 8]).
Let f(x) = ext ∈ UD(Zp)with |t|p < |p|1/(p−1)p and |x|p ≤ 1. From (1.4), we have

∫

Zp

e(x+y)tdμ
(
y
)
=

t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n!
. (1.7)

Thus, by (1.7), we see that
∫

Zp

(
x + y

)n
dμ

(
y
)
= Bn(x), n ∈ Z+. (1.8)

By (1.8), we get

Bn(x) =
n∑

l=0

(
n
l

)
xn−l

∫

Zp

yldμ
(
y
)
=

n∑

l=0

(
n
l

)
xn−lBl. (1.9)

As an indeterminate, let us assume that q ∈ Cp with |1 − q|p < 1.
From (1.1) and (1.6), we note that the q-Euler polynomials are given by

∫

Zp

qye(x+y)tdμ−1
(
y
)
=

2
qet + 1

ext =
∞∑

n=0

En,q(x)
tn

n!
, (1.10)

where En,q(x) are called the nth q-Euler polynomials (see [1, 3, 6, 8]).
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Thus, by (1.10), we get

En,q(x) =
∫

Zp

qy
(
x + y

)n
dμ−1

(
y
)
, n ∈ Z+. (1.11)

In the special case, x = 0, En,q(0) = En,q is called the nth q-Euler number (see [8, 9]). By (1.10)
and (1.11), we get the recurrence formula for the q-Euler numbers as follows:

E0,q =
2

[2]q
, q

(
Eq + 1

)n + En,q = 2δ0,n, (1.12)

with the usual convention about replacing En
q by En,q. Here [x]q = (1 − qx)/(1 − q) is the

q-number of x and δk,n is the Kronecker symbol (see [10, 11]).
From (1.2), (1.7), and (1.8), we have

B0 = 1, (B + 1)n − Bn = δ1,n, (1.13)

with the usual convention about replacing Bn by Bn (see [1, 3, 14]).
From (1.11), we easily see that

En,q(x) =
n∑

l=0

(
n
l

)
xn−lEl,q, (1.14)

(see [14]).
In this paper we give some interesting properties of p-adic integrals on Zp associated

with the q-Bernoulli and the q-Euler numbers. From those properties, we derive new
identities involving the q-Bernoulli and the q-Euler numbers arising from p-adic integrals
of polynomial identities.

2. Identities on q-Bernoulli and q-Euler Numbers

Let Cpn be the cyclic group of order pn with Cpn = {ζ ∈ Cp | ζpn = 1}. Then Tp is defined by
the direct limit as Tp = limn→∞Cpn = Cp∞ . In this section, we assume that q(/= 1) ∈ Tp, then
|q − 1|p < 1. From (1.4), we can derive the following equation (2.1):

∫

Zp

qye(x+y)tdμ
(
y
)
=

t

qet − 1
ext =

∞∑

n=0

Bn,q(x)
tn

n!
, (2.1)

where Bn,q(x) is called the nth q-Bernoulli polynomial (see [7]). In the special case, x = 0,
Bn,q(0) = Bn,q is called the nth q-Bernoulli number.

By (2.1), we get

B0,q = 0, q
(
Bq + 1

)n − Bn,q = δ1,n, (2.2)

with the usual convention about replacing Bn
q by Bn,q (see [7, 14]).
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From (1.3), we have

∫

Zp

f
(−y)dμ(y) =

∫

Zp

f
(
y + 1

)
dμ

(
y
)
. (2.3)

By (2.3), we get

q

∫

Zp

(
1 − x + y

)n
qydμ

(
y
)
= (−1)n

∫

Zp

q−y
(
x + y

)n
dμ

(
y
)
. (2.4)

From (2.1) and (2.4), we have

qBn,q(1 − x) = (−1)nBn,q−1(x), n ∈ Z+. (2.5)

By using (1.4), we see that

q

∫

Zp

(
1 + x + y

)n
qydμ

(
y
)
=
∫

Zp

qy
(
x + y

)n
dμ

(
y
)
+ nxn−1. (2.6)

Thus, by (2.1) and (2.6), we get

qBn,q(1 + x) = Bn,q(x) + nxn−1, n ∈ Z+. (2.7)

Therefore, by (2.5) and (2.7), we obtain the following theorem.

Theorem 2.1. For n ∈ Z+, one has

(−1)nBn,q−1(−x) = qBn,q(1 + x) = Bn,q(x) + nxn−1. (2.8)

From (1.5) and (1.6), we note that

∫

Zp

(
1 − x + y

)n
qydμ−1

(
y
)
= (−1)n

∫

Zp

(
x + y

)n
q−(y+1)dμ−1

(
y
)
. (2.9)

Therefore, by (1.11) and (2.9), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, one has

qEn,q(1 − x) = (−1)nEn,q−1(x). (2.10)

By (1.6), we get

q

∫

Zp

qy
(
x + 1 + y

)n
dμ−1

(
y
)
+
∫

Zp

qy
(
x + y

)n
dμ−1

(
y
)
= 2xn. (2.11)
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Thus, by (1.11) and (2.11), we have

qEn,q(x + 1) = −En,q(x) + 2xn, n ∈ Z+. (2.12)

Therefore, by Theorem 2.2 and (2.12), we obtain the following theorem.

Theorem 2.3. For n ∈ Z+, one has

(−1)nEn,q−1(−x) = qEn,q(1 + x) = −En,q(x) + 2xn. (2.13)

By using the p-adic integrals on Zp, we have the following equation (2.14):

∫

Zp

∫

Zp

q(x+y)e(x+y)tdμ(x)dμ−1
(
y
)
=
∫

Zp

qxextdμ(x)
∫

Zp

qyeytdμ−1
(
y
)

=
(

t

qet − 1

)(
2

qet + 1

)
=

2t
q2e2t − 1

=
∫

Zp

q2xe2xtdμ(x).

(2.14)

By (2.14), we get

∫

Zp

∫

Zp

q(x+y)
(
x + y

)n
dμ(x)dμ−1

(
y
)
= 2n

∫

Zp

q2xxndμ(x). (2.15)

It is not difficult to show that

∫

Zp

∫

Zp

q(x+y)
(
x + y

)n
dμ(x)dμ−1

(
y
)
=

n∑

l=0

(
n
l

)∫

Zp

∫

Zp

qxxn−lqyyldμ(x)dμ−1
(
y
)
. (2.16)

Therefore, by (2.15) and (2.16), we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, one has

n∑

l=0

(
n
l

)
Bn−l,qEl,q = 2nBn,q2 . (2.17)

By (2.5), (2.7), (2.12), Theorems 2.1, and 2.3, we get

qBn,q(x) = (−1)nBn,q−1(1 − x) = Bn,q(x − 1) + n(x − 1)n−1, (2.18)

qEn,q(x) = (−1)nEn,q−1(1 − x) = −En,q(x − 1) + 2(x − 1)n. (2.19)
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From (2.1), we have

Bn,q(x) =
∫

Zp

qy
(
x + y

)n
dμ

(
y
)
=

n∑

l=0

(
n
l

)
Bl,qx

n−l, n ∈ Z+. (2.20)

Let

I1 = q

∫

Zp

qxBn,q(x)dμ(x) = q
n∑

l=0

(
n
l

)
Bn−l,qBl,q. (2.21)

From (2.18), (2.20), and (2.21), we note that

I1 = (−1)n
n∑

l=0

(
n
l

)
Bn−l,q

∫

Zp

qx(x − 1)ldμ(x) + n

∫

Zp

qx(x − 1)n−1dμ(x)

= (−1)n
n∑

l=0

(
n
l

)
Bn−l,qBl,q(−1) + nBn−1,q(−1)

= (−1)n
n∑

l=0

(
n
l

)
Bl,qBn−l,q(−1) + nBn−1,q(−1).

(2.22)

By (2.5), we get

qBn,q(−1) = (−1)nBn,q−1(2), n ∈ Z+. (2.23)

By (2.3), we easily see that

q2Bn,q(2) = nq + qBn,q(1) = nq + Bn,q + δ1,n, (2.24)

where δ1,n is the Kronecker symbol.
Thus, by (2.23) and (2.24), we get

Bn,q(−1) = (−1)n(n + qBn,q−1 + qδ1,n
)
. (2.25)

By (2.22) and (2.25), we get

I1 = (−1)n
n∑

l=0

(
n
l

)
Bl,q(−1)n−l

(
n − l + qBn−l,q−1 + qδ1,n−l

)
+ nBn−1,q(−1)

= n
n−1∑

l=0

(
n − 1
l

)
Bl,q(−1)l + q

n∑

l=0

(
n
l

)
(−1)lBl,qBn−l,q−1 + q(−1)n−1nBn−1,q + nBn−1,q(−1)

= q
n∑

l=0

(
n
l

)
(−1)lBl,qBn−l,q−1 + q(−1)n−1nBn−1,q +

(
1 + (−1)n−1

)
nBn−1,q(−1).

(2.26)

Therefore, by (2.21) and (2.26), we obtain the following theorem.
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Theorem 2.5. For n ∈ Z+, one has

2n∑

l=0

(
2n
l

)
B2n−l,qBl,q −

2n∑

l=0

(
2n
l

)
(−1)lBl,qB2n−l,q−1 = −2nB2n−1,q. (2.27)

Let us consider the following integral:

I2 =
∫

Zp

qx+1En,q(x)dμ−1(x) = q
n∑

l=0

(
n
l

)
En−l,qEl,q. (2.28)

By (2.19), we get

I2 = −
∫

Zp

qxEn,q(x − 1)dμ−1(x) + 2
∫

Zp

qx(x − 1)ndμ−1(x)

= −
n∑

l=0

(
n
l

)
El,qEn−l,q(−1) + 2En,q(−1)

= −
n∑

l=0

(
n
l

)
En−l,qEl,q(−1) + 2En,q(−1).

(2.29)

From Theorem 2.2, we note that

qEn,q(−1) = (−1)nEn,q−1(2), n ∈ Z+. (2.30)

By (1.12), we get

q2En,q(2) = 2q + En,q − 2δ0,n. (2.31)

Thus, by (2.30) and (2.31), we get

En,q(−1) = (−1)n(2 + qEn,q−1 − 2qδ0,n
)
. (2.32)

From (2.29) and (2.32), we note that

I2 = −
n∑

l=0

(
n
l

)
El,q(−1)n−l

(
2 + qEn−l,q−1 − 2qδ0,n−l

)
+ 2(−1)n(2 + qEn,q−1 − 2qδ0,n

)

= −q
n∑

l=0

(
n
l

)
(−1)n−lEl,qEn−l,q−1 + 2qEn,q.

(2.33)

Therefore, by (2.28) and (2.33), we obtain the following theorem.

Theorem 2.6. For n ∈ Z+, one has

n∑

l=0

(
n
l

)
En−l,qEl,q +

n∑

l=0

(
n
l

)
(−1)n−lEl,qEn−l,q−1 = 2En,q. (2.34)
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Now we consider the fermionic p-adic integral on Zp for the nth q-Euler polynomials
as follows:

I3 =
∫

Zp

qxEn,q(x)dμ−1(x) =
n∑

l=0

(
n
l

)
El,q

∫

Zp

qxxn−ldμ−1(x)

=
n∑

l=0

(
n
l

)
El,qEn−l,q, n ∈ Z+.

(2.35)

On the other hand, by Theorem 2.2, we get

I3 = (−1)nq−1
∫

Zp

En,q−1(1 − x)qxdμ−1(x)

= (−1)nq−1
n∑

l=0

(
n
l

)
En−l,q−1

∫

Zp

qx(1 − x)ldμ−1(x)

= q−1
n∑

l=0

(
n
l

)
En−l,q−1(−1)n−lEl,q(−1).

(2.36)

From (2.32) and (2.36), we note that

I3 = (−1)nq−1
n∑

l=0

(
n
l

)
En−l,q−1

(
2 + qEl,q−1 − 2qδ0,l

)

= 2(−1)nq−1En,q−1(1) + (−1)n
n∑

l=0

(
n
l

)
En−l,q−1El,q−1 − 2(−1)nEn,q−1

= −2(−1)nEn,q−1 + 4(−1)nδ0,n + (−1)n
n∑

l=0

(
n
l

)
En−l,q−1El,q−1 − 2(−1)nEn,q−1 .

(2.37)

Therefore, by (2.35) and (2.37), we obtain the following theorem.

Theorem 2.7. For n ∈ Z+, one has

2n+1∑

l=0

(
2n + 1

l

)
El,qE2n+1−l,q +

2n+1∑

l=0

(
2n + 1

l

)
El,q−1E2n+1−l,q−1 = 4E2n+1,q−1 . (2.38)

From (2.1) and (2.7), we note that

xn =
q

n + 1

n∑

l=0

(
n + 1
l

)
Bl,q(x) +

q − 1
n + 1

Bn+1,q(x). (2.39)
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Let us consider the following fermionic p-adic integral on Zp:

∫

Zp

xnqxdμ−1(x) =
q

n + 1

n∑

l=0

(
n + 1
l

)∫

Zp

qxBl,q(x)dμ−1(x) +
q − 1
n + 1

∫

Zp

qxBn+1,q(x)dμ−1(x)

=
q

n + 1

n∑

l=0

(
n + 1
l

) l∑

k=0

(
l
k

)
Bl−k,qEk,q +

q − 1
n + 1

n+1∑

l=0

(
n + 1
l

)
Bn+1−l,qEl,q.

(2.40)

Therefore, by (2.40), we obtain the following theorem.

Theorem 2.8. For n ∈ Z+, one has

En,q =
q

n + 1

n∑

l=0

(
n + 1
l

) l∑

k=0

(
l
k

)
Bl−k,qEk,q +

q − 1
n + 1

n+1∑

l=0

(
n + 1
l

)
Bn+1−l,qEl,q. (2.41)

From (1.10) and (2.12), we note that

xn =
[2]q
2

En,q(x) +
q

2

n−1∑

l=0

(
n
l

)
El,q(x). (2.42)

Thus, by (2.42), we get

∫

Zp

qxxndμ−1(x) =
[2]q
2

∫

Zp

En,q(x)qxdμ−1(x) +
q

2

n−1∑

l=0

(
n
l

)∫

Zp

qxEl,q(x)dμ−1(x)

=
[2]q
2

n∑

l=0

(
n
l

)
En−l,qEl,q +

q

2

n−1∑

l=0

(
n
l

) l∑

k=0

(
l
k

)
El−k,qEk,q.

(2.43)

Thus, by (2.43), we have

En,q =
[2]q
2

n∑

l=0

(
n
l

)
En−l,qEl,q +

q

2

n−1∑

l=0

(
n
l

) l∑

k=0

(
l
k

)
El−k,qEk,q. (2.44)
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